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Abstract—A novel 3-D time-domain Teraherz (THz) imaging
system based on piecewise constant Doppler (PCD) algorithm and
step-frequency continuous-wave (SFCW) signalling is proposed in
this paper. Firstly, the SFCW THz imaging system configuration
and the Gaussian beam propagation model are introduced. Then,
the conventional time-domain correlation imaging algorithm is
reviewed and the close-form expression of its point spread func-
tion (PSF) is derived to quantify the range and lateral resolutions.
To reduce the computational complexity, a 2-D recursive imaging
process based on the plane approximation of the range surface is
proposed, by which the original PCD algorithm is extended for
3-D imaging with 2-D aperture synthesis. The 3-D PCD imaging
principle, implementation and complexity analysis are discussed
afterwards. Finally, simulation and experimental results are
provided to validate the theoretical analysis of the 3-D time-
domain THz imaging and demonstrate the high quality of the
proposed imaging algorithm at low computational cost.

Index Terms—3-D imaging, Terahertz, step-frequency
continuous-wave, Gaussian beam, time-domain correlation
imaging, piecewise constant Doppler algorithm.

I. INTRODUCTION

TERAHERTZ (THz) imaging can offer many advantages
due to its unique spectral characteristics: (1) THz wave

can penetrate the obscuring materials such as clothes, plastics
and packages; (2) THz wave is a non-ionizing radiation that
does not have enough energy to remove an electron from
an atom or molecule, thus is harmless to human beings
and animals; (3) THz imaging can achieve a higher spatial
resolution with small form factor compared with millimetre
wave or low-frequency imaging due to the shorter THz signal
wavelength. Consequently, THz imaging plays an important
role in a wide variety of civil and public safety applications
such as security inspection [1]–[3] at airports and railway
stations, industrial nondestructive testing [4], [5], and medical
personnel scanning [6], [7].

The reconstruction of a three-dimensional (3-D) THz image
of objects to be observed is generally achieved by illuminat-
ing them with wideband THz wave and then recording and
processing the scattered echoes with a two-dimensional (2-
D) planar array [8]–[12]. The current state-of-the-art radio
imaging techniques can be classified into two categories in
terms of achieving 2-D spatial sampling. The first technique
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uses the focal-plane array (FPA) [13], [14] that is placed
behind a large lens and then focuses the image at the focal
plane. However, the implementation of FPA in THz imaging
system requires large and high cost array transceivers, and
the spatial resolution at a far imaging distance is limited
by the high optical F-number, i.e., the ratio between focal
length and antenna aperture. The second technique adopts
the aperture synthesis by which a large 2-D aperture sam-
pling can be accomplished with mechanical scanning of a
monostatic transmit/receive (T/R) antenna or linear multi-static
T/R antenna array [8], [15], [16]. The phase and amplitude
of the coherently received data can be recorded, digitalized,
and processed to reconstruct a high-resolution THz image
without the lens, thus allowing focusing at any depth. Although
a longer data acquisition time and more accurate antenna
positioning are required for THz imaging, the use of aperture
synthesis can improve the spatial resolution and simplify the
array transceivers, which is more important for a practical THz
imaging system.

The current 3-D microwave and THz imaging algorithms,
e.g., range migration algorithm (RMA) [9]–[12], are generally
derived from the exploding reflector model, by which the
reconstructed image is actually the field of the echoes at the
reflection point where the transmitter is located. Based on fast
Fourier transform (FFT), the 3-D raw data can be processed in
spatial frequency domains. After a phase migration operation
along the transmission propagation direction, the image can
be reconstructed after two-dimensional inverse FFT (IFFT).
However, such FFT-based THz imaging algorithms have some
intrinsic limitations due to the operation in spatial frequency
domain. Firstly, the FFT operation requires a uniform spatial
sampling in 2-D aperture, leading to an inflexible system
configuration [8]. Secondly, the range cell migration (RCM)
[9], [17] leads to the samples placed nonuniformly in spa-
tial frequency domain [18]. This has to be compensated by
using linear interpolation techniques. Thirdly, the size of the
reconstructed image is quite small due to the short radius of
the beam spot at the observed scene. Therefore, the FFT-based
methods have to reconstruct several subimages block by block
and then perform image stitching to form a large image. There
are also many imaging algorithms based on time-domain cor-
relation [18], [19] which process the received data directly in
spatial domain and remove the intrinsic limitations of the FFT-
based methods. However, the huge computational cost and data
storage limit their practical applications. A novel time-domain
imaging method, termed piecewise constant Doppler (PCD)
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imaging [20]–[22], has been proposed recently for synthetic
aperture radar (SAR) based on the linear approximation of the
range curve, thus reducing the computational cost significantly.
The original PCD algorithm reconstructs the image recursively
along the radar trajectory for 2-D generalized continuous wave
synthetic aperture radar (GCW-SAR) imaging. It cannot be
used directly in the 3-D THz imaging due to the 2-D spatial
sampling and the Gaussian beam propagation model [10], [23].

