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Hierarchical Planning in Time-Dependent Flow Fields
for Marine Robots

James Ju Heon Lee1, Chanyeol Yoo1, Stuart Anstee2 and Robert Fitch1

Abstract— We present an efficient approach for finding
shortest paths in flow fields that vary as a sequence of
flow predictions over time. This approach is applicable to
motion planning for slow marine robots that are subject to
dynamic ocean currents. Although the problem is NP-hard in
general form, we incorporate recent results from the theory of
finding shortest paths in time-dependent graphs to construct
a polynomial-time algorithm that finds continuous trajectories
in time-dependent flow fields. The algorithm has a hierarchical
structure where a graph is constructed with time-varying edge
costs that are derived from sets of continuous trajectories in the
underlying flow field. We show that the continuous algorithm
retains the time complexity and path quality properties of
the discrete graph solution, and demonstrate its application to
surface and underwater vehicles including a traversal along the
East Australian Current with an autonomous marine vehicle.
Results show that the algorithm performs efficiently in practice
and can find paths that adapt to changing ocean currents. These
results are significant to marine robotics because they allow
for efficient use of time-varying ocean predictions for motion
planning.

I. INTRODUCTION

Autonomous operation is an important capability for a
variety of marine robots, including autonomous surface
vessels (ASVs) [12], underwater gliders [1, 19, 29], au-
tonomous underwater vehicles (AUVs) [26], and hydrids of
the these [2]. Motion planning problems for marine robots
can represent the prevailing ocean currents as a flow field
which influences the robot’s motion [28]. Commonly avail-
able sources of ocean current predictions provide data at a
sequence of discrete time points [14], but unfortunately these
dynamic predictions are difficult to use in motion planning.
Problems that involve time-varying costs are notoriously
difficult to solve; the simplest general form is the time-
dependent shortest path (TDSP) problem, which is defined
over graphs and is known to be NP-hard [10]. In recent work
we have introduced a new polynomial-time special case of
TDSP where edge costs are a piecewise-constant function
of time. [17]. We are interested in exploiting this result to
find approximations to the shortest continuous paths in time-
dependent flows.

Interest in planning that considers time-varying phenom-
ena extends back over 50 years to the earliest introduction of
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shortest path problems on graphs [3]. A number of problem
variants have been defined [4], but the most relevant case for
marine robots is that in which delaying departure (waiting)
can be beneficial. This is known as the non-FIFO (first-in-
first-out) property. Efficient algorithms for non-FIFO TDSP
have only recently been discovered [10, 17], and this presents
an important opportunity for improving motion planning in
time-dependent flow fields, such as ocean currents.

There are two main challenges in applying a TDSP solu-
tion to motion planning for marine robots. One challenge is
how to represent the dynamic flow field as a time-dependent
graph, where edge costs are represented as edge time func-
tions. The other challenge is how to generate a continuous
trajectory based on the optimal path in this graph while
retaining the analytical guarantees of the discrete solution.

In this paper, we present a hierarchical algorithm that
addresses these challenges. We assume that flow field pre-
dictions are provided as a series of snapshots over time. This
aligns with the necessary piecewise-constant assumption
required by our TDSP solution and with available ocean
current prediction data. The top layer of the hierarchy is a
graph representation of the flow field in the form of a TDSP
problem, illustrated in Fig. 1. Nodes are chosen according
to a uniform sampling of the workspace. Edge connections
and edge time functions are constructed by the bottom layer
of the hierarchy, which uses forward integration of a set
of control values from each node to connect samples. This
process is repeated at each flow field snapshot to construct
edge time functions. The shortest path in this graph is then
used to construct a corresponding continuous path.

Our main analytical result is that the algorithm retains
the resolution completeness and optimality properties of
the discrete layer overall, and also retains the polynomial
time complexity of the TDSP solution. This is an important
theoretical contribution because it avoids the need to con-
struct a time-expanded graphs, where nodes are replicated
at discrete steps. Although it may appear that our graph
construction resembles the equivalent time-expanded graph
representation, the important difference is that paths through
this graph can arrive at nodes at any time; they are not
restricted by the choice of time discretisation, which would
be necessary when searching a time-expanded graph.

