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Aortic 3D Deformation Reconstruction using 2D X-ray Fluoroscopy and
3D Pre-operative Data for Endovascular Interventions

Yanhao Zhang1, Liang Zhao1(B), and Shoudong Huang1

Abstract— Current clinical endovascular interventions rely
on 2D guidance for catheter manipulation. Although an aortic
3D surface is available from the pre-operative CT/MRI imaging,
it cannot be used directly as a 3D intra-operative guidance since
the vessel will deform during the procedure. This paper aims to
reconstruct the live 3D aortic deformation by fusing the static
3D model from the pre-operative data and the 2D live imaging
from fluoroscopy. In contrast to some existing deformation
reconstruction frameworks which require 3D observations such
as RGB-D or stereo images, fluoroscopy only presents 2D
information. In the proposed framework, a 2D-3D registration
is performed and the reconstruction process is formulated
as a non-linear optimization problem based on the defor-
mation graph approach. Detailed simulations and phantom
experiments are conducted and the result demonstrates the
reconstruction accuracy and robustness, as well as the potential
clinical value of this framework.

Index Terms— aortic deformation reconstruction, fluo-
roscopy, endovascular interventions.

I. INTRODUCTION

The application of endovascular interventions has broad-
ened the options for treating cardiovascular diseases [1] [2]
[3]. However, such interventions are still challenging tasks
for surgeons to precisely manipulate catheters via a fragile
and complex endovascular system in an environment with
physiological movements [4] [5] [6]. Although the robotic
systems have been applied for facilitating catheter operations,
they usually rely on 2D guidance from intra-operative X-ray
fluoroscopy for 3D operations [7] [8]. On the other hand,
an aortic 3D shape can be acquired pre-operatively through
medical imaging approaches such as computed tomography
(CT) scans. Hence, one way for achieving 3D guidance is
to intra-operatively overlay this pre-operative model with
fluoroscopy. However, because of the dynamic nature of
the vasculature, the pre-operative shape is insufficient to
represent aortic deformation, and therefore the deformation
should be updated intra-operatively [9].

In the field of minimal invasive surgery (MIS), there have
been some works considering the 3D reconstruction from an
existing 3D model using multiple intra-operative 2D X-ray
images. However, many of them focus on the recovery of
bones [10] [11] [12], which have much fewer deformations
compared with that of the vasculature. Currently, there are
few works focussing on the recovery of aortic deformation
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Fig. 1. Input & output of the proposed deformation reconstruction problem.

using intra-operative X-ray images. An as-rigid-as-possible
method is used in [13] to correct the distortion of intra-
operative overlay, but it requires the position of the inserted
endovascular catheter.

On the other hand, as an extension of the simultaneous
localization and mapping (SLAM) problem, dynamically
recovering the 3D shape of a deformable object has been
studied in different scenarios. DynamicFusion [14] extends
KinectFusion [15] and proposes a 3D reconstruction frame-
work for deformable object observed by an RGB-D sensor.
The non-rigid warp field is parametrized using dual quater-
nions [16]. This framework is then improved in [17] [18]
[19], and has been extended for stereoscope localization and
mapping in MIS [20] where the warp field is parametrized
using embedded deformation (ED) graph [21] and the surface
texture is considered for surgical environments.

In this paper, a framework for robustly recovering aortic
3D deformation is proposed using a vessel’s pre-operative
3D model and multiple intra-operative X-ray images (Fig. 1).
Different from the above works where the depth information
along the optical axis is observed by an RGB-D or stereo
camera, radiographic fluoroscopy (with orthographic projec-
tion) only provides a 2D observation. The unavailability
of the depth information and the occlusion of overlying
structures (Fig. 2b) limit the methods used in the previous
works to be applied in this scenario.

In order to deal with the limitation of orthographic pro-
jection and reduce the influence of partial occlusions on X-
ray fluoroscopy, in this paper, pixels which present the aortic
wall contours are selected as the observed features. A 2D-3D
registration approach is applied to calculate correspondence
according to these features. The vessel’s reconstruction is
formulated as a nonlinear optimization problem based on the
ED graph approach. Detailed validation using simulations
and phantom experiments are performed to evaluate the
accuracy of the reconstruction result and the robustness to
observation noises. Both simulations and phantom experi-
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Fig. 2. An example illustrating the X-ray fluoroscopy and the 3D model.
The first two figures present the X-ray images viewing the same deformed
3D vessel model from different directions, where green and yellow colour
represent the pixels used as the observed features. The last figure presents
the corresponding 3D model and the corresponding vertices of the features.

ments illustrate the reconstruction ability (with average error
around 0.7mm-0.8mm for simulations and 0.9mm-1.2mm
for phantom experiments) using only two intra-operative
X-ray images. This shows the potential clinical value of
the proposed framework to be applied for endovascular
interventions using X-ray angiography system, e.g. G-arm
or biplane angiography system.