In this paper, a fully 3-D THz imaging system based on
PCD principle and step-frequency continuous-wave (SFCW)
signalling is developed. Instead of using the high cost and
complicated THz array, a single-channel THz system with
separate transmit and receive THz antennas is used to achieve
the 2-D spatial sampling by illuminating the observed scene
with a wideband SFCW signal. The system configuration
is described, followed by the Gaussian beam propagation
model. Based on the stop-and-go approximation and the back-
projection (BP) algorithm, the 3-D time-domain correlation
THz imaging process is presented. To benchmark the spatial
resolutions and imaging performance of the time-domain THz
imaging method, we derive the close-form expression of its
point spread function (PSF) from which the lateral and range
resolutions are shown to be determined by the equivalent beam
waist and the transmitted bandwidth respectively. To reduce
the huge computational cost of direct time-domain correlation,
a 3-D PCD THz imaging algorithm is proposed based on the
plane approximation of the range surface after extending the
PCD principle to 2-D spatial sampling under Gaussian beam
model. Analysis and simulation results demonstrate its supe-
rior performance over conventional time-domain correlation
methods. An experimental monostatic THz imaging system
with a 0.2-THz Gaussian beam transceiver is implemented to
demonstrate its practical application.

The reminder of this paper is organized as follows. In
Section II, the system configuration and the THz propagation
model are firstly presented and then the close-form expression
of the PSF is derived. The proposed 3-D PCD THz imaging
algorithm is proposed in Section III with the imaging imple-
mentation and the complexity analysis. Simulation and exper-
imental results are shown in Section IV and V respectively
to validate the theoretical analysis of time-domain correlation
imaging and the practical performance of the proposed PCD
method. Finally, conclusions are drawn in Section VI.

II. 3-D TIME-DOMAIN CORRELATION THZ IMAGING

In this section, we first introduce the system configura-
tion of the monostatic THz imaging and the Gaussian beam
propagation model with the SFCW transmitted waveform. We
then describe the 3-D time-domain correlation THz imaging
method and derive the close-form expression of its PSF
accordingly.

A. System Configuration

The block diagram of the single-channel 3-D THz imaging
scheme based on SFCW signalling is illustrated in Fig. 1.
A relatively low-frequency SFCW signal is generated and
upconverted with a multiplier to THz band. The radiation beam
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Fig. 1. Single-channel 3-D THz imaging scheme based on SFCW signal.

is transmitted by a THz antenna and the scattered echoes are
received by a separate THz receive antenna through a beam
splitter. The unwanted transmitted and received THz waves
are removed by a THz absorber. Another SFCW generator
provides a local oscillator (LO) SFCW signal which is also
upconverted to THz band and mixed with the transmitted
and received signals to produce the measured and reference
signals respectively. After analog-to-digital conversion (A/D),
the coherent measured and reference signals are processed to
focus the targeted image. To achieve a 2-D spatial sampling,
the transmit and receive antennas (TA and RA), the beam
splitter and absorber are installed on a quasi-optics moving
platform which is driven by a scanning controller. The transmit
antenna, at a distance zr, scans the targeted area laterally
in x- and y-directions at a constant speed and its location
information is also transferred to the digital imaging module.

B. THz Propagation Model and Scattered Echoes

Working in an extreme high-frequency band, the transmitted
beam in a THz system is always generated based on a series
of quasi-optics equipment, thus following the Gaussian beam
propagation model which is derived by solving the Maxwell
equations in paraxial approximation [23]. Assuming that the
transmitted THz Gaussian beam propagates in +z-direction,
the phase center is located at (x, y, 0) and the beam waist
radius is equal to ω0 at the plane z = 0, the transmitted field
at the target located at (x′, y′, z′) can be described as

Et(x
′, y′, z′;x, y, k)

=
A0

W (z′, k)
· exp(−ρ

2(x′, y′;x, y)

W 2(z′, k)
)

· exp(−jk(z′ +
ρ2(x′, y′;x, y)

2R(z′, k)
) + jφ(z′, k))

(1)

where A0 is the amplitude of the beam center,
ρ2(x′, y′;x, y) = (x − x′)2 + (y − y′)2, W (z′, k), R(z′, k)
and φ(z′, k) are the beam footprint radius, the wavefront
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radius and the initial phase at the plane z = z′ respectively,
expressed as

W (z′, k) = ω0

√
1 + (

2z′

kω2
0

)2, (2)

R(z′, k) = z′(1 + (
kω2

0

2z′
)2) (3)

and

φ(z′, k) = arctg(
2z′

kω2
0

) (4)

where k = 2πf/c is the wavenumber corresponding to the
temporal frequency f in the transmitted SFCW signal and c
is the light speed.