This algorithm also makes a meaningful contribution to
motion planning for marine robots. We demonstrate the
behaviour of our method in application examples with an
ASV and an underwater glider in simulated dynamic flow
fields and with 14 days of actual ocean current prediction
data. These examples assume 2D flows, but there are no



restrictions in the algorithm that would prevent its use with
3D flows. Results show how dynamic flows can have a
negative effect on the performance of marine robot navi-
gation. Paths found using static snapshots of the dynamic
flow fail to reach the goal when executed in the time varying
dataset, but our method finds a path that is able to exploit the
prevailing currents as they change over time. In a traversal
from Brisbane to Sydney along the East Australian Current,
our method found a path of length 13.8 days, whereas the
same vehicle would take over 27 days to traverse the great
circle path in still water.

II. RELATED WORK

Common approaches to the problem we consider use
level set methods [23, 24]. A more recent approach is to
formulate the problem as a time-varying Markov decision
process [22]. Both methods assume a general edge function,
making the worst-case computation time for these methods
non-polynomial in the non-FIFO case.

There has been other work in finding discrete time solu-
tions using a time-expanded graph. Dijkstra [7] and A* [8,
9, 13] approaches to this problem have appeared. A recent
improvement to the A* method has also been presented using
adaptive sampling [16]. A common issue with searching
in time-expanded graphs is that the solution is resolution
complete in time; paths arrival times at nodes must align with
the given time discretisation. This property encourages fine
discretisation, which consequently increases the size of the
problem representation and implies a corresponding increase
in required computation time.

The problem can also be approached as a TDSP prob-
lem, where a solution is found by searching in graphs
with time-dependent edge costs, known as time-dependent
graphs [4, 10]. A*-based approaches for searching time-
dependent graphs include those with precomputed heuris-
tics [15] and bidirectional searches [6]. Time aggregate
graphs [11], which represent the edge costs as time series,
are another approach to the TDSP problem. A challenge to
these approaches is that the environment must be sufficiently
discretised for a high-quality path to be found.

Recently, we have proposed an efficient approach to op-
timal planning in time-dependent flow fields expressed as
time-dependent graphs, which reaches a solution in polyno-
mial time [17]. The algorithm can correctly find cyclic time-
optimal paths in pathological flow regimes. We also build on
our previous work that synthesises a continuous path given
a sequence of discrete path states for time-invariant wind
fields [33].

III. BACKGROUND

A. General dynamical model in a flow field

Given an n-dimensional vehicle state x, time-
dependent 3D flow field at the vehicle position
vc(x, t) = [uc(t), vc(t), wc(t)]

T , and an m-dimensional
control input u(t) ∈ U where U is the set of all possible

Fig. 1. Example time-dependent directed graph. The environment is evenly
distributed into rectangular grids (shown in black). The red circles are the
graph states, defined as the mid point of each line on the rectangle. The red
line is the graph edge defined by the neighbouring states.

controls, the motion of a vehicle travelling in a 3D flow
field at time t is represented as:

ẋ(t) = f(x(t),u(t)) + vc(x(t), t), (1)

where f(x(t),u(t)) is the vehicle velocity in still water. The
continuous trajectory the vehicle follows by executing the
sequence of control inputs in the flow field is denoted as σ.

The vehicle is controlled using a sparse velocity control
scheme [18, 21]; controls are only varied at specific times,
rather than attempting to continuously adjust for the spatial
variation of the flow field. Intuitively, this is a “let it go”
approach where we apply a control input and then make no
further adjustment for a set period of time.