II. PROBLEM DESCRIPTION

This paper aims to develop a method to reconstruct the live
3D aortic shape for catheter guidance. The proposed frame-
work combines the pre-operative 3D model and the intra-
operative fluoroscopy observations such that the 3D vessel
model is reconstructed intra-operatively. Fig. 1 outlines the
input and output of the proposed reconstruction problem.

Let M represent the shape of the pre-operative mesh
model consisting of a number of vertices whose positions
are denoted as {P1, · · · ,PN}. The objective is to estimate
its intra-operative shape with deformation, M̂ (the new
positions of all vertices), based on multiple X-ray images,
e.g. two images I1, I2 of the same deformed model obtained
from two different directions (Fig. 2a and Fig. 2b). The pixels
presenting the aortic wall contours pli (l denotes the image
index while i denotes the index of the pixel in image Il) are
selected as the observed features.

The projection model of an orthographic image is:

p = sUR(P + t) + ε, (1)

where P ∈ R3 represents the [x, y, z] coordinates of a 3D
vertex from the deformed model, p ∈ R2 represents the
2D pixel of this point. s is a scale factor representing the
inverse of pixel space which means the actual length (in
millimetres) between two pixels. R, t represent the relative
pose from model frame to image frame. U =

[
I2,02×1

]
is

for getting the two upper rows of the full rotation matrix
R, and ε ∈ R2 ∼ N (0,Σ) represents the noise that
corrupts observation. The two main difficulties of using X-
ray fluoroscopy in the 3D reconstruction are shown in Fig.
2. i) Fig. 2b illustrates that the phantom model is obscured
by part of its own structure from this viewing direction. ii)
Due to the orthographic projection, the depth (distance along
camera’s optical axis) of the 3D corresponding vertices (Fig.
2c) is unknown from the X-ray fluoroscopy.

Fig. 3. A flowchart showing the main processes of the proposed deforma-
tion reconstruction framework.

III. METHODOLOGY

The proposed reconstruction framework consists of three
parts: 2D-3D non-rigid registration, parameters estimation,
and model vertices update (Fig. 3).

A. 2D-3D non-rigid registration

This process is for calculating the corresponding vertices
from aortic model according to observation from X-ray
fluoroscopy. To increase the robustness of partial occlusions,
pixels that present vessel wall contours (Fig. 2a and Fig. 2b)
are used as the features for 2D-3D registration.

To find the corresponding 3D vertex from pre-operative
model to each feature, we first project all vertices into image
frame according to orthographic projection (1) to get a 2D
point cloud. We then calculate the edge of this point cloud
via the alpha-shape method with proper alpha radius [22].

In this way, we simplify the 2D-3D registration problem to
a 2D-2D registration problem. The basic idea of the 2D non-
rigid registration is similar to the iterative closest point (ICP)
algorithm [23]. Because of the non-rigidity, the projection of
the pre-operative model is different from what is observed
on X-ray images, therefore only using Euclidean distance to
perform registration increases the chance of wrong matching.
To improve the matching quality, we also consider geometric
information, normal vectors, when calculating correspon-
dence.

Let Pob = {pob
1 , · · · ,pob

N ob} represent the features (pixels)
from an X-ray image, Pmd = {pmd

1 , · · · ,pmd
Nmd} and P̃md =

{Pmd
1 , · · · ,Pmd

Nmd} represent the edge points of model projec-
tion in 2D image frame and 3D model frame, pob

i ∈ R2 (i =
1, · · · , N ob), pmd

j ∈ R2, Pmd
j ∈ R3 (j = 1, · · · , Nmd). For

each pob
i , we first calculate the set of potential corresponding

points Pi ⊂ Pmd according to following rule:

Pi = {pmd
j |pmd

j ∈ Pmd,

d(pob
i ,p

md
j ) < dth, θ(n(pob

i ),n(pmd
j )) < θth},

(2)
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(a) Without geometric information (b) With geometric information