The received signal is actually a superposition of the echoes
from the targeted domain D. Due to the round trip propagation,
the scattered field can be derived as

Er(x, y, k)

=

∫ ∫ ∫
D

σ(x′, y′, z′)E2
t (x′, y′, z′;x, y, k)dx′dy′dz′

≈
∫ ∫ ∫

D

σ(x′, y′, z′)
A2

0

W 2(z′, k)

· exp(−2ρ2(x′, y′;x, y)

W 2(z′, k)
)

· exp(−j2k(z′ +
ρ2(x′, y′;x, y)

2R(z′, k)
))dx′dy′dz′

(5)

where the phase term φ(z′, k) can be neglected in the imaging
process since the range of its variation is much smaller than
that of k(z′ + ρ2(x′,y′;x,y)

2R(z′,k) ) due to z′ � fc/c [10].

C. Imaging Process

The conventional 3-D time-domain correlation imaging al-
gorithm is presented in this subsection. Following the stop-
and-go approximation and slow time 2-D sampling, the image
can be reconstructed by the range compression and the BP
algorithm respectively. To derive the PSF of the time-domain
THz imaging, we only consider a one-point target located at
(0, 0, zr) and the scattered field can be expressed as

Er(x, y, k)

= σ(0, 0, zr)
A2

0

W 2(zr, k)
· exp(−2ρ2(0, 0;x, y)

W 2(zr, k)
)

· exp(−j2k(zr +
ρ2(0, 0;x, y)

2R(zr, k)
)).

(6)

With a narrow-bandwidth SFCW signal, we have
W (zr, k) ≈ W (zr, kc) and R(zr, k) ≈ R(zr, kc) where
k ≈ kc = 2πfc/c and fc is the transmitted signal centre

frequency. The range compressed image can be achieved after
the IFFT operation with respect to the wavenumber k as

er(x, y, z
′′)

=

∫ 2πfc+πB
c

2πfc−πB
c

Er(x, y, k)exp(j2kz′′)dk

=

∫ πB
c

−πBc
σ(0, 0, zr)

A2
0

W 2(zr, kc)
· exp(−2ρ2(0, 0;x, y)

W 2(zr, kc)
)

· exp(−j2k(zr +
ρ2(0, 0;x, y)

2R(zr, kc)
))

· exp(−j 4π

λc
(zr +

ρ2(0, 0;x, y)

2R(zr, kc)
))exp(j2kz′′)dk

≈ σ(0, 0, zr)
A2

0

W 2(zr, kc)
· exp(−2ρ2(0, 0;x, y)

W 2(zr, kc)
)

· sinc(2πB

c
(z′′ − (zr +

ρ2(0, 0;x, y)

2R(zr, kc)
)))

· exp(−j 4π

λc
(zr +

ρ2(0, 0;x, y)

2R(zr, kc)
))

(7)

where λc = c/fc and B are the wavelength and the bandwidth
of the transmitted SFCW signal respectively and the sinc
function is defined as sinc(x) = sin(x)/x. We can see that the
image in range has been compressed but RCM compensation
is required in lateral imaging process. To do so, we multiply
(7) by a Dirac Delta function δ(z′′ − (z′ + ρ2(x′,y′;x,y)

2R(z′,kc)
)) and

then reconstruct the image based on the BP algorithm as

I(x′, y′, z′)

=

∫ ∫
er(x, y, z

′′)δ(z′′ − (z′ +
ρ2(x′, y′;x, y)

2R(z′, kc)
))

· exp(j 4π

λc
(z′ +

ρ2(x′, y′;x, y)

2R(z′, kc)
))dxdy

=

∫ ∫
σ(0, 0, zr)

A2
0

W 2(zr, kc)
· exp(−2ρ2(0, 0;x, y)

W 2(zr, kc)
)

· sinc(2πB

c
((z′ +

ρ2(x′, y′;x, y)

2R(z′, kc)
)− (zr +

ρ2(0, 0;x, y)

2R(zr, kc)
)))

· exp(j 4π

λc
(z′ − zr +

ρ2(x′, y′;x, y)

2R(z′, kc)
− ρ2(0, 0;x, y)

2R(zr, kc)
))dxdy

(8)

which is the PSF of the 3-D time-domain THz imaging.
To derive the range and lateral resolutions, two cases, i.e.,
I(0, 0, z′) and I(x′, y′, zr), are considered respectively. Note
that the 3-dB energy cut-off point of the PSF is defined as the
resolution.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

1) Range Resolution: When x′ = 0 and y′ = 0, the range
image can be reconstructed as

I(0, 0, z′)

≈ σ(0, 0, zr)
A2

0

W 2(zr, kc)
· sinc(2πB

c
(z′ − zr))

· exp(j 4π

λc
(z′ − zr))

∫ ∫
exp(−2ρ2(0, 0;x, y)

W 2(zr, kc)
)dxdy

= σ(0, 0, zr)
A2

0

W 2(zr, kc)
· sinc(2πB

c
(z′ − zr))

· exp(j 4π

λc
(z′ − zr)) · π

∫
exp(− 2ρ2

r

W 2(zr, kc)
)dρ2

r

= σ(0, 0, zr)π
A2

0

2
sinc(

2πB

c
(z′ − zr))exp(j

4π

λc
(z′ − zr))

(9)

where ρ2(0,0;x,y)
2R(z′,kc)

− ρ2(0,0;x,y)
2R(zr,kc)

≈ 0 is assumed since R(z) �
W (z) in a far-field THz imaging system and the integral over
x-y plane is replaced by that over radius ρr = ρ(0, 0;x, y).
Hence, the range resolution δz is determined at the 3-dB en-
ergy cut-off point 2πB(z′−zr)/c ≈ 0.88π when z′−zr = δz
and expressed as

δz = 0.44
c

B
(10)

which is only determined by the transmitted bandwidth.