B. Time-dependent directed graph

A time-dependent directed graph G = (S,E) consists of
finite sets of states S and edges (s, s′) ∈ E where s, s′ ∈ S.
For each edge (s, s′), we associate an edge time Css′(t) that
represents the time to traverse from state s to s′. For all
pairs of edges, Css′(t) is ∞ for all t < 0. We denote the set
of states that are immediately reachable from s as Ss ⊆ S
where s′ ∈ Ss, and the set of goal states as Sg ⊂ S
where |Sg| ≥ 1. We assume waiting is not allowed in
the graph (i.e. an edge must be traversed as soon as it is
encountered) as it is difficult for an underwater glider to
stay in the same position.

We define an (n + 1)-state discrete path ψ = s0s1 · · · sn
within S as a sequence of states, where sk ∈ S\Sg , sn ∈ Sg ,
and (sk, sk+1) ∈ E for k = 0, 1, · · · , n − 1. We denote
ψk as the prefix of ψ up to the k-th state in the path (i.e.,
ψk = s0s1 · · · sk), noting that it can start no earlier than
t = 0.



C. Arrival and travel times

Arrival time, ass′(t), is defined as the time that a vehicle
would arrive at s′ when departing from s at time t, i.e.
ass′(t) = Css′(t) + t [4]. As waiting is not allowed, the ar-
rival time at the end of the (n+1)-length discrete path, aψ(t),
can be expressed as the arrival time at sn departing from
sn−1 at time asn−2sn−1(t). The arrival time at the end of ψ
can be recursively expressed as: aψ(t) = asn−1sn(aψn−1(t)).
The total travel time, Tψ , is simply

Tψ(t0) = aψ(t0)− t0, (2)

which is the time taken to traverse the discrete path ψ.

IV. PROBLEM STATEMENT

The problem is to find a continuous path that minimises
the time to travel from initial to goal position. Let aσ denote
the arrival time and Tσ = aσ(t) − t denote the travel time
for the continuous path σ. The problem can be viewed from
two perspectives:

Problem 1 (Minimising travel time). Given vehicle dynam-
ics, time-dependent flow field vc, starting state xinit, and
a goal region Xg , find the continuous path σ∗ and starting
time t∗0 that minimises the travel time:

(σ∗, t∗0) = arg min
σ,t

Tσ(t)

s.t. x(t∗0) = xinit and x(aσ∗(t
∗
0)) ∈ Xg.

(3)

Problem 2 (Minimising travel time for given start time).
Given vehicle dynamics, time-dependent flow field vc, start-
ing state xinit, starting time t0 and a goal region Xg , find
the continuous path σ∗ that minimises the travel time:

σ∗ = arg min
σ

Tσ(t0)

s.t. x(t0) = xinit and x(aσ∗(t0)) ∈ Xg.
(4)

The two problems are similar to the TDSP problem on
a time-dependent directed graph, as shown in our previous
work [17]. We extend the problem by solving for a continu-
ous path, where the time dependency arises from a dynamic
flow field that is one way to represent an ocean current.

V. TIME-DEPENDENT SHORTEST PATH IN FLOW FIELDS

In this section, we present our hierarchical path planning
framework. We first build a time-dependent directed graph
over a continuous time-dependent flow field. We then find
the time-optimal path in this graph in the form of a policy.
Finally, we generate a continuous path that follows the time
schedule set by our discrete solution.

A. Building a time-dependent graph in a dynamic flow field

In this section, we present how to express the continuous
flow field as a time-dependent directed graph. Given a
continuous environment space X ⊂ R2, we discretise it
into uniform regions. We define each line segment of the
discretisation as a state line, `s, and situate the set of graph
states s ∈ S at the mid-points of those `s that are not part
of the external boundary, as illustrated by example in Fig. 1.

(a) branching at step 1 (b) branching at step 2

(c) branching at step 3 (d) branching at step 4

Fig. 2. Step-by-step visualisation of an example of a continuous path
branching that follows a discrete path. N closest solutions to the discrete
travel time are kept for each step. The trajectory with minimal travel time
is highlighted in black.

The set of neighbouring states Ss for all s ∈ S are defined
as the states that lie on the region edges that adjoin `s.