Fig. 4. An illustration of improvement on matching result using geometric
information. Green points: feature pixels from fluoroscopy, blue points: edge
points of model projection, black lines: correct matching result, red lines:
wrong matching using pure Euclidean distance.

where n(·) ∈ R2 denotes the 2D normal vector in im-
age frame, d(·) represents Euclidean distance between two
points, θ(·) represents the angle between two normal vectors.
dth and θth are distance and angle threshold. If Pi = ∅,
we skip this feature, otherwise, the 2D corresponding points
w.r.t. pob

i is calculated by:

p̃md
i = arg min

pmd
j ∈Pi

d(pob
i ,p

md
j ). (3)

Therefore, the 3D corresponding point from P̃md is obtained,
denoted as P̃md

i
1. Fig. 4 shows the improvement of matching

result using geometric information in our algorithm.
It is noted that for improving reconstruction performance,

we recalculate 2D-3D registration in each iteration during
the optimization (Section III-D). More details are shown in
Algorithm 1.

B. Deformation reconstruction

This framework employs ED graph to reconstruct intra-
operative aortic shape according to registration result. ED
graph was first proposed in [21]. Its main idea is to use the
weighted average of local affine transformations to represents
the whole deformation. The deformation graph consists of
a set of uniformly scattered sparse graph nodes whose
positions gj ∈ R3 are usually calculated by down-sampling
the model vertices [20]. The local transformation around each
ED node can be calculated using an affine matrix Aj ∈ R3×3

and a translation vector tj ∈ R3. For any vertex Pi from a
3D model, its new position after deformation is calculated
using its K nearest ED nodes:

P̂i =

K∑
j=1

wj(Pi) [Aj (Pi − gj) + gj + tj ] ,

wj(Pi) = (1− ‖Pi − gj‖/dj) /nj ,

(4)

where weight wj(Pi) is used for quantifying the influence
of ED node j to vertex i, dj is the distance to the K + 1
nearest ED node, and nj is the normalization factor.

1For simplicity, the rest of this paper will ignore superscript ‘ob’ and
‘md’ when the meaning is clear from the context.

C. Energy function

According to the registration result, ED graph estimates
the deformation parameters (affine matrices and translation
vectors) by minimizing the energy function:

E = wrotErot + wregEreg + wobEob. (5)

This energy function has three components: rotation term,
regularization term, and observation term.

The rotation term is for making the affine matrices close
to rotations. Erot is the sum of all rotation error:

Erot =

M∑
j=1

Rot(Aj),

Rot(Aj) = (c>1 c2)2 + (c>1 c3)2 + (c>2 c3)2

+ (c>1 c1 − 1)2 + (c>2 c2 − 1)2 + (c>3 c3 − 1)2,

(6)

where c1, c2, and c3 are the column vectors of each affine
matrix Aj , and M is the number of ED nodes.

The regularization term is for smoothing the deformation
and preventing divergence of the neighbouring nodes. The
basic idea is that the effect of an ED node and its neighbour-
ing nodes should be almost the same on the overlapping part.
Ereg is the sum of squared distance errors of this condition:

Ereg =

M∑
j=1

∑
i∈N(j)

αji‖Aj (gi − gj) + gj + tj − (gi + ti) ‖2,

(7)
where N(j) is the index set of neighbouring nodes w.r.t.
node j. Weight αji reflects the degree to which the influence
of nodes j and i overlap. This paper follows [21] and sets
αji = 1 for all nodes.

The observation term is for penalizing the misalignment
between the reconstruction result and the observation. Dis-
tance between pair-wise corresponding points generated by
the 2D-3D registration described in Section III-A is used for
the measurement. Assuming for image Il, a feature and its
corresponding point from the 3D model are {pli , P̃li}, then
the observation term is the sum of squared distance between
all corresponding points

Eob =

L∑
l=1

∑
i∈N(l)

‖sURl(P̂li + tl)− pli‖2Σ−1
li

, (8)

where P̂li is calculated by P̃li using (4), N(l) is the index set
of pair-wise points with correspondence in this image, L is
the total number of intra-operative X-ray images. Please note
that the observation term is different from the back-projection
approach in [18] [24] [20] where depth information is
available.

