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Abstract

A novel method for structural health monitoring under environmental and operational variations

(EOV) is proposed based on the prediction errors of the Johansen cointegartion (CI) residuals

using a Recurrent Neural Network (RNN). The first four natural frequency time series of the

structure, identified from vibration measurements over a period of time, are used to this end.

The Variational Mode Decomposition (VMD) algorithm is first used for denoising and remov-

ing seasonal patterns in the frequency signals. The first modes of the decomposition results

corresponding to all frequency signals are then used to obtain Johansen CI residuals. Next, a

portion of the obtained signals form VMD decomposition along with the same portion of the

Johansen CI residuals are used respectively as training feature and targets to train a RNN. The

trained RNN is then used to predict the future CI residuals from the remaining portion of the

features. The error of the prediction results is used as damage sensitive feature. The proposed

method has been successfully tested on both a long-term monitoring problem of a numerical

example (spring-mass system), a short-term monitoring problem regarding an experimental ex-

ample (wooden bridge), and a long-term monitoring of an experimental example (bridge Z24).

The results demonstrate the capability of the proposed method in monitoring structures for

damage even when the Johansen algorithm fails to identify a linear CI relationship among the

frequency signals.
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1. Introduction2

The main trend in Structural Health Monitoring (SHM) over the past decades has been3

toward using two main strategies: (1) model based and (2) data based techniques. Model-4

based techniques basically seek to update damage parameters in a Finite Element (FE) model5

of the structure using some response measured on the real structure. As such, FE modeling is6

a common computational technique used to model complex structures for this purpose [1]. As7

such, different parameters corresponding to the FE model of the structure are updated through8

minimising an objective function constructed based on the difference between the computed and9

measured structural response [1]. Therefore, several runs, equal to the number of iterations10

for the optimisation problem to converge, of a computer algorithm are required to successfully11

update the structural parameters. While model-based techniques are relying on the physics of12

the problem, data based methods seek to find anomaly in structures based on pure mathematical13

principals governing the nature of the data.14

It is known that operational and environmental variations (EOV) can affect the mode shape15

and natural frequencies of structures. These variations, which have non-stationary effects on16

signals, will bring about false-positive or false-negative outcomes in damage detection algorithms.17

It is known that temperature is the primary environmental influence on the structural modal18

properties and subsequently can mask the effect of damage in structural response [2]. It has been19

reported that there is a strong long-term correlation between variation of natural frequencies and20

temperature [3, 4]. For instance, the results of a study conducted on a two span steel-concrete21

composite bridge in North Carolina showed that the absolute variation of the measured first five22

natural frequencies of the bridge between the night and noon is roughly between 1 and 2 percent23

when the temperature during this period in the top of concrete, top flange, and the bottom24

flange varies 26.30, 18.95, 7.50 percent, respectively [5].25

One remedy to deal with this problem is data normalisation [6]. Data normalisation can26

be regarded as a data fusion technique aiming at obtaining a stationary representation of a27

set of given non-stationary signals. This stationary representation does not include the EOV28

effects and, therefore, can be reliably used for monitoring structures. A property of a set of29

non-stationary time series where a linear combination of them can produce a stationary residual30

is referred to as cointegration (CI). These residuals can be further used as potentially effective31

damage features in damage detection algorithms [7]. As such, the parameters of this linear com-32

bination are usually referred to as a CI vector which can be identified using Johansen procedure33

[8] or Engle-Granger (EG) two-step procedure [9].34

There are however, some challenges with using CI for SHM. It has been argued that while35
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the measured responses from healthy structure show non-stationary behaviour in the short run36

(a couple of days), they have usually stationary trend over a long period of time (a couple of37

months) [10]. This fact will further undermine the basic unit root assumption of the signals for38

CI when using a fraction of the data as training set. However, it has been suggested that the39

philosophical question of whether a unit root assumption is valid can be overlooked from the40

engineering application point of view [10].41

Dao et al. used CI to mitigate the effect of temperature variation in damage detection using42

lamb waves [11]. In another study, Dao et al. applied cointergartion to the non-linear vibro-43

acoustic modulation [12] waves from low frequency excitation of laminated composite plates44

and composite sandwich panels for removing the effect of variable operational conditions [13].45

Li et al. used a Johansen test [14] to obtain the CI residuals of electro-mechanical impedance46

responses for removing temperature effects on damage detection [15]. Tomé et al. also used the47

multivariate CI analysis following the multivariate Johansen procedure to remove the operational48

and environmental effects on damage detection [16]. The CI interpretation of time series has49

been also used as a diagnostic measure for damage detection using recorded vibration signals50

[17]. One problem with using linear conintegration method arises from the heteroscedasticity51

nature of the time series [18] where the stationary assumption for the variance of the residual52

around the regression line is not valid. In contrast, homoscedastic cointegrated time series have53

strictly stationary residuals. The Breusch–Pagan test is usually used to determine the presence54

of heteroscedasticity in the CI residuals either in linear or non-linear CI [18].55

There are two types of CI algorithms, namely linear and nonlinear. As first attempts to for-56

mulate a non-linear CI method for SHM purposes, variants of the Johansen and EG procedures57

were used in an evolutionary optimisation framework to estimate parameters for multinomial58

cointegrating relationships [19, 20]. The problem occurred in these papers, was that the CI59

residuals obtained from the methods were heteroscedastic. To address this issue, it was proposed60

that the non-stationarity from the variance of the residual sequence be moved to its tail distri-61

bution [21]. Nevertheless, there was still a problem with the normal control chart thresholds62

not being appropriate [22]. Machine learning algorithms such as least-squares support vector63

machines [23], Relevance Vector Machines (RVMs) [24], Gaussian Process Regression (GPR)64

[22] have been used to deal with this problem. As such, a portion of the signals is used as a65

training set to find the underlying non-linear CI relationship. However, once the damage occurs,66

the underlying CI relationship may no longer hold, and consequently the CI residuals will no67

longer stay stationary [25, 24]. Although data normalisation has been proven to be able to detect68

damage at the presence of EOV, two major problems have been reported in the literature. These69
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are: (1) dependency to large number of healthy training data under different environmental and70

operational conditions for creating the CI residuals, and (2) the CI relationship among variables71

cannot be determined in damage state. To overcome the two drawbacks, the Kalman Filter (KF)72

was used along with CI to online estimate the change of the CI relationship [26].73

In this paper, a novel and effective method for monitoring of structures using recorded struc-74

tural response under EOV is proposed. To that end, the identified frequency time series of the75

structure are decomposed into their two oscillatory modes using the Variational Mode Decompo-76

sition (VMD) algorithm [27]. The decomposed modes are: 1) a DC non-stationary signal which77

has 0 center frequency and contains information about the damage state of the structure, and78

2) a stationary seasonal mode which is believed will interfere with damage detection. Therefore,79

only the non-stationary mode of the signals is used to construct Johansen CI residuals. Then80

a part of the obtained Johansen CI and the first mode of the frequency time series are used81

respectively as target and features to train a Recurrent Neural Network (RNN). The trained82

RNN is then used to predict the future CI relationship using remaining part of the first modes83

signals as test features. The results are compared against the corresponding obtained Johansen84

CI. It is shown that the prediction error will significantly deviate from the average value of the85

errors when a damage occurs in the system. The proposed strategy is tested successfully on both86

a long-term monitoring of a numerical example as well as a short-term and long-term monitoring87

of two different experimental examples.88

There are four different phases regarding the SHM in general which are: 1) monitoring89

structures for any change due to damage, 2) locating the damage, 3) recognising the type of the90

damage, and 4) quantifying the severity of the damage [28]. The method of this paper falls into91

the first category where raising an early alarm is intended as soon as the structure undergoes92

any changes that can be referred to damage.93

2. Cointegration94

2.1. Stationary and non-stationary signals95

The concept of CI has a deep connection with the notation of stationary and non-stationary96

definition of a time series [29]. Therefore, a brief definition of the stationary and non-stationary97

time series is presented in here [18, 11].98

Consider the signalX(t), the first order auto-regressive process AR(1) of the signal is obtained99

as follows,100

X(t) = φ X(t− 1) + εt (1)
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Where εt is a stationary white Gaussian noise process. As such three cases can happen for the101

AR(1) model of the time series X(t) which are; 1) |φ| < 1, where the signal is stationary, 2)102

|φ| > 1, implies the signal is non-stationary, and 3) |φ| = 1, that represents a pure random walk103

model which is also non-stationary due to the explosion of the variance as t→∞.104

A time series is referred to as unit root process when its characteristic function has a unit105

root. In econometrics, when a deterministic trend is the cause of non-stationarity, the time series106

is referred to as trend stationary process. When the non-stationarity is due to the unit root,107

the time series is referred to as difference stationary process. This is mainly due to the fact108

that difference operation will render the series stationary. The best example is when this type of109

transformation is applied to a first order non-stationary pure random walk process I(1) where110

∆X(t) = X(t) −X(t − 1) = εt is a stationary white Gaussian noise process I(0). The reasons111

for using CI instead of working simply with difference signals in SHM are as follows [10],112

1. Numerical differentiation of experimental data will greatly amplify any high frequency noise113

components, whereas CI will at worst generate a weighted average of the noise.114

2. Differentiation will remove any trend in the data associated with damage.115

There are, however, other notions of the stationary and non-stationary signals. For instance, a116

stationary signal has time-invariant statistical moments whereas the moments of a non-stationary117

signal show some time dependence. A weak assumption for the stationary of a signal is obtained118

when only the first two statistical moments of the signal are time invariant.119

2.2. Johansen cointegration120

Cointegration (CI) is a technique adapted from the field of econometrics for removing trends121

induced by environmental and operational variations in measured data used for damage detection122

[8, 10]. The Johansen procedure can be used to not only estimate multiple CI vectors, but also123

to produce a test statistic for determining the number of CI vectors. It is said that a time series124

X(t) is integrated of order d if ∆dX(t) is stationary where ∆X(t) = X(t)−X(t− 1). Note that125

∆d indicates d times application of the difference operator ∆ to the signal X(t). As such, m126

signals {X1(t), . . . , Xm(t)} are cointegrated with order d and b if two following conditions are127

satisfied,128

1. Each signalXi(t), i = 1, . . . ,m, is integrated of order d. The Kwiatkowski–Phillips–Schmidt–Shin129

(KPSS) and Augmented Dickey-Fuller (ADF) tests are two main unit root tests to deter-130

mine how many times the difference operator ∆ should be applied to make the time series131

stationary.132
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2. There exists a linear combination of the signals Xi(t) such as,133

Ψ(t) = a1 X1(t) + a2 X2(t) + · · ·+ am Xm(t) (2)

so that Ψ(t) is integrated of order d− b. In such a case, the time series {X1(t), . . . , Xm(t)}134

are denoted as CI(d, b). The most common case is when d = b = 1. The vector [a1, . . . , am]135

is the CI vector and can be obtained using a least squares optimisation algorithm [30]).136

Take Yt = {X1(t), . . . , Xm(t)}T as a m × 1 I(1) vector where m is the number of features137

measured on the structure at time t. These features are usually a couple of first natural frequen-138

cies of the structure. To perform Johansen procedure, a vector autoregressive (VAR) model of139

Yt is constructed as follows,140

Yt = δDt +

p∑
j=1

ΦjYt−j + ut (3)

where p is the lag order, Dt denotes the vector of deterministic variables such as constant, trends,141

and/or seasonal dummy variables, and Φj and ut are respectively a m×m coefficient matrix and142

m×1 iid Gaussian noise vector. Substituting Yt = Yt−1+∆Yt, Yt−1 = Yt−2+∆Yt−1, . . . , Yt−p =143

Yt−p−1 + ∆Yt−p into (3) we get the error correction model (ECM) as follows,144

∆Yt = ΓoDt + ΠYt−1 +

p−1∑
j=1

Γj∆Yt−j + ut (4)

where Π = −(I − Φ1 − . . .Φp) and Γj = −(Φj+1 + . . .Φp) for j = 1, . . . , p − 1. ΠYt−1 is called145

error-correction term. There are three possibility for the rank(Π) = r as can be seen in Table 1.146

As such, the Johansen CI relationship among {X1, . . . , Xm} exist only when 0 < r < m. In such147

a case, Π is factorised as α βT where α and β are adjustment and CI matrices. Note that the148

aforementioned factorisation is not unique and, therefore, in order to get a unique factorisation149

as such, further restrictions need to be imposed. To that end, Johansen proposed a maximum150

likelihood method as follows.151

Substituting Z0t = ∆Yt, Z1t = Yt−1, Z2t = {∆Yt−1, . . . ,∆Yt−p−1, Dt}T , Ψ = {Γ1, . . . ,Γp,Γ0},152

and Π = α βT into (4) gives,153

Z0t = α βTYt−1 + ΨZ2t + εt (5)

Assuming normality for εt ∼ N(0,Σ), the logarithm likelihood function can be constructed as154

follows,155

lnL(α, β,Σ|Yt) = −mN
2 log(2π)− N

2 log(|Σ|) (6)

−1
2

∑N
t=1

(
Z0t − αβTZ1t −ΨZ2t

)T
ΣT
(
Z0t − αβTZ1t −ΨZ2t

)

6
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Table 1: The model properties for different cases of rank(Π) = r.

rank (Π)=r Properties

r=0 1) All eigenvalues of Π are zero.

2) Π = 0.

3) {X1, . . . , Xm} are not correlated.

r=m 1) |Π| 6= 0.

2) {X1, . . . , Xm} are of I(0).

3) The relationship of {X1, . . . , Xm} can be modeled in level and not in

differences.

4) here is no need to refer to the error correction representation.

0 < r < m 1) each of {X1, . . . , Xm} is integrated of I(1).

2) Π has r nonzero eigenvalues.

3) All {X1, . . . , Xm} are cointegrated and there is r CI relationships.

where N is the number of observations. In order to estimate the unknown parameters, i.e. α156

and β, in maximum likelihood problem of (6), residuals R0t and R1t are obtained by regressing157

Z0t and Z1t on Z2t, respectively. Therefore, the VECM of (4) can be written as,158

Sij =
1

N

N∑
t=1

RitRjt (7)

Obtaining α and β requires solving the following eigenvalue problem,159 ∣∣∣λiS11 − S10S−100 S01

∣∣∣ = 0 (8)

Assuming that {λ1, . . . , λr} are r eigenvalues of (8), the corresponding eigenvectors {v1, . . . , vr}160

construct the cointegrating matrix β as follows,161

β̂ = βMLE = [v1, . . . , vr] (9)

The eigenvector corresponding to the largest eigenvalue represents the first CI vector which is162

the “most stationary” CI vector as well [30]. Matlab Econometric Toolbox is used in this paper163

to obtain the eigenvectors corresponding to the first two largest eigenvalues obtained from the164

Johansen procedure.165

3. Proposed damage detection strategy166

Diagram of Figure 1 shows the routine procedure followed for obtaining CI relationships167

among a set of input signals. In theory, the Johansen procedure is said to be successful when the168
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Figure 1: Diagram of examining signals for linear or non-linear CI.
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Figure 2: Damage detection using trained non-linear CI residuals.

resulted residuals from a set of I(1) inputs is stationary (I(0)). When the Johansen procedure is169

not successful a non-linear CI procedure can be devised. In SHM, machine learning algorithms170

have been used to this end. As such, a portion of the input signals is used as a training set171

to train a non-linear CI relationship among them (Figure 2). When the damage happens, the172

underlying CI relationship does not hold any longer and an alarm is raised. In this section, first173

a strategy based on the prediction of Johansen CI using a RNN is outlined. Then, a numerical174

example is presented to walk the readers through the proposed structural condition monitoring175

method in the next section.176

Conventional damage detection algorithms suffer from the change of the variance of het-177

eroscedastic data which makes the procedure of damage detection more complex. Therefore, the178

first step is to remove any complex seasonal patterns in the applied signals prior to cointegration179

analysis [25]. To that end, VMD is used in this paper for both denoising and removing the180

seasonal patterns in the signals. VMD is a parametric decomposition algorithm and thus cares181

need to be taken when specifying its parameters. The theory of the VMD and ways of choosing182
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Figure 3: The diagram of the proposed damage detection method.
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m2 m3 m4

k2 k3 k5

Figure 4: A four degree of freedom spring-mass system.

its parameters will be discussed in a following section.183

Next step is to use 100% of the VMD outcomes to construct CI residuals. Then, q% of184

the VMD outcomes along with q% of the Johansen CI residuals corresponding to the healthy185

structure are used respectively as features and targets to train a recurrent neural network (RNN).186

This is done in order to learn the underling Johansen CI relationship related to the healthy187

structure in an alternative way. The last step is to use the trained RNN to predict the future188

CI relationship using (100 − q)% of the VMD outcome as the test features. The results of the189

prediction is then compared against the remaining ((100−q)%) part of the Johansen CI residuals.190

It will be shown that the error in the prediction will significantly deviate from the average error191

when damage occurs. The procedure of the proposed strategy is shown in the diagram of Figure192

3.193

4. Illustrative numerical example194

A four degree of freedom (DOF) spring-mass system is presented in this section as an illustra-195

tive example (Figure 4). The example is similar to the one used in [30] with some adjustments.196

As such, the weight of the masses is equal to 2 kg each. The stiffness of each spring is in kN/m197

9
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and is assumed to vary with temperature as follows,198

ki =


−0.11× T + 4, if T < 0

−0.03× T + 4, if T ≥ 0

(10)

for i = 1, 2, 4, 5, and199

k3 =


−0.11× T + 5, if T < 0

−0.2× T + 5, if T ≥ 0

(11)

The different behaviour of k3 has non-linear effect on vibration modes. A -15 oC shifted1 10000200

temperature records of Basel-Switzerland is used in this section (Figure 5a) [31]. The tempera-201

tures are recorded hourly and the time period of the records is from June 2019 to July 2020. It202

is assumed that the stiffness of k3 reduces by 20% at 7000th record and this reduction of stiffness203

lasts for the duration of 100 records. As such, we assume that the damage is detected and then204

fixed afterwards. The four natural frequencies of the system are calculated at each time instant205

and 10% noise is added to the signals using the following equation [32],206

δ̂ = δ +
κ

100
nnoise σ(δ), (12)

where δ and δ̂ represent respectively the vector of noise-free and noisy calculated frequencies.207

σ(δ) represents the standard deviation of δ and κ is the noise level (= 10). nnoise is a random208

independent variables vector of the same length as δ following a standard normal distribution.209

Figure 5b shows the obtained four noisy natural frequency time series of the spring-mass system.210

Next, we exploit VMD for denoising and removing the seasonal patterns in the frequency signals.211

Since VMD is a parametric signal decomposition algorithm, ways of specifying its parameters212

are discussed in the following section.213

4.1. Variational Mode Decomposition (VMD)214

VMD is an advanced signal decomposition algorithm which is able to decompose a non-linear215

non-stationary signal into k oscillatory modes known as Intrinsic Mode Functions (IMF). The216

sum of which can construct the noisefree original signal depending on settings [33]. Each IMF is217

narrow-band and has a center frequency ω. VMD solves the following optimisation problem,218

min
{uk} & {ωk}

∑
k

∥∥∥∥∂t (δ(t) +
j

πt
∗ uk(t)

)
e−jωkt

∥∥∥∥2 (13)

where ∗ and j are respectively the convolution operator and the imaginary unit. Quoted from219

the proposers of VMD, the solution to the above minimisation problem is the saddle point of220

1The reason for shifting temperatures -15 oC is to provide a wide of range of negative and positive temperature

profile.
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Figure 5: (a) Hourly recorded temperature of Basel-Switaerland shifted −15 oC, and (b) calculated natural

frequencies of the spring-mass system for the time period from June 2019 to July 2020.
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the augmented Lagrangian in a sequence of iterative sub-optimisations called alternate direction221

method of multipliers (ADMM) [33]. This makes the VMD a parametric decomposition algorithm222

urging the users to specify some parameters prior to decomposition as follows,223

1. The number of IMFs k to which the original signal is set to be decomposed. In this paper224

k is set to 2 to remove the seasonal pattern from the frequency time series.225

2. The quadratic penalty term α which is a denoising factor. α needs to be set larger when226

the less noise is tolerated in the decomposition. In this section, α is set to 100 to denoise227

the frequency signals. 2
228

3. Time step τ . In case an exact reconstruction is intended, τ needs to be set at a small229

number. In this case, τ = 0.1 is the recommended value by the proposers of VMD [34].230

Otherwise, one can set τ to zero when the reconstruction is not strictly enforced, but231

encouraged in least-squares sense. Since denoising is intended in this paper, τ is set to 0.232

4. The tolerance parameter ε which controls the convergence of the algorithm and is set to233

10−7 in this paper. Note that different values of ε has been tested and while the results234

were reasonably accurate by selecting ε = 10−5, a value of 10−7 was eventually selected235

in the examples of this paper. Note that it will take longer for the VMD algorithm to236

converge when a smaller value of the ε is selected.237

5. init which initialises vector ω (IMFs’ center frequencies) and can be either set to 0 (zero238

initialisation), 1 (uniform initialisation), or 2 (random initialisation). The ways of initial-239

ising the center frequencies, however, has a little effect on the decomposition results based240

on the findings in [35]. Therefore, in this paper init = 0.241

6. DC which determines whether or not the first mode is put and kept at DC, i.e. IMF with242

zero center frequency. It is recommended that the first mode be kept at DC for the purpose243

of this paper. Therefore, we set DC = 1 (True).244

VMD is used to decompose the four natural frequency time series of the spring-mass system245

into two modes, namely a seasonal and a DC mode. Also, restated, the signals are denoised by246

setting the quadratic penalty term α = 100. Figure 6 shows the decomposed natural frequencies247

along with their center frequencies. As can be seen from the figure, all first IMFs have zero248

center frequencies. Interestingly, all the second IMFs have similar center frequencies with an249

average value of about 0.0439 cycles per hour which is equivalent to almost a full cycle per 24250

hours. This is due to the fact that the temperature variation between day and night has a cyclic251

pattern throughout the year. Therefore, the first IMF corresponding to all decomposition is used252

2In the experimental sections, α is chosen 10 since a less amount of noise presents in signals.
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Figure 6: Decomposed natural frequencies of the spring-mass system along with their center frequencies. The

first IMF in all cases is kept at DC (zero center frequency).

to construct Johansen CI residuals. However, first, we propose to run the KPSS test on first253

IMF of each natural frequency time series to explore its stationary/non-stationary nature.254

4.2. Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test of unit root255

Specifying an appropriate lag length for the KPSS test is essential. A short lag length can256

make the test biased. In contrast, the power of the test will suffer if the lag length is too large.257

Therefore, the following equation is used to obtain the maximum lag length [36],258

Lmax =

[
12×

(
N

100

) 1
4
]

(14)

where Lmax is the maximum lag length. N and [.] indicate respectively the sample size (number259

of observations) and the integer part of a number. Regarding the spring-mass system n = 10000260

and, therefore, Lmax is calculated 37. Table 2 shows the results of the KPSS test run on the261

first IMF, its corresponding difference form, and the second IMF regarding all the four natural262

frequency time series of the spring-mass system. Three different lag length, namely 35, 36, and263
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37, are used. The significance level for the test is set to 0.1. Smaller P-value than the significance264

level (0.1) indicates that the probability of the type I error is less than the tolerance. This means265

that the null hypothesis of stationary can be confidently rejected and, therefore, the signal is266

regarded as non-stationary. The opposite conclusion can be made when the P-value is larger267

than the significance level. As such, for larger P-value (compared with the significance level) the268

null hypothesis of stationary cannot be rejected and therefore the signal is regarded as stationary.269

The results indicate that IMF1 corresponding to all natural frequency signals is non-stationary270

in all forms of the signals associated with the specified lag lengths. However, the first difference271

of the IMF1 time series is stationary in all cases. This confirms that these signals are of I(1) and,272

therefore, a Johansen procedure to derive CI residuals can be followed for them. The results also273

confirm that all IMF2 time series are stationary in level.274

Table 2: The results of the KPSS test run on IMF1, ∆IMF1, and IMF2 corresponding to all natural frequency

time series of the spring-mass system. The significance level for the test is 0.1.

1st frequency

Signal Lag P-value h Stationary

IMF1 35, 36, 37 0.01, 0.01, 0.01 1, 1, 1
�

∆IMF1 35, 36, 37 0.10, 0.10, 0.10 0, 0, 0

IMF2 35, 36, 37 0.10, 0.10, 0.10 0, 0, 0

2nd frequency

IMF1 35, 36, 37 0.01, 0.01, 0.01 1, 1, 1
�

∆IMF1 35, 36, 37 0.10, 0.10, 0.10 0, 0, 0

IMF2 35, 36, 37 0.10, 0.10, 0.10 0, 0, 0

3rd frequency

IMF1 35, 36, 37 0.01, 0.01, 0.01 1, 1, 1
�

∆IMF1 35, 36, 37 0.10, 0.10, 0.10 0, 0, 0

IMF2 35, 36, 37 0.10, 0.10, 0.10 0, 0, 0

4th frequency

IMF1 35, 36, 37 0.01, 0.01, 0.01 1, 1, 1
�

∆IMF1 35, 36, 37 0.10, 0.10, 0.10 0, 0, 0

IMF2 35, 36, 37 0.10, 0.10, 0.10 0, 0, 0

4.3. Johansen cointegration (CI) residuals275

We showed that the first IMF corresponding to all frequency time series is of I(1). Therefore,276

the Johansen procedure to obtain the CI residuals can be followed. The CI residuals correspond-277
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Figure 7: CI residuals obtained from IMF1 signals corresponding to the frequency time series decomposition of

the spring-mass system.

ing to the first two largest eigenvalues of (8) are calculated and used for damage detection in this278

paper. Figure 7 shows the two obtained CI residuals. Table 3 shows the results of KPSS test279

run on both CI residuals. The results confirm that the both CI residuals are stationary in level.280

Table 3: The results of the KPSS test run CI residuals of the spring-mass system. The significance level for the

test is 0.1.

Signal Lag P-value h Stationary

CI1 35, 36, 37 0.10, 0.10, 0.10 0, 0, 0

CI2 35, 36, 37 0.10, 0.10, 0.10 0, 0, 0

Next, we train a Recurrent Neural Network (RNN) to learn the Johansen CI residuals from281

the first IMF signals using a 50% of the signals corresponding to the healthy state of the structure.282

The trained RNN is then used to predict the expected CI residuals in the future. Finally, the283

results of the predictions are compared against the Johansen CI residuals as discussed in Section284

3.285

4.4. Training a Recurrent Neural Network286

Using Long-Short Term Memory (LSTM) cells have been proven to be effective for forecasting287

time series [37, 38]. Therefore, in this paper LSTM cells are used in a RNN to learn the underlying288
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Johansen CI residuals from a portion of the first IMF signals corresponding to the healthy289

structure. To this end, 50% (q = 50 in Figure 3) of the Johansen CI residuals is used as the290

training targets. Likewise, 50% of the first IMF signals is used as training features. The remaining291

of the signals is used for testing. It is hypothesised that the error regarding the prediction of the292

CI residuals will deviate significantly from the average error at the point of the introduction of293

damage and lasts as long as the damage exists. First, a brief background theory of LSTM cells294

is explained.295

An LSTM unit incorporates three gates: update, forget, and output gates as well as three296

cells: input, memory, and update cells. The candidate value c̃<t> to update the memory cell at297

time t is calculated using the output value at time t− 1, a<t−1>, and the input value at time t,298

x<t> through299

c̃<t> = tanh
(
Wc [a<t−1>, x<t>] + bc

)
(15)

where tanh(.) represents the hyperbolic tangent activation function. Wc and bc are respectively300

the matrix of parameters and biased vector of the memory cell. The candidate value c̃<t> and301

the previous value c<t−1> of the cell are then used to update the value of the memory cell c<t>
302

in303

c<t> = Γu � c̃<t> + Γf � c<t−1> (16)

where304

Γu = σ
(
Wu [a<t−1>, x<t>] + bu

)
(17)

and305

Γf = σ
(
Wf [a<t−1>, x<t>] + bf

)
(18)

Note that � indicates element-wise product of two vectors. Γu and Γf are the values of the306

update and forget gates where σ (.) is the sigmoid activation function. Wu and bu represent307

respectively the matrix of parameters and the bias vector corresponding to the update gate.308

Likewise, Wf and bf are their counterparts corresponding to the forget gate.309

Therefore, the output value of the LSTM unit at time t is calculated as310

a<t> = Γo � tanh (c<t>) (19)

where311

Γo = σ
(
Wo [a<t−1>, x<t>] + bo

)
(20)

in which Γo is the value of the output gate. Wo and bo represent respectively the matrix of312

parameters and bias vector corresponding to the output gate. Figure 8 shows a visualisation of313

a LSTM unit.314
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Figure 8: Visualisation of an LSTM unit. y<t> is the final output of the unit at time t which is computed by the

softmax activation function.

A multivariate RNN architecture is used which takes the value of four IMFs at time t as315

input, and outputs the CI residual at the same time. The architecture of the developed stacked316

RNN follows:317

1. a sequence input layer taking four features as inputs.318

2. a LSTM layer with 300 units.319

3. a fully connected layer with 50 units.320

4. a fully connected layer with one output unit.321

Adam optimisation is set in options as the optimisation algorithm [39]. The learning rate322

is set initially at 0.005 and decreased by a factor of 0.2 at every 200 epochs. The number323

of maximum epochs is chosen 1000. In order to avoid exploding gradients effect, a gradient324

threshold of 1 is considered in settings.325

Figures 9 and 10 show the obtained results of predictions regarding CI1 and CI2, respectively.326

The errors in predictions (Figures 9b and 10b) are calculated as the absolute value of the dif-327

ference between the RNN predictions and Johansen CI results. As it is evident from Figure 9b,328

the prediction error deviates significantly from the root mean square error (RMSE) correspond-329

ing to the predictions regarding the testing period. The results also confirm that although the330

damage detection using CI2 is quite successful, it is not as much successful when CI1 is used in331

the procedure of the proposed method. In the next section an experimental example is solved to332

confirm the ability of the proposed damage detection method in real structures when data from333

a short-term monitoring of the structure is available.334
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(b) Prediction result and errors

Figure 9: Prediction results obtained from the trained RNN on CI1 regarding the spring-mass system.
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(b) Prediction result and errors

Figure 10: Prediction results obtained from the trained RNN on CI2 regarding the spring-mass system.
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5. Experimental example (1): Wooden bridge335

In this section an experimental example of a wooden bridge model is studied. The source336

of the data is available online at [40]. Figure 11 shows the picture of the wooden bridge model337

along with the location of sensors and imposed damage. The readers are referred to the original338

publications related to this experimental study, however, a brief explanation of the experimental339

setup and test conditions are presented in the following paragraphs [41, 42, 43].340

A random excitation force was applied to the structure in order to excite its lowest modes.341

Fifteen accelerometers were placed on the structure to measure its response to the excitation342

force at three different directions. The sampling frequency for the measurements was set at 256343

Hz where the measurement period was 32 s. The measured data were first passed through a344

low-pass filter with the cutoff frequency 64 Hz. The measurements were conducted over several345

days where the dynamic properties of the structure varied due to environmental changes. These346

effects were mainly due to the temperature and humidity variations. To simulate damage, point347

masses of the size 23.5, 47.0, 70.5, 123.2, and 193.7 g were gradually added to the structure.348

The location of the added masses was the top flange, 600 mm left from the midspan. The last349

measurements were conducted on the healthy structure (Table 4). The added masses were very350

small compared to the total weight of the structure (36kg) where even the heaviest added mass351

was only half a percent of the total mass of the model.

Table 4: The damage scenarios regarding the wooden bridge model. Damage is simulated by adding a point mass

to the structure on the top girder.

Damage scenario Measurements Added mass (gr)

Undamaged 1-1880 0

D1 1881-1900 23.5

D2 1901-1923 47

D3 1924-1945 70.5

D4 1946-1965 123.16

D5 1966-1985 193.66

Undamaged 1986-2008 0

352

The stochastic subspace identification technique [44] was used to identify the first nine natural353

frequency and mode shapes of the bridge from the output-only data [41]. However, only the four354

lowest natural frequency time series of the model are used for damage detection in this paper355

(Figure 12).356

As the first step, the natural frequency time series are decomposed to two IMFs to remove357
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Figure 11: Wooden bridge with the indicated locations of sensors and damage (D) [43].
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Figure 12: Calculated four lowest natural frequencies of the wooden bridge model for the time duration of the

measurements.
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Figure 13: Decomposed natural frequencies of the wooden bridge model along with their center frequencies. The

first IMF in all cases is kept at DC (zero center frequency).

the seasonal patterns in the signals. Note that since the data used in this section are less noisy,358

compared to the numerical example of Section 4, a relatively small value of 10 was chosen for the359

quadratic penalty term α in VMD settings. Note that the other settings are unchanged. Figure360

13 shows the results of the decomposition along with IMFs’ center frequencies. Restated, the361

first IMFs are kept at DC (zero center frequency).362

Next, the KPSS test is run on both IMFs regarding the VMD decomposition of each natural363

frequency time series. A maximum lag 25 was calculated based on the length of the time series,364

i.e. 2008, using (14). Therefore, three different lag length of 23, 24, and 25 were used for the365

test. As can be seen from the results presented in Table 5, all the first IMFs are I(1) signals and,366

therefore, Johansen CI procedure can be applied to them. Also the results confirm that all the367

second IMFs are of I(0).368

Figure 14 shows the two CI residual time series regarding application of the Johansen proce-369

dure to the first IMF time series. Next, we run the KPSS test on these residuals. Table 6 shows370
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Table 5: The results of the KPSS test run on IMF1, ∆IMF1, and IMF2 corresponding to all natural frequency

time series of the wooden bridge model. The significance level for the test is 0.1.

1st frequency

Signal Lag P-value h Stationary

IMF1 23, 24, 25 0.01, 0.01, 0.01 1, 1, 1
�

∆IMF1 23, 24, 25 0.10, 0.10, 0.10 0, 0, 0

IMF2 23, 24, 25 0.10, 0.10, 0.10 0, 0, 0

2nd frequency

IMF1 23, 24, 25 0.01, 0.01, 0.01 1, 1, 1
�

∆IMF1 23, 24, 25 0.10, 0.10, 0.10 0, 0, 0

IMF2 23, 24, 25 0.10, 0.10, 0.10 0, 0, 0

3rd frequency

IMF1 23, 24, 25 0.01, 0.01, 0.01 1, 1, 1
�

∆IMF1 23, 24, 25 0.10, 0.10, 0.10 0, 0, 0

IMF2 23, 24, 25 0.10, 0.10, 0.10 0, 0, 0

4th frequency

IMF1 23, 24, 25 0.01, 0.01, 0.01 1, 1, 1
�

∆IMF1 23, 24, 25 0.10, 0.10, 0.10 0, 0, 0

IMF2 23, 24, 25 0.10, 0.10, 0.10 0, 0, 0

the results. Accordingly, both obtained CI time series are of I(1). This means that there is no371

linear combination of the first IMF time series which is stationary. However, this will not stop372

us from pursuing further with our proposed strategy.

Table 6: The results of the KPSS test run CI residuals of the wooden bridge model. The significance level for the

test is 0.1.

Signal Lag P-value h Stationary

CI1 23, 24, 25 0.01, 0.01, 0.01 1, 1, 1
�

CI2 23, 24, 25 0.01, 0.01, 0.01 1, 1, 1
�

373

Next, we train a RNN to learn the CI relationship obtained through using Johansen proce-374

dure. Note the architecture used to this end is identical to the one in Section 4.4 except for the375

first layer where 400 LSTM units are used in here. All the other settings are kept unchanged376

as well. Likewise to the problem of Section 4, 50% of the data are used as training set and377

the rest are used for testing as illustrated in Figures 15a and 16a. Figures 15 and 16 show the378
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Figure 14: CI residuals obtained from IMF1 signals corresponding to the frequency time series decomposition of

wooden bridge model.

obtained results. As is evident from the results, similar to the results obtained in Section 4,379

damage detection is not possible using CI1. However, the procedure of the damage detection is380

fairly satisfactory using CI2. As can be seen the prediction error deviates from the average error381

significantly in this case. Also the prediction error goes back to normal when the damage does382

not exist for the measurement period 1986-2008. The results of the damage detection are com-383

parable to the one in [41]. Another interesting observation is that the prediction error regarding384

CI1 seems to provide a decent threshold setting for the prediction problem of CI2. As can be385

seen from Figure 15, the maximum error of the prediction of CI1 is 0.2174. The same conclusion386

can be made as for the numerical example of Section 4.387

6. Experimental example (2): bridge Z24388

The Z24 Bridge is a well-known benchmark problem that has been used to investigate the389

possibility of long-term structural health monitoring under EOV effects [45, 46, 47]. The problem390

is of particular interest due to the existence of non-linear relationships among natural frequencies391

during a period of very cold temperatures [30].392

Figure 17 shows the geographical location of the bridge Z24. The bridge was a classical post-393

tensioned concrete two-cell box-girder with a main span of 30 m and two side spans of 14 m. The394

monitoring campaign was established one year prior to the bridge dismantlement. During this395
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(b) Prediction result and errors

Figure 15: Prediction results obtained from the trained RNN on CI1 regarding the wooden bridge model.
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Figure 16: Prediction results obtained from the trained RNN on CI2 regarding the wooden bridge model.
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Figure 17: Bridge Z24 geometry and location.

period, several damage scenarios were implemented to simulate a progressing damage scenario396

where damage introduced progressively over a long period of time. Since the effect of EOV on397

structural dynamics was known, the meteorological parameters were also monitored during this398

period in full details.399

The number of 16 accelerameters were installed at different locations and directions on the400

bridge to record 8 averages of 8192 acceleration samples per hour. The bridge first four natural401

frequencies were calculated using the recorded vibration data. Moreover, 48 sensors were used to402

record 10 scans of environmental data in every hour. However, since there are some missing data403

in the original dataset, the points pertinent to the corresponding time instants are all removed,404

as suggested in [30], as a data pre-processing stage. As a result, the number of 3932 data-405

points remains. Figures 18a and 18b show respectively the air temperature profile as well as the406

corresponding first four natural frequency time series of the bridge obtained from the measured407

vibration signal during this period. For more details, the readers are referred to [48, 49].408

First, VMD is used to remove the seasonal effects in the frequency signals. To this end, the409

same parameters, as those in Section 5, are used in the VMD setting in here. Figure 19 depicts410

the obtained IMFs along with their corresponding center frequencies. Likewise to the previous411

sections, the first IMFs are kept at DC (zero center frequency). Next, the KPSS test is run on412

IMF1, ∆IMF1, and IMF2, the results of which are presented in Table 7. A maximum lag of 30413

is obtained using (14) and three different lags, i.e. 28, 29, 30, are used to this end. As can be414

seen from the table, all IMF1 signals are non-stationary whereas their corresponding ∆ variant415

is stationary. This confirms that all IMF1 signals are of I(1). All the IMF2 signals, however, are416

stationary in level.417

Figure 20 shows the two CI residuals obtained from the IMF1 signals. Table 8 shows the418

results of the KPSS test run on both CI signals. As can be seen from the table, CI1 is stationary419
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Figure 18: (a) Hourly recorded air temperature of regarding Z24 bridge (b) obtained natural frequencies of the

Z24 bridge where the dashed line indicates the time when damage started to be introduced.
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(b) 2nd frequency

0 500 1000 1500 2000 2500 3000 3500

Time 

-2

0

2

4

6

8

10

12

N
a

tu
ra

l 
fr

q
u

e
n

c
y
 (

H
z
)

IMF
1
 (

1
=0)

IMF
2
 (

2
=0.3405)

(c) 3rd frequency
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Figure 19: Decomposed natural frequencies of the bridge Z24 along with their center frequencies. The first IMF

in all cases is kept at DC (zero center frequency).

while CI2 is non-stationary. This is compatible with the fact that the CI corresponding to the420

largest eigenvalue of (8), i.e. CI1, is the most stationary signal [30]. Next, the obtained CI signals421

along with the IMF1 signals are respectively used as targets and features to train two separate422

RNNs using 50% of the dataset corresponding to the healthy state of the structure (q = 50 in423

Figure 3). The results of which are presented respectively as for CI1 and CI2 in Figures 21 and424

22. The dashed line in both cases indicates the time instant when the damage started to be425

introduced to the structure.426

The RNN architecture used in this section is similar to the previous sections except 250 LSTM427

cells were used in the first layer. The settings are also remained unchanged. The prediction results428

of both RNNs demonstrate that the damage can be successfully tracked down via monitoring429

the errors. More interestingly, the error progressively increases which can be further interpreted430

as damage being introduced to the structure progressively. However, despite the two previous431

examples of the spring-mass system and wooden bridge, the error corresponding to the prediction432
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Table 7: The results of the KPSS test run on IMF1, ∆IMF1, and IMF2 corresponding to all natural frequency

time series of the bridge Z24. The significance level for the test is 0.1.

1st frequency

Signal Lag P-value h Stationary

IMF1 28, 29, 30 0.01, 0.01, 0.01 1, 1, 1
�

∆IMF1 28, 29, 30 0.10, 0.10, 0.10 0, 0, 0

IMF2 28, 29, 30 0.10, 0.10, 0.10 0, 0, 0

2nd frequency

IMF1 28, 29, 30 0.01, 0.01, 0.01 1, 1, 1
�

∆IMF1 28, 29, 30 0.10, 0.10, 0.10 0, 0, 0

IMF2 28, 29, 30 0.10, 0.10, 0.10 0, 0, 0

3rd frequency

IMF1 28, 29, 30 0.01, 0.01, 0.01 1, 1, 1
�

∆IMF1 28, 29, 30 0.10, 0.10, 0.10 0, 0, 0

IMF2 28, 29, 30 0.10, 0.10, 0.10 0, 0, 0

4th frequency

IMF1 28, 29, 30 0.01, 0.01, 0.01 1, 1, 1
�

∆IMF1 28, 29, 30 0.10, 0.10, 0.10 0, 0, 0

IMF2 28, 29, 30 0.10, 0.10, 0.10 0, 0, 0

of CI1 is more significant when damages occurs. This highlights the point that one needs to433

consider both CI signals for damage detection using the proposed strategy.434

The results obtained from the condition monitoring of the bridge Z24 using the proposed435

method is fairly comparable to the results obtained in some of the recently proposed techniques436

such as [30]. The proposed method uses only the four lowest natural frequency signals of the437

structure as opposed to using a combination of the natural frequency and the mode shape signals438

used, for example, in some classical techniques (e.g. see [7]).439

7. Conclusions440

A novel structural health monitoring strategy has been proposed to detect changes in the441

structural response due to damage under environmental and operational variations. The proposed442

monitoring algorithm can successfully mask the effect of the EOV and raise an early alarm443

when the structure undergoes damage. Since, identifying the higher structural modes is fairly444

challenging, if not impossible, only four natural frequency time series of the structure under445
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Figure 20: CI residuals obtained from the IMF1 signals corresponding to the frequency time series decomposition

of the bridge Z24.

Table 8: The results of the KPSS test run on CI residuals of the bridge Z24. The significance level for the test is

0.1.

Signal Lag P-value h Stationary

CI1 28, 29, 30 0.0896, 0.0933, 0.0968 0, 0, 0

CI2 28, 29, 30 0.01, 0.01, 0.01 1, 1, 1
�

studies were used in this paper for damage detection. However, the possibility of using even less446

number of modes can be a subject of future work. Some of the main outcomes of this paper447

follows,448

1. VMD has been used successfully for denoising and removing of the seasonal patterns in the449

frequency time series, providing the first IMFs of these time series suitable for conducting450

Johansen CI test. For instance, the results obtained from the highly noisy simulated451

frequency signals in Section 4 (10% noise) demonstrate the capability of the proposed452

method in condition monitoring of structures using highly noisy data. This can be regarded453

as a strong feature of the proposed strategy compared to other methods where 2% noise454

was only introduced into simulations (e.g. see [30]).455

2. The proposed method has been proven to be successful through both a numerical and456

two experimental studies. It was shown that, regarding the wooden bridge example, the457
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Figure 21: Prediction results obtained from the trained RNN on CI1 regarding the bridge z24.
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Figure 22: Prediction results obtained from the trained RNN on CI2 regarding the bridge z24.
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proposed monitoring strategy can still be successfully applied even when the Johansen CI458

fails to obtain a stationary combination of the signals.459

3. It was shown that the prediction of the CI2 using a trained RNN deviates from the average460

error significantly, regarding the examples of Section 4 and 5, when the damage occurs in461

the system. This error was shown to come back to normal when the damage is removed.462

This is an important outcome since it shows that the trained RNN can be still used for463

monitoring the structure after when the damage is fixed. In Section 6, the condition464

monitoring of the structure was possible using monitoring of the prediction errors of both465

CIs. However, better results were achieved using CI1.466

4. Regarding the two previous observations, it seems that the proposed strategy favours using467

a less stationary combination of the signals in some cases (Sections 4 and 5) and, therefore,468

one may not need to use any non-linear CI rather than Johansen procedure to use the469

proposed method. Future work can be dedicated, however, to further investigation of this470

statement.471

5. It was noted that the error of the prediction of CI1 residuals can provide a threshold for472

the prediction of CI2 when CI2 is more suitable for damage detection. This is fairly evident473

from both the numerical and experimental studies of Sections 4 and 5.474

The proposed monitoring strategy was tested on an experimental example where data from a475

short-run (a couple of days) monitoring of the structure was available (Section 5). Regarding the476

results, the proposed damage detection strategy is superior to many other methods that need a477

long-term monitoring data to train non-linear CI residuals to be used for damage detection [26].478

Acknowledgement479

The KU Leuven Structural Mechanics Section is acknowledged as the source of the data for480

bridge Z24.481

References482

[1] O. C. Zienkiewicz, R. L. Taylor, J. Z. Zhu, The finite element method: its basis and funda-483

mentals, Elsevier, 2013.484

[2] C. Liu, J. T. DeWolf, Effect of temperature on modal variability of a curved concrete bridge485

under ambient loads, Journal of structural engineering 133 (12) (2007) 1742–1751.486

[3] G. Feltrin, Temperature and damage effects on modal parameters of a reinforced concrete487

bridge, in: Proc., 4th Int. Conf. on Structural Dynamics, Eurodyn 2002, Balkema, 2002,488

pp. 373–378.489

34



https://doi.org/10.1016/j.ymssp.2021.107847

[4] C. Rainieri, F. Magalhaes, D. Gargaro, G. Fabbrocino, A. Cunha, Predicting the variability490

of natural frequencies and its causes by second-order blind identification, Structural Health491

Monitoring 18 (2) (2019) 486–507.492

[5] A. A. Mosavi, R. Seracino, S. Rizkalla, Effect of temperature on daily modal variability of493

a steel-concrete composite bridge, Journal of Bridge Engineering 17 (6) (2012) 979–983.494

[6] C. R. Farrar, H. Sohn, K. Worden, Data normalization: a key for structural health moni-495

toring, Tech. rep., Los Alamos National Lab., NM (US) (2001).496

[7] J. Kullaa, Damage detection of the z24 bridge using control charts, Mechanical Systems and497

Signal Processing 17 (1) (2003) 163–170.498

[8] E. J. Cross, K. Worden, Q. Chen, Cointegration: a novel approach for the removal of499

environmental trends in structural health monitoring data, Proceedings of the Royal Society500

A: Mathematical, Physical and Engineering Sciences 467 (2133) (2011) 2712–2732.501

[9] A. Banerjee, J. J. Dolado, J. W. Galbraith, D. Hendry, et al., Co-integration, error correc-502

tion, and the econometric analysis of non-stationary data, OUP Catalogue (1993).503

[10] E. J. Cross, K. Worden, Cointegration and why it works for shm, in: Journal of Physics:504

Conference Series, Vol. 382, IOP Publishing, 2012, p. 012046.505

[11] P. B. Dao, W. J. Staszewski, Data normalisation for lamb wave–based damage detection506

using cointegration: A case study with single-and multiple-temperature trends, Journal of507

intelligent material systems and structures 25 (7) (2014) 845–857.508

[12] B. Golchinfar, M. G. Ramezani, D. Donskoy, H. Saboonchi, Vibro-acoustic modulation tech-509

nique comparison with conventional nondestructive evaluation methods, in: Health Moni-510

toring of Structural and Biological Systems IX, Vol. 11381, International Society for Optics511

and Photonics, 2020, p. 113811W.512

[13] P. B. Dao, A. Klepka, Ł. Pieczonka, F. Aymerich, W. J. Staszewski, Impact damage detec-513

tion in smart composites using nonlinear acoustics—cointegration analysis for removal of514

undesired load effect, Smart Materials and Structures 26 (3) (2017) 035012.515

[14] G. P. Dwyer, The johansen tests for cointegration, White Paper (2015).516

[15] X. Li, W. Qu, L. Xiao, Y. Lu, Removal of temperature effect in impedance-based dam-517

age detection using the cointegration method, Journal of Intelligent Material Systems and518

Structures 30 (15) (2019) 2189–2197.519

35



https://doi.org/10.1016/j.ymssp.2021.107847

[16] E. S. Tomé, M. Pimentel, J. Figueiras, Damage detection under environmental and oper-520

ational effects using cointegration analysis–application to experimental data from a cable-521

stayed bridge, Mechanical Systems and Signal Processing 135 (2020) 106386.522

[17] A. Michalak, J. Wodecki, A. Wyłomańska, R. Zimroz, Application of cointegration to vi-523

bration signal for local damage detection in gearboxes, Applied Acoustics 144 (2019) 4–10.524

[18] K. Zolna, P. B. Dao, W. J. Staszewski, T. Barszcz, Towards homoscedastic nonlinear coin-525

tegration for structural health monitoring, Mechanical Systems and Signal Processing 75526

(2016) 94–108.527

[19] E. Cross, K. Worden, Nonlinear cointegration as a combinatorial optimisation problem,528

Structural Health Monitoring 2011 (2011).529

[20] E. J. Cross, K. Worden, Approaches to nonlinear cointegration with a view towards appli-530

cations in shm, in: Journal of Physics-Conference Series, Vol. 305, 2011, p. 012069.531

[21] K. Zolna, P. B. Dao, W. J. Staszewski, T. Barszcz, Nonlinear cointegration approach for532

condition monitoring of wind turbines, Mathematical Problems in Engineering 2015 (2015).533

[22] H. Shi, K. Worden, E. Cross, A nonlinear cointegration approach with applications to struc-534

tural health monitoring, in: Journal of Physics: Conference Series, Vol. 744, Institute of535

Physics, 2016.536

[23] T. Van Gestel, M. Espinoza, B. Baesens, J. A. Suykens, C. Brasseur, B. De Moor, A bayesian537

nonlinear support vector machine error correction model, Journal of forecasting 25 (2) (2006)538

77–100.539

[24] G. Coletta, G. Miraglia, M. Pecorelli, R. Ceravolo, E. Cross, C. Surace, K. Worden, Use of540

the cointegration strategies to remove environmental effects from data acquired on historical541

buildings, Engineering Structures 183 (2019) 1014–1026.542

[25] H. Shi, K. Worden, E. J. Cross, A cointegration approach for heteroscedastic data based543

on a time series decomposition: an application to structural health monitoring, Mechanical544

Systems and Signal Processing 120 (2019) 16–31.545

[26] J.-z. Huang, D.-s. Li, H.-n. Li, G.-b. Song, Y. Liang, Damage identification of a large cable-546

stayed bridge with novel cointegrated kalman filter method under changing environments,547

Structural Control and Health Monitoring 25 (5) (2018) e2152.548

36



https://doi.org/10.1016/j.ymssp.2021.107847

[27] K. Dragomiretskiy, D. Zosso, Variational mode decomposition, IEEE transactions on signal549

processing 62 (3) (2013) 531–544.550

[28] K. Worden, C. R. Farrar, G. Manson, G. Park, The fundamental axioms of structural health551

monitoring, Proceedings of the Royal Society A: Mathematical, Physical and Engineering552

Sciences 463 (2082) (2007) 1639–166.553

[29] J. L. Doob, Stochastic processes, Vol. 101, New York Wiley, 1953.554

[30] H. Shi, K. Worden, E. J. Cross, A regime-switching cointegration approach for removing en-555

vironmental and operational variations in structural health monitoring, Mechanical Systems556

and Signal Processing 103 (2018) 381–397.557

[31] Weather history download basel (Retrieved August 18, 2020).558

URL https://www.meteoblue.com/en/weather/archive/export/basel_switzerland_559

2661604560

[32] W.-Y. He, W.-X. Ren, S. Zhu, Damage detection of beam structures using quasi-static561

moving load induced displacement response, Engineering Structures 145 (2017) 70–82.562

[33] K. Dragomiretskiy, D. Zosso, Variational mode decomposition, IEEE Transactions on Signal563

Processing 62 (3) (2014) 531–544.564

[34] D. Zosso, Variational mode decomposition, matlab central file exchange (Retrieved August565

27, 2020).566

URL https://www.mathworks.com/matlabcentral/fileexchange/567

44765-variational-mode-decomposition568

[35] Y. Wang, R. Markert, J. Xiang, W. Zheng, Research on variational mode decomposition569

and its application in detecting rub-impact fault of the rotor system, Mechanical Systems570

and Signal Processing 60 (2015) 243–251.571

[36] D. Kwiatkowski, P. C. Phillips, P. Schmidt, Y. Shin, et al., Testing the null hypothesis of572

stationarity against the alternative of a unit root, Journal of Econometrics 54 (1-3) (1992)573

159–178.574

[37] Z. Zhao, W. Chen, X. Wu, P. C. Chen, J. Liu, LSTM network: a deep learning approach575

for short-term traffic forecast, IET Intelligent Transport Systems 11 (2) (2017) 68–75.576

[38] W. Kong, Z. Y. Dong, Y. Jia, D. J. Hill, Y. Xu, Y. Zhang, Short-term residential load577

forecasting based on LSTM recurrent neural network, IEEE Transactions on Smart Grid578

10 (1) (2017) 841–851.579

37

https://www.meteoblue.com/en/weather/archive/export/basel_switzerland_2661604
https://www.meteoblue.com/en/weather/archive/export/basel_switzerland_2661604
https://www.meteoblue.com/en/weather/archive/export/basel_switzerland_2661604
https://www.meteoblue.com/en/weather/archive/export/basel_switzerland_2661604
https://www.mathworks.com/matlabcentral/fileexchange/44765-variational-mode-decomposition
https://www.mathworks.com/matlabcentral/fileexchange/44765-variational-mode-decomposition
https://www.mathworks.com/matlabcentral/fileexchange/44765-variational-mode-decomposition
https://www.mathworks.com/matlabcentral/fileexchange/44765-variational-mode-decomposition


https://doi.org/10.1016/j.ymssp.2021.107847

[39] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint580

arXiv:1412.6980 (2014).581

[40] Wooden bridge experimental data (Retrieved August 27, 2020).582

URL http://users.metropolia.fi/~kullj/JrkwXyZGkhc/583

[41] J. Kullaa, Eliminating environmental or operational influences in structural health monitor-584

ing using the missing data analysis, Journal of intelligent material systems and structures585

20 (11) (2009) 1381–1390.586

[42] A. Deraemaeker, A. Preumont, E. Reynders, G. De Roeck, J. Kullaa, V. Lamsa, K. Worden,587

G. Manson, R. Barthorpe, E. Papatheou, et al., Vibration-based structural health monitor-588

ing using large sensor networks, Smart Structures and Systems 6 (3) (2010) 335–347.589

[43] J. Kullaa, Distinguishing between sensor fault, structural damage, and environmental or op-590

erational effects in structural health monitoring, Mechanical Systems and Signal Processing591

25 (8) (2011) 2976–2989.592

[44] B. Peeters, System identification and damage detection in civil engeneering (2000).593

[45] B. Peeters, G. De Roeck, One-year monitoring of the z24-bridge: environmental effects594

versus damage events, Earthquake engineering & structural dynamics 30 (2) (2001) 149–595

171.596

[46] E. Reynders, G. Wursten, G. De Roeck, Output-only structural health monitoring in chang-597

ing environmental conditions by means of nonlinear system identification, Structural Health598

Monitoring 13 (1) (2014) 82–93.599

[47] R. Langone, E. Reynders, S. Mehrkanoon, J. A. Suykens, Automated structural health600

monitoring based on adaptive kernel spectral clustering, Mechanical Systems and Signal601

Processing 90 (2017) 64–78.602

[48] J. Maeck, G. De Roeck, Description of z24 benchmark, Mechanical Systems and Signal603

Processing 17 (1) (2003) 127–131.604

[49] E. Reynders, G. De Roeck, Vibration-based damage identification: the z24 benchmark605

(2014).606

38

http://users.metropolia.fi/~kullj/JrkwXyZGkhc/
http://users.metropolia.fi/~kullj/JrkwXyZGkhc/

	ELSEVIER Copyright Statement YEAR & DIO TEMPLATE - 2021
	9772DE4C-3B06-4650-BAE3-AF0F5657D2E5  am.pdf
	Introduction
	Cointegration
	Stationary and non-stationary signals
	Johansen cointegration

	Proposed damage detection strategy
	Illustrative numerical example
	Variational Mode Decomposition (VMD)
	Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test of unit root
	Johansen cointegration (CI) residuals
	Training a Recurrent Neural Network

	Experimental example (1): Wooden bridge
	Experimental example (2): bridge Z24
	Conclusions