The associated edge time Css′(t) for each edge (s, s′) ∈ E
is evaluated through forward integration using the average
vehicle speed vv over the set of controls U; derived from
the glider dynamics and over the time-dependent flow field
vc. We express Css′(t) as a piecewise function with uniform
time partitioning of the flow field data up to the time horizon
tH . The time partitioning is defined as t∆ = (tH − t0)/Q
where Q ∈ Z. For each state s′ ∈ Ss at time tk = q(tH −
t0)/Q + t0, q = 0, · · · , Q, we enumerate a set of possible
heading controls Φ = {φ0, · · · } and set the time for the
fastest control to cross `s′ as the edge time for that input
time. We show later that this approach has minimal impact
on the time complexity.

B. Solving for TDSP across time-dependent graph

We solve the TDSP problem for a time-dependent graph
as demonstrated in our previous work [17]. In this section,
we summarise the implementation for completeness.

The travel time function (2) can be re-expressed as T ks (t),
the travel time after k edge transitions from s. The travel
time function can then be written recursively as:

T k+1
s (t) = Css′(t) + T ks′(t+ Css′(t)). (5)

Denoting T ∗s (t) as the converged travel time,
where T k+1

s (t) = T ks (t) for all t ∈ R and some finite k ∈ Z,
we can choose the next neighbouring state si that minimises



total travel time of the discrete path:

si = arg min
s′∈Ss

Css′(t) + T ∗s′(t+ Css′(t)). (6)

Now we can derive the optimal time-dependent policy for
each s ∈ S:

π∗s (t) =


...

...
sii ∈ Ss else if t > t1

si ∈ Ss if t > t0

. (7)

Based on the policy, we can find the time-optimal discrete
path ψ∗ = s0s1 · · · sn.

C. Hierarchical planning for continuous TDSP

In this section, we present how to realise a continuous path
that follows the time schedule of the time-optimal discrete
path ψ∗. We denote U = {θ0, · · · } as the finite set of demand
heading values the vehicle controller can select.

Starting from the initial state s0 at time t0, we forward
integrate for all controls u ∈ U to find a set of trajectories
that reaches the state line, `s1. To limit the number of
branching trajectories we keep only the N best, i.e., the
N trajectories with closest total travel time to Tψ∗1 . We
branch each of the N trajectories to the next state by forward
integrating to the next state line, pruning again for the N best
trajectories. Once we reach the end of the discrete path, we
pick the trajectory with the fastest total travel time.

A visualisation of an example case is shown in Fig. 2. Sup-
pose we were to generate a continuous path from a discrete
path ψ = s3s4s2s1s3. We first propagate the path across the
control input from s3, pick N trajectories that intersect `s4
and have the closest total travel time Tψ1

, and prune away
the rest. We extend each trajectory by propagating new paths
from the trajectory’s end point and continue the process for
`s2 . After each extension, more trajectories are pruned away
to keep only the N best solutions.

VI. ANALYSIS

It is important to note that solving for general non-FIFO
TDSP over discrete space (i.e., graph) is NP-hard [5, 25]. The
problem becomes even harder with continuous state space.

Our hierarchical approach divided the problem into two
parts, discrete path and continuous path. In our previous
work [17], we have shown that the discrete path ψ gives
the time optimal solution in polynomial computation time.
Since our continuous path is generated by finding a uniform
control within each region in the discrete sequence, the final
continuous path is optimal with respect to discrete regions.
The result implies that as we reduce the size of each region,
our continuous path would also approach the optimal in
continuous state space.

In continuous path generation, our aim is to find a control
that triggers a transition to the designated next region within
a time window. Under the assumption that the flow within a
region is uniform, there always exists a continuous control
from one edge to another. Therefore our framework is
complete in both discrete and continuous state space.