D. Optimization

The estimate of deformation parameters for minimizing E
in (5) can be processed using an iterative approach similar to
Gauss-Newton algorithm. Here we rewrite the affine matrices
and translation vectors to a concatenation vector X and
use f(X) to denote the residuals of the energy function,
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Algorithm 1: Aortic deformation reconstruction
Input: Features from different images, pixel space,

poses of image frames, pre-operative 3D model.
Output: 3D deformation reconstruction of aortic model.

1 Down sample vertices to construct node graph;
2 Project model vertex onto each image by (1);
3 while Algorithm not converged do
4 Step 1: 2D-3D registration:
5 Calculate the edge of the projections;
6 Calculate normal vectors of all points in Pob, Pmd;
7 while loop over each image do
8 while loop over each feature from Pob do
9 Calculate corresponding points by (2), (3);

10 end
11 end
12 Step 2: Optimization:
13 Initialize parameter vector X;
14 Calculate residuals f(X) and its Jacobian J(X);
15 Calculate step change ∆X;
16 if F (X + ∆X) < F (X) then
17 Update parameter vector X← X + ∆X;
18 else
19 Process line search for damping factor α;
20 Update parameter vector X← X + α∆X;
21 end
22 Step 3: Vertex update:
23 Update the position of vertices by (4);
24 Project the updated vertex onto each image by (1).
25 end

namely E := F (X) = f(X)>f(X). Then the estimation
of parameter vector X is a non-linear least squares problem.

In each iteration, the solver linearizes the problem at
current X to calculate the step change ∆X and update X.
Let J(X) represent the Jacobian of f(X), ∆X is obtained
by solving

(J>J)∆X + J>f = 0. (9)

If the updated energy is lower than before F (X + ∆X) <
F (X), we accept the step change (X ← X + ∆X). Oth-
erwise, for better convergence performance, we use a line
search method [25]. The basic idea is to iteratively search a
damping factor to the step change so that the energy function
F (X + α∆X) decreases relative to F (X). The position of
each vertex is updated using the new X by (4). This updated
mesh modelM′ is then projected onto the image to calculate
a new 2D-3D registration for the next iteration. More details
are shown in Algorithm 1.

It is noted that a single image is unable to provide
constraints on full 3D direction because of orthographic
projection. This has been shown in Fig. 2 that depth in-
formation is not observable from orthographic fluoroscopy,
which means the deformation of the aortic pre-operative
model along depth direction is not observable. However,
when multiple images with different viewing angles are
used, though depth observation is still unavailable on each
image, the regularization term helps to share constraints from

different directions, and therefore a full 3D deformation
constraints can be achieved. This is indicated by the fact
that the Hessian matrix J>J is of full rank.

IV. EXPERIMENTS AND RESULTS

The proposed reconstruction framework was validated by
simulations and phantom experiments. Using simulations,
reconstruction accuracy was first assessed via three different
datasets, and reconstruction robustness was then evaluated
via Monte Carlo experiments with multi-level noises. Af-
terwards, phantom experiments with three datasets were per-
formed. Both simulations and phantom experiments illustrate
the capability of our framework for recovering the defor-
mation when using only two intra-operative images from
proper viewing directions. For phantom experiments, the
3D reconstruction error is around 0.9mm-1.2mm, decreases
around 80%-90% w.r.t. the initial difference between pre-
operative model and ground truth.

A. Experimental setup

1) Phantom setup: A Silicone aortic phantom (Materi-
alise, Leuven, Belgium) (left figure in Fig. 1) was used
for phantom validation. Three different deformations of this
phantom were first scanned by CT to gain the ground truth of
these deformations. Each deformation was then viewed by X-
ray fluoroscopy from different viewing directions. Both CT
and X-ray fluoroscopy were obtained by a GE C-arm system.
We collected X-ray images from five different viewing angles
with Positioner Primary Angle {−30◦,−15◦, 0◦, 15◦, 30◦}
and Positioner Secondary Angle 0◦ 2. The aortic exterior
surface was segmented from CT-scan by ITK-SNAP [26]
and pre-processed by MeshLab [27] to obtain the triangular
surface mesh representing the aortic model of each defor-
mation. For each phantom experiment, a mesh from CT
was used as the pre-operative model. The X-ray images and
CT of another deformation were used as the intra-operative
observations and ground truth, respectively. The registration
between CT and X-ray fluoroscopy was performed using ICP.