2) Lateral Resolution: When z′ = zr, from (8), the lateral
image can be reconstructed as

I(x′, y′, zr)

≈
∫ ∫

σ(0, 0, zr)
A2

0

W 2(zr, kc)
· exp(−2ρ2(0, 0;x, y)

W 2(zr, kc)
)

· exp(j 2π

λcR(zr, kc)
(ρ2(x′, y′;x, y)− ρ2(0, 0;x, y)))dxdy

= σ(0, 0, zr)
A2

0

W 2(zr, kc)
exp(j

2πx′2

λcR(zr, kc)
)exp(j

2πy′2

λcR(zr, kc)
)

·
∫
exp(− 2x2

W 2(zr, kc)
)exp(−j 4πx′x

λcR(zr, kc)
)dx

·
∫
exp(− 2y2

W 2(zr, kc)
)exp(−j 4πy′y

λcR(zr, kc)
)dy

(11)

where ρ2(x′,y′;x,y)
2R(zr,kc)

− ρ2(0,0;x,y)
2R(zr,kc)

≈ 0 is assumed in the sinc
function since R(z) � W (z). We can see from (11) that
the two integral can be considered as the Fourier transform
of exp(− 2x2

W 2(zr) ) and exp(− 2y2

W 2(zr) ) with respect to x and

y respectively. Substituting
√
πexp(−x

′2

4 ) =
∫
exp(−x2) ·

exp(−jx′x)dx into (11), I(x′, y′, zr) can be derived as

I(x′, y′, zr)

= σ(0, 0, zr)
A2

0

W 2(zr, kc)
exp(j

2πx′2

λcR(zr, kc)
)

· exp(j 2πy′2

λcR(zr, kc)
)
W (zr, kc)√

2

·
∫
exp(−x2)exp(−j 4πW (zr, kc)x

′x√
2λcR(zr, kc)

)dx

· W (zr, kc)√
2

∫
exp(−y2)exp(−j 4πW (zr, kc)y

′y√
2λcR(zr, kc)

)dy

= σ(0, 0, zr)
A2

0

2
exp(j

2π(x′2 + y′2)

λcR(zr, kc)
)

·
∫
exp(−x2)exp(−j

√
2kcW (zr, kc)x

′x

R(zr, kc)
)dx

·
∫
exp(−y2)exp(−j

√
2kcW (zr, kc)y

′y

R(zr, kc)
)dy

= σ(0, 0, zr)π
A2

0

2
exp(j

2π(x′2 + y′2)

λcR(zr, kc)
)

· exp(−k
2
cW

2(zr, kc)

2R2(zr, kc)
(x′2 + y′2)).

(12)

Based on (2) and (3), (12) can be further derived as

I(x′, y′, zr)

= σ(0, 0, zr)π
A2

0

2
exp(j

2π(x′2 + y′2)

λcR(zr, kc)
)

· exp(− 8z2
r

k2
cw

4
0 + 4z2

r

· x
′2 + y′2

w2
0

)

≈ σ(0, 0, zr)π
A2

0

2
exp(−2(x′2 + y′2)

w2
0

)exp(j
2π(x′2 + y′2)

λcR(zr, kc)
)

(13)

where 2zr � kcw
2
0 is assumed in a far-field THz imaging

system. The lateral resolution δl can be derived based on the
3-dB energy cut-off point of (13), i.e., −2(x′2 + y′2)/w2

0 ≈
−1.3778, when x′2 + y′2 = δ2

l , as

δl = 0.83w0 (14)

which is only determined by the equivalent beam waist.

III. 3-D PCD THZ IMAGING

With the conventional 3-D time-domain THz imaging
method described in Section II.C, every image pixel has to
be reconstructed independently by a correlation over a 2-D
synthetic aperture, thus leading to a huge computational cost.
In this section, a novel fast 3-D time-domain THz imaging is
proposed based on the PCD principle by which the correlation
is calculated recursively after the plane approximation to the
range surface.

A. Recursive Imaging Principle

In 3-D THz imaging, the spatial received samples are
acquired by using a 2-D aperture synthesis. Based on Gaussian
beam propagation, the instantaneous range between the receive



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

 

𝑥′ 

𝑦′ 

𝑟ሺ𝑥′, 𝑦′, 𝑧′; 𝑥, 𝑦ሻ 

𝑥′ − 1.5𝑊ሺ𝑧′,  𝑘𝑐ሻ 

𝑦′ − 1.5𝑊ሺ𝑧′,  𝑘𝑐ሻ 

𝑦′ + 1.5𝑊ሺ𝑧′,  𝑘𝑐ሻ 

𝑥′ + 1.5𝑊ሺ𝑧′,  𝑘𝑐ሻ 

𝑥 

𝑦 

(a)

 

𝑟ǁሺ𝑥′, 𝑦′, 𝑧′; 𝑥, 𝑦ሻ 

𝑥′ + 𝑥0 

𝑥′ + 𝑥𝑃−1 
𝑦′ + 𝑦𝑃−1 

𝑦′ + 𝑦0 

𝑦′ + 𝑦𝑛  

𝑥′ + 𝑥𝑚 

𝑦′ + 𝑦1 

𝑥′ + 𝑥1 

ቀ𝑉𝑥ሺ𝑚, 𝑛, 𝑧′ሻ, 𝑉𝑦ሺ𝑚, 𝑛, 𝑧′ሻ, 𝑉𝑟ሺ𝑚, 𝑛, 𝑧′ሻቁ 

𝑥 

𝑦 

(b)

Fig. 2. Range surface in 3-D THz imaging: (a) original range surface r(x′, y′, z′;x, y) and (b) plane approximated range surface r̃(x′, y′, z′;x, y).
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Fig. 3. 2-D recursive imaging process: (a) Sm,n(x′ + δx, y′ + δy, z′) update and (b) Im,n(x′ + δx, y′, z′) update.

antenna and the target located at (x′, y′, z′) can be expressed as
r(x′, y′, z′;x, y) = z′ + ρ2(x′,y′;x,y)

2R(z′,kc)
, thus forming a parabolic

surface shown in Fig. 2a.

Given the radius of the beam footprint W (z′, kc) at the
plane z = z′, to reconstruct the image, the integration area is
defined by the intervals in x- and y-directions set from x′−1.5·
W (z′, kc) to x′+1.5·W (z′, kc) and from y′−1.5·W (z′, kc) to
y′+1.5·W (z′, kc) respectively to capture almost all the energy
of the beam. Similar to the piecewise linear approximation
of the range curve in GCW-SAR imaging [22], the surface
represented by r(x′, y′, z′;x, y) can be approximated as P×P
planes represented by r̃(x′, y′, z′;x, y), which is termed as
plane approximation shown in Fig. 2b. The integration areas
over the respective P × P planes are obtained by dividing
the dimensions of the original integration area in x and y
axises into P segments with the segment joint points at xm =

−1.5 ·W (z′, kc) + 3W (z′,kc)
P ·m and yn = −1.5 ·W (z′, kc) +

3W (z′,kc)
P ·n for m = 0, 1, 2, ..., P−1 and n = 0, 1, 2, ..., P−1

respectively. Therefore, the reconstructed image I(x′, y′, z′)
can be computed as a sum of integrals over P ×P individual

planes after range compression, i.e.,

I(x′, y′, z′) =

P−1∑
m=0

P−1∑
n=0

Im,n(x′, y′, z′). (15)

The integral Im,n(x′, y′, z′) over the plane at (xm, yn) can be
obtained as

Im,n(x′, y′, z′)

=

∫ x′+xm+1

x′+xm

∫ y′+yn+1

y′+yn

er(x, y, r̃(x
′, y′, z′;x, y))

· exp(j 4π

λc
r̃(x′, y′, z′;x, y))dydx

(16)

where the approximated range r̃(x′, y′, z′;x, y) is determined
by the three points (x′+xm, y

′+yn, r(x
′, y′, z′;x′+xm, y

′+
yn)), (x′+xm+1, y

′+yn, r(x
′, y′, z′;x′+xm+1, y

′+yn)), and
(x′ + xm, y

′ + yn+1, r(x
′, y′, z′;x′ + xm, y

′ + yn+1)) on the
original range surface. Based on these three points, the plane’s
normal vector (Vx(m,n, z′), Vy(m,n, z′), Vr(m,n, z

′)) can
be derived as shown in (17) at top of next page, where ~i,
~j, and ~k represent the unit vectors in x-, y- and r-directions
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(Vx(m,n, z′), Vy(m,n, z′), Vr(m,n, z
′))

=

∣∣∣∣∣∣
~i ~j ~k

xm − xm+1 0 r(x′, y′, z′;x′ + xm, y
′ + yn)− r(x′, y′, z′;x′ + xm+1, y

′ + yn)
0 yn − yn+1 r(x′, y′, z′;x′ + xm, y

′ + yn)− r(x′, y′, z′;x′ + xm, y
′ + yn+1)

∣∣∣∣∣∣
=
(

(yn+1 − yn) · (r(0, 0, z′;xm, yn)− r(0, 0, z′;xm+1, yn)), (xm+1 − xm) · (r(0, 0, z′;xm, yn)

− r(0, 0, z′;xm, yn+1)), (xm − xm+1)(yn − yn+1)
)

(17)

respectively. With the normal vector, the approximated range
on the plane at (xm, yn) can be expressed as

r̃(x′, y′, z′;x, y) =
Vx(m,n, z′)

Vr(m,n, z′)
(x′ + xm − x)

+
Vy(m,n, z′)

Vr(m,n, z′)
(y′ + yn − y)

+ r(x′, y′, z′;x′ + xm, y
′ + yn)

= Dx(m,n, z′)(x′ + xm − x)

+Dy(m,n, z′)(y′ + yn − y)

+ r(0, 0, z′;xm, yn)

(18)

which has linear variations in x- and y-directions re-
spectively, i.e., the slopes in x- and y-directions, de-
noted as Dx(m,n, z′) = Vx(m,n, z′)/Vr(m,n, z

′) and
Dy(m,n, z′) = Vy(m,n, z′)/Vr(m,n, z

′), are constant for the
plane at (xm, yn).

Making use of the constant slopes for each plane on the
approximated range surface, a recursive imaging process can
be derived similar to the original PCD algorithm. Hence,
given the imaging spacing ∆x in the x-direction, Im,n(x′ +
∆x, y′, z′) can be calculated recursively along x-direction
from Im,n(x′, y′, z′) as

Im,n(x′ + ∆x, y′, z′)

≈
∫ x′+∆x+xm+1

x′+∆x+xm

∫ y′+yn+1

y′+yn

er(x, y, r̃(x
′, y′, z′;x, y))

· exp(j 4π

λc
(Dx(m,n, z′)(x′ + ∆x+ xm − x)

+Dy(m,n, z′)(y′ + yn − y) + r(0, 0, z′;xm, yn)))dydx

= Im,n(x′, y′, z′) · exp(j 4π

λc
Dx(m,n, z′)∆x)

−
∫ ∆x+xm

xm

∫ yn+1

yn

er(x
′ + x, y′ + y, r̃(∆x, 0, z′;x, y))

· exp(j 4π

λc
r̃(∆x, 0, z′;x, y))dydx

+

∫ ∆x+xm+1

xm+1

∫ yn+1

yn

er(x
′ + x, y′ + y, r̃(∆x, 0, z′;x, y))

· exp(j 4π

λc
r̃(∆x, 0, z′;x, y))dydx

(19)

where r̃(x′+∆x, y′, z′;x′+x, y′+y) = r̃(∆x, 0, z′;x, y), and
er(x, y, r̃(x

′+∆x, y′, z′;x, y)) ≈ er(x, y, r̃(x′, y′, z′;x, y)) is
valid due to the short interval (xm, xm+1] and (yn, yn+1].

Compared with the original PCD imaging, an extra inde-
pendent spatial correlation represented by the integral over the
interval (yn, yn+1] in y-direction as shown in (19) is necessary
before the recursive imaging in x-direction. To further reduce
the computational cost, the integral over the area enclosed by
x interval (xm,∆x + xm] and y interval (yn, yn+1] in (19)
defined as

Sm,n(x′ + ∆x, y′, z′)

=

∫ ∆x+xm

xm

∫ yn+1

yn

er(x
′ + x, y′ + y, r̃(∆x, 0, z′;x, y))

· exp(j 4π

λc
r̃(∆x, 0, z′;x, y))dydx

(20)

can be also calculated recursively along y-direction. Since
er(x, y, r̃(x

′ + ∆x, y′ + ∆y, z′;x, y)) ≈ er(x, y, r̃(x
′ +

∆x, y′, z′;x, y)) is valid when x ∈ (xm, xm+1] and y ∈
(yn, yn+1], Sm,n(x′ + ∆x, y′ + ∆y, z′) can be recursively
calculated from Sm,n(x′ + ∆x, y′, z′) as

Sm,n(x′ + ∆x, y′ + ∆y, z′)

≈
∫ ∆x+xm

xm

∫ ∆y+yn+1

∆y+yn

er(x
′ + x, y′ + y, r̃(∆x, 0, z′;x, y))

· exp(j 4π

λ
(Dx(m,n, z′)(∆x+ xm − x)

+Dy(m,n, z′)(∆y + yn − y) + r(0, 0, z′;xm, yn)))dydx

= Sm,n(x′ + ∆x, y′, z′) · exp(j 4π

λc
Dy(m,n, z′)∆y)

−
∫ ∆x+xm

xm

∫ ∆y+yn

yn

er(x
′ + x, y′ + y, r̃(∆x,∆y, z′;x, y))

· exp(j 4π

λc
r̃(∆x,∆y, z′;x, y))dydx

+

∫ ∆x+xm

xm

∫ ∆y+yn+1

yn+1

er(x
′ + x, y′ + y, r̃(∆x,∆y, z′;x, y))

· exp(j 4π

λc
r̃(∆x,∆y, z′;x, y))dydx

(21)

where ∆y is the imaging spacing in y-direction. The recursive
process to calculate the integrals Sm,n(x′ + ∆x, y′ + ∆y, z′)
and Im,n(x′ + ∆x, y, z′) are shown in Fig. 3 respectively,
where the integration areas for the integrals to be removed
and added in (19) and (21) are indicated in grey and black
colors respectively. The updated integral in x- or y-directions
is obtained recursively by compensating the corresponding
constant slope in the previous integral, removing an integral
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over an imaging spacing in current plane, and adding an
integral over an imaging spacing in next plane.

In summary, the above described recursive imaging method
consists of four steps as follows.
1) Perform range compression achieved by IFFT operation to

obtain er(x, y, z′′);
2) As the THz transmit antenna moves along y-direction,

recursively update Sm,n(x′, y′, z′) for a given z′ and all
m and n;

3) Once a scanning in y-direction is completed and be-
fore next scanning in y-direction, recursively update
Im,n(x′, y′, z′) for a given z′ and all m and n;

4) Sum up all Im,n(x′, y′, z′) to reconstruct the image
I(x′, y′, z′).

Repeat the above processes for different z′, a 3-D image can be
reconstructed. We call this recursive imaging method as 3-D
PCD imaging. Though there is no explicit Doppler frequency
involved, the principle of using plane approximation to obtain
constant slopes of the discrete pieces on the range surface is
similar to that of the original PCD imaging in GCW-SARs.

B. Recursive Imaging Implementation

Given a z′, the proposed 2-D recursive imaging method in
digital domain is presented in this subsection. For simplicity,
the spatial sampling intervals in x- and y-directions are set
equal to the imaging spacing ∆x and ∆y respectively. The
recursive process in y-direction shown in (21) can be imple-
mented as

Sm,n(x′ + ∆x, y′ + ∆y, z′)

= Sm,n(x′ + ∆x, y′, z′) · exp(j 4π

λc
Dy(m,n, z′)∆y)

−∆x∆y · er(x′ + ∆x+ xm, y
′ + ∆y + yn,

r̃(∆x,∆y, z′; ∆x+ xm,∆y + yn))

· exp(j 4π

λc
r̃(∆x,∆y, z′; ∆x+ xm,∆y + yn))

+ ∆x∆y · er(x′ + ∆x+ xm, y
′ + ∆y + yn+1,

r̃(∆x,∆y, z′; ∆x+ xm,∆y + yn+1))

· exp(j 4π

λc
r̃(∆x,∆y, z′; ∆x+ xm,∆y + yn+1))

= Sm,n(x′ + ∆x, y′, z′) · exp(j 4π

λc
Dy(m,n, z′)∆y)

−∆x∆y · er(x′ + ∆x+ xm, y
′ + ∆y + yn,

r̃(0, 0, z′;xm, yn)) · exp(j 4π

λc
r̃(0, 0, z′;xm, yn))

+ ∆x∆y · er(x′ + ∆x+ xm, y
′ + ∆y + yn+1,

r̃(0, 0, z′;xm, yn+1)) · exp(j 4π

λc
r̃(0, 0, z′;xm, yn+1))

(22)

and the recursive process in x-direction shown in (19) can be
implemented as

Im,n(x′ + ∆x, y′, z′)

= Im,n(x′, y′, z′) · exp(j 4π

λc
Dx(m,n, z′)∆x)

− Sm,n(x′ + ∆x, y′, z′) + Sm+1,n(x′ + ∆x, y′, z′).

(23)

Taking P = 4 as an example, the 3-D PCD THz imaging
implementation is illustrated in Fig. 4, where the steps of the 2-
D recursive imaging for a given z′ are illustrated in Fig. 4a, and
the flow graphs of Sm,n(x′, y′, z′) update and Im,n(x′, y′, z′)
update are given in Fig. 4b and Fig. 4c respectively. It is shown
that the 2-D recursive imaging method can be considered as
two recursive processes in y- and x-directions respectively and
the images in z-direction can be reconstructed in parallel at
the same time.

C. Complexity

For the sake of complexity comparison, suppose that N ×
N × N samples are recorded with one shot of the observed
scene and an N × N × N 3-D image is reconstructed by
the direct time-domain correlation imaging algorithm and the
proposed 3-D PCD imaging algorithm, respectively.

The direct time-domain correlation imaging algorithm re-
constructs each image point individually from the range com-
pressed data. To achieve an N × N × N imaging, the total
number of complex multiplication is N3 log2N +N4. The 3-
D PCD imaging algorithm updates the correlation recursively
based on the plane approximation of the range surface. As
shown in Fig. 4, the reconstruction of one image point requires
P+1 recursive processes in step 2 and P recursive processes in
step 3, and their corresponding required numbers of complex
multiplications are 2P + 1 and P respectively. Including the
N2 IFFT operations, the total number of complex multiplica-
tions is equal to N3 log2N+N2(3P 2+3P+1). In a practical
imaging system, P is always set much smaller than N , i.e.,
P 2 is approximately equal to N , and thus the complexity of
the proposed PCD and time correlation imaging algorithms are
O(N3 log2N) and O(N4) respectively. Additionally, the PCD
method can be achieved in parallel, which is well suited for
field programmable gate array (FPGA) or graphics processing
unit (GPU) based implementation, and hence the imaging time
can be further reduced.