The time complexity for finding an optimal discrete path
is O(|S||C|k + |Φ||S|), where |C| is the worst case number
of variations in flow, k is number of edge transitions, |Φ|
is the number of discrete controls and |S| is the number of
discrete sequences. Given a discrete sequence ψ, we find a
continuous path for each region for |ψ| times. Therefore, the
time complexity for finding a continuous path is O(|ψ||U |).
The overall complexity is O(|S||C|k+|Φ||S|+|ψ||U |). Since
edge costs are found by enumerating all controls U and Ψ for
forward integration, the part can be parallelised. The overall
complexity with parallel processing is O(|S||C|k + |S| +
|ψ|) = O(|S||C|k + |ψ|). In either case, the time complexity
is linear in the number of discrete regions and polynomial
in the number of variations in flow.

VII. CASE STUDIES

In this section, we present 3 case studies: an ASV travel-
ling in a 2D time-dependent flow field, an underwater glider
travelling in a 3D time-dependent flow field, and a real-
world example where an ASV traverses the East Australian
Current (EAC) to find the shortest path from Brisbane to
Sydney. The case studies demonstrate our algorithm’s ability
to handle various dimensions, dynamics, and problem sizes.
All distance units are in meters and time units are in seconds
unless otherwise stated.

A. Autonomous surface vehicle (ASV) case

In this case study, we generate a continuous path that
follows the time-optimal discrete path starting from t0 = 0.
We also evaluate the optimal start time t∗0 using a standard
optimisation technique, and generate a continuous path for
that start time.

We consider an ASV with a constant forward velocity
of 0.5 m/s travelling from [0.5, 1]T to [8.5, 2]T through a
2D time-dependent flow field. The planning environment is
dominated by a westward current of up to 1.2 m/s around
the goal state that makes it impossible for the ASV to
travel directly east towards the goal. Vortices with radius
1.5 m appear at [1.5, 1.5]T for t ∈ [0, 15], at [4.5, 1.5]T for
t ∈ [10, 30], and at [7.5, 1.5]T for t ∈ [25, inf). To solve
the for the time-optimal discrete path, the environment was
discretised into a 9x3 grid, yielding a graph with 42 states.

Figures 3a to 3c show time instants along the continuous
path starting at t0 = 0. The travel time for discrete and
continuous path were Tψ = 31.95 and Tσ = 32.53. The
ASV loops around the first vortex 3 times to wait for the
time when the transition from the first to the second vortex
is possible. After transitioning to the second vortex, the paths
cycles another 3 times until it is feasible to transition into
the third vortex and reaches the goal line. This shows how
cyclic paths are used to loiter in anticipation of advantageous
transitions in the flow field.

Figure 3d shows the trajectory for the optimal starting
time t∗0 = 9 with travel times for discrete and continuous
path Tψ = 19.75 and Tσ = 20.1. The path shows its best to
start near the end of the first vortex period.



(a) ASV path at 13.5 second after departing at t0 = 0 departure (b) ASV path at 23.5 second after departing at t0 = 0

(c) ASV path at 32.53 second after departing at t0 = 0 (d) ASV path at 19.75 second after departing at t0 = 9

Fig. 3. 2D continuous path of an ASV from [0.5, 1]T to [8.5, 2]T with a constant velocity of 0.5 m/s. A strong current flowing west opposes the glider’s
path to the goal. Figures (a)-(c) show paths for starting times in steps starting at t = 0. Figure (d) is the final path when starting at the optimal start time
t∗0 = 9

Fig. 4. TDSP across a time-varying 3D flow field with underwater glider
dynamics. The travel times for the discrete and continuous paths were both
15.4 sec. The sample points are omitted for clarity. The trajectory and the
flow field at the final time step are shown.

B. Underwater glider in 3D ocean current case

In this case, we used underwater glider dynamics to
generate the continuous path that follows the time-optimal
discrete path commencing at t0 = 0. We consider a hy-
pothetical underwater glider with a top horizontal speed of
0.868 m/s. The edge time was evaluated using an average
glider horizontal speed of 0.7435 m/s.

The glider typically operates in a sawtooth motion, con-
trolling its glide angle to control its net velocity. The sparse
control scheme for the glider model can be implemented as a

trim-state control. A trim-state is the state of dynamic equi-
librium that is maintained under no disturbance or control
variation. A description of 3D glider trim control can be
found in our previous work [18].