2) Simulation setup: Using one of the aortic mesh seg-
mented from CT as the pre-operative model, simulations
with three datasets were conducted (Fig. 5). The defor-
mations from pre-operative model to intra-operative model
were performed by ED graph (green colour in Fig. 5).
The feature pixels from different viewing directions were
then simulated by first projecting the ground truth from
these directions using (1) and then calculating the edge of
the projected point cloud using alpha-shape [22]. In these
simulations, we treated y-axis in Fig. 5 as the rotation axis
of Positioner Primary Angle. For each dataset, we generated
five observations by setting Positioner Primary Angle as
{−30◦,−15◦, 0◦, 15◦, 30◦}.

3) Parameter setup: The parameters of the proposed
reconstruction framework were chosen empirically. In all
simulations and experiments, we chose θth = π

6 (rad), dth =
30 (pixels) for registration, and wrot = 1, wreg = 1, wob = 1

2 These angles represent the rotation degrees of the X-Ray image
intensifier. Please refer to DICOM attributes for more information.
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Fig. 5. Datasets for simulations. Grey: pre-operative model, green: ground
truth of intra-operative model, unit mm. For each dataset, intra-operative
images were simulated from five different directions.

for optimization. The number of nearest ED nodes K in
(4) was set as 15. For better smoothing performance, the
number of neighbouring nodes in (7) was set as half of the
total number of ED nodes.

B. Metrics for error measurement

We used point to plane distance to measure the error
between the 3D reconstruction result and the ground truth.
Suppose P̂ denotes the estimated 3D position of a vertex and
Pgt ∈ R3 denotes the position of its corresponding vertex
from ground truth. The reconstruction error of P̂ is:

ei = abs
(
ñ(Pgt)>(P̂−Pgt)

)
, (10)

where ñ(·) ∈ R3 denotes the 3D normal vector of a vertex.

C. Accuracy and robustness assessment

1) Accuracy assessment: Using observation without
noise, the first simulation assessed the accuracy of recon-
struction result under perfect condition. Fig. 6 shows the
reconstruction accuracy when using different numbers of
intra-operative observations. To show the necessity of using
at least two images, we present the result of using one image
by fixing the depth of a vertex from the pre-operative model.
Fig. 6 shows that the reconstruction accuracy significantly
increases when using more than one images.

By comparing the reconstruction result in Fig. 6, we can
see that from two to five images, the reconstruction accuracy
is similar. This illustrates that two intra-operative images
are enough for the proposed framework to recover aortic
deformation. Under the perfect condition, this framework can
recover aortic shape with reconstruction error around 0.7mm-
0.8mm when using only two intra-operative images.

2) Robustness assessment: In practice, observations are
corrupted by noises. To evaluate the robustness of the
proposed framework when using noisy observations, we
conducted Monte Carlo simulations with 500 independent
runs under different noise levels. We used the same datasets
with two intra-operative observations as in the previous sim-
ulation. Zero mean Gaussian noises with standard deviations
{0.2, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0} (pixels) were added to the
features from each observation. Table I shows the average
reconstruction error of each Monte Carlo simulation. For
all datasets, when the noise level is small, reconstruction

accuracy is close to the original result of using perfect
observations. Besides, when the noise level increases 1500%
from 0.2 to 3.0 (pixels), the reconstruction error increases
only 53.2%, 27.8%, and 76.7% for the three datasets, re-
spectively. The two main reasons of this robustness are: i)
the proposed registration approach is able to provide robust
correspondence; ii) the regularization term (7) designed for
smoothing the deformation also contributes to the robustness
for noisy observation.

TABLE I
RECONSTRUCTION ERROR WITH/WITHOUT OBSERVATION NOISES

Data Org. Monte Carlo of different noise level
0.2 0.5 1.0 1.5 2.0 2.5 3.0

1st 0.812 0.832 0.836 0.847 0.853 0.906 1.040 1.275
2nd 0.681 0.693 0.694 0.695 0.695 0.701 0.741 0.886
3rd 0.702 0.712 0.713 0.716 0.730 0.784 0.969 1.258

Org.: reconstruction error (in mm) using two images without noise.
Noise level: standard deviation in pixel.
The average reconstruction error of 500 runs is presented.