IV. SIMULATION RESULTS

In this section, simulation results based on the novel 3-D
time-domain THz imaging with Gaussian propagation model
are presented. To evaluate and compare the performance of
3-D time-domain correlation and 3-D PCD methods, the THz
imaging systems operate under the same system configuration
presented in Section II.A with the following parameters:
equivalent beam waist 4.7mm, distance between transmitter
and observed scene zr = 0.48m, transmitted bandwidth is
19.2GHz, center frequency fc = 199.5GHz, the number of
frequency sweeping points Nf = 201, and the sampling
intervals in x-directions and y-directions ∆x = 2mm and
∆y = 2mm respectively.

A. Time-Domain Correlation Imaging Performance for Point
Target

To validate the theoretical analysis of the 3-D time-domain
THz imaging, the performance of an ideal point target recon-
structed by time-domain correlation imaging method is inves-
tigated in the first simulation experiment. The point target is
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Fig. 4. 3-D PCD Thz imaging implementation for a given z′, where −∆y and −∆x denote the spatial delays in y- and x-directions respectively, Sm,n

and Im,n denote Sm,n(x′, y′, z′) and Im,n(x′, y′, z′) respectively, and r̃m,n(z′) denotes r̃(0, 0, z′;xm, yn): (a) steps of 2-D recursive imaging, (b) flow
graph of Sm,n(x′, y′, z′) update, and (c) flow graph of Im,n(x′, y′, z′) update.

located at (0, 0, 0.48) and the size of synthetic aperture is set as
3W (z′, kc)×3W (z′, kc). The point-target image reconstructed
by the time-domain correlation method is presented in Fig. 5.
For comparison, the close-form expression of the PSF in range
and lateral directions based on (9) and (13) are plotted in
Fig. 5 respectively. The simulation results show that the PSF
in range and lateral directions can be approximated as sinc
and Gaussian functions respectively, validating the theoretical
equations of the range and lateral resolutions derived in (10)
and (14) respectively.

B. Impact of Plane Approximation on 3-D THz Imaging
The computational cost of 3-D time-domain THz imaging

can be significantly reduced by using the proposed 3-D PCD

method based on the P ×P plane approximation of the range
surface. In the second simulation experiment, we investigate
how the number P affects the performance of the proposed
3-D PCD THz imaging. Similarly, a point target located at
(0, 0, 0.48) is assumed and the size of the synthetic aperture
is set as 3W (z′, kc) × 3W (z′, kc). The images in range and
lateral directions reconstructed by using the 3-D PCD method
with different P values and the direct correlation method
are shown in Fig. 6 respectively. The change in P makes
little difference in range imaging since the range compression
is directly achieved by IFFT operation before 2-D recursive
imaging process. By contrast, the lateral imaging is impacted
by P due to the plane approximation in PCD method. As
seen in Fig. 6b, a higher peak sidelobe ratio (PSLR) and a
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Fig. 5. 3-D time-domain correlation THz images in (a) range and (b) lateral directions respectively.
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Fig. 6. 3-D PCD THz images with different P in (a) range and (b) lateral directions respectively.
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Fig. 7. 3-D PCD THz images with P = 10 and different z′ in (a) range and (b) lateral directions respectively.

higher integrated sidelobe ratio (ISLR) in lateral image can be
achieved with increased P and bounded by that of the time-
correlation imaging method shown in Table I, since smaller

planes approximate the range surface more accurately.

With increased range imaging distance, the size of 2-D
synthetic aperture becomes larger due to a wider THz beam
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Fig. 8. Given z′ = 0.48m, ideal 2-D point-target images I(x′, y′, 0.48) reconstructed by PCD method with P = 5, 10, 15 and correlation method are shown
in (a), (b), (c) and (d) respectively.

Fig. 9. Optical image of a metal knife.

footprint, thus leading to a worse imaging performance with
the same P × P plane approximation. With P = 10, the 3-D
PCD images at z′ = 0.1m, 0.48m, and 1m are reconstructed
in range and lateral directions respectively in Fig. 7a and 7b.
Similar to Fig. 6a, the plane approximation does not affect
the range imaging due to the independent range compression,
but the PSLR and ISLR in lateral image becomes lower
with a longer range z′ due to larger approximation error,
where PSLR= −22.61dB, −19.08dB, −12.35dB, and ISLR=

TABLE I
PSLR AND ISLR COMPARISON

Imaging method PSLR ISLR
PCD imaging with P=5 −5.94dB −1.06dB

PCD imaging with P=10 −19.08dB −9.08dB
PCD imaging with P=15 −20.49dB −9.54dB
PCD imaging with P=20 −27.36dB −10.33dB
Time-domain correlation −38.51dB −10.87dB

−9.12dB, −9.08dB, −3.64dB respectively when z′ = 0.1m,
0.48m, and 1m. Therefore, a larger P is required to reconstruct
a high-quality image in a long-range PCD imaging.

There is a trade-off between the imaging performance and
the computational cost as a larger P makes the PCD im-
plementation