Both the flow field environment and the time-dependent
graph are similar to those described in Sec. VII-A, extended
in depth to allow for manoeuvre in 3D. Consequently, the
state line `s is extended into a state plane, Ps. For simplicity,
we set the flow velocity to be the same for all depths. For
the edge time evaluation Css′(t), a set of trajectories is
propagated in 3D from s using forward integration, and we
pick the time that the fastest trajectory intersects with Ps′ .
The start and goal positions are the same as in the previous.

Figure 4 shows the continuous 3D path with t0 =
0, and travel times for discrete and continuous path
Tψ = Tσ = 15.4. The continuous trajectory illustrates prop-
erties of the glider dynamics, as the manoeuvres exhibit
a sawtooth motion. Otherwise, we see the same decision
making we saw with the ASV example: the glider loops
around the first vortex twice before entering the second
vortex, where it loops twice again until the final transition
to the goal is feasible. Furthermore, as the glider velocity
can be controlled by the sawtooth motion, we have greater
control on Tσ

C. Real world ocean current case

In this case study, we generated a continuous path along
the East Australian Current (EAC) that follows the time-
optimal discrete path at t0 = 0. We consider an ASV with a
constant forward velocity of 0.3 m/s travelling from Brisbane
(−27.5◦, 154◦) to Sydney (−34◦, 151.5◦).

The flow field data is taken from a numerical hindcast [14].
The data set was obtained from the School of Mathematics
and Statistics at the UNSW. To solve the for the time-optimal



(a) 0 days (b) 7 days

Fig. 5. 2D continuous path from Brisbane to Sydney in a time-dependent East Australian Current representation generated by the Australian Bureau of
Meteorology. The vehicle velocity is set to a constant value of 0.3 m/s. The travel time for discrete and continuous path were Tψ = 13.375 days and
Tσ = 14.7 days. The red circle is the vehicle’s starting point and the red cross is its end point. The green and magenta dashed lines are the paths the
vehicle would have followed if the flow field were fixed at its states at t = 0 days and t = 7 days, respectively. The environment was discretised on a
20x10 grid, shown in black.

discrete path, the environment was discretised into a 20x10
grid, yielding a graph with 370 states.

Figure 5 shows the initial and final time steps of
the resulting continuous ASV path. The travel time was
Tψ = 13.375 days and Tσ = 14.7 days. The ASV path
follows the movement of the strongest part of the EAC to
minimise the time to the goal. We also compared our result
with paths generated in time-varying flow field using control
sequence appropriate for time-invariant flow fields snapshot
at t = 0 days and t = 7 days. Applying the control for
snapshot at t = 0 results in the vehicle colliding with the
Australian coast after 11.35 days, and applying the controls
using snapshot at t = 7 results in the vehicle completing its
trajectory 130.2464 km away from the goal. In comparison,
our result delivers the ASV to a point 11.2504 km away
from the goal. This relatively minor position error is due to
approximations made when generating the continuous path.

The computation time was also favourable; we were able
to solve for the discrete path in 440.77 sec and the continuous
path in 642.26 sec. The computation time can be tuned by

reducing the N value and the time step when propagating
the continuous path.

VIII. CONCLUSION AND FUTURE WORK

In this paper we have presented an efficient algorithm for
finding shortest continuous paths in flow fields that is based
on a polynomial-time solution to the TDSP. It has analytical
guarantees on path quality and time complexity. We have
showed that the algorithm exhibits favourable computation
time performance in practice, is effective in finding paths
that exploit advantageous ocean currents, and is applicable
to several types of marine robots.

Important avenues for future work include improving the
algorithm through smarter flow field heuristics for edge cost
computation [27] and adaptive discretisation and minimising
energy use as opposed to the time length of the path [31].
We would also like to extend our work on planning with
forecast data. Such planning would need to consider uncer-
tainty [20, 30, 32] in the flow field predictions. We also intend
to conduct field trials to evaluate our methods in practice.
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