D. Phantom experiment
Here we present the phantom results using two intra-

operative X-ray images. The viewing directions 3 of three
experiments are shown in Table II. The pre-operative model
and 3D reconstruction result are shown in Fig. 7. The error
figures (the third column in Fig. 7) demonstrate that most
parts of the aorta have been recovered with low error (blue).
From the fourth column in Fig. 7 and Table II we see that
the reconstruction error is around 0.9mm-1.2mm.

TABLE II
VIEWING DIRECTIONS & RECONSTRUCTION ACCURACY OF PHANTOMS

Data Img. 1 Img. 2 3D 3D 3D 2D 2Dinit. err. imp.% err. imp.%
1st AP LAO 30 6.464 0.870 86.5% 0.292 97.3%
2nd LAO 15 RAO 15 9.033 0.881 90.2% 0.374 97.4%
3rd AP LAO 30 5.873 1.226 79.1% 0.405 94.0%

Img. 1/2: the viewing directions of the two images in Fig. 7.
3D init.: initial difference (in mm) between pre-operative model and
ground truth.
3D err.: absolute error (in mm) of 3D reconstruction result.
2D err.: absolute error (in mm) of reprojection.
3D imp.%: the 3D accuracy improvement by initial error−result error

initial error .
2D imp.%: the 2D reprojection improvement.

In the third experiment, we present the reconstruction
result using fluoroscopy with large occlusions (bottom right
in Fig. 7). For real MIS, we can wisely view the aorta from
the directions with fewer occlusions on fluoroscopy, e.g. the
second experiment.

The last two columns in Fig. 7 present the intra-operative
images, the projection of aortic wall contour from the pre-
operative model (blue), and the 3D reconstruction of aortic
wall contour reprojected on the fluoroscopy (red). We can
see that the reprojections are almost the same as the observa-
tions from fluoroscopy. The 2D reprojection error is around
0.3mm-0.4mm, which decreases over 90% from the initial
error for all experiments (Table II).

3 LAO, RAO, and AP: +, −, and 0◦ of Positioner Primary Angle. Please
refer to DICOM attributes for more information.
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(a) Reconstruction error of the 1st dataset (b) Reconstruction error of the 2nd dataset (c) Reconstruction error of the 3rd dataset

Fig. 6. Reconstruction error using observations from different directions. The corresponding datasets are shown in Fig. 5. The reconstruction error (in
mm) was calculated by (10). The small figures on top right corner present the mean reconstruction error. More details are described in Section IV-C.1.

Fig. 7. Reconstruction of phantom experiments using two intra-operative images. Each row represents the data and result of different experiments. The
1st column shows the input pre-operative model (grey) and the ground truth of intra-operative model (green). The 2nd column shows the reconstruction
result (red) and the ground truth (green). The 3rd column shows the reconstruction error of each vertex, where blue parts denotes low reconstruction error.
The 4th column shows the error distribution of input the pre-operative model and the reconstruction result. The last two columns show the two images.
The projection of vessel wall contours of pre-operative model (blue) and the reprejection of reconstruction result (red) are also presented. The red curves
illustrates that, for all experiments, the reprojections of reconstructed aortic wall contour are almost the same as the observations from fluoroscopy.

V. CONCLUSION

This paper presents a robust framework that recovers
aortic 3D shape intra-operatively using multiple X-ray flu-
oroscopy from different viewing directions. Different from
some existing deformation reconstruction frameworks, the
proposed reconstruction framework uses pixels presenting
aortic wall contours as the observed features due to the
limitation of orthographic projection and the occluded areas
on X-ray fluoroscopy. The corresponding 3D vertices from
the pre-operative model are calculated via a 2D-3D non-
rigid registration approach, and the vessel’s reconstruction
is formulated as a nonlinear least squares problem based
on embedded deformation graph. Detailed validation by
simulation and phantom experiments is conducted. The result

demonstrates the accuracy and robustness of the proposed
framework, as well as its ability to reconstruct aortic 3D
shape with only two intra-operative X-ray images from
different directions. This illustrates the potential clinical
value of this framework to be used for G-arm or biplane
angiography system.

Current framework does not consider the feature extraction
procedure. In the future, we plan to add this front-end
using deep learning approaches, e.g. [28]. We will further
investigate the effect of the registration on the quality of
reconstruction. Besides, we plan to improve the registration
process for increasing the calculation speed. The proposed
framework is currently implemented using Matlab. Our final
goal is a real-time aorta reconstruction system based on the
proposed method.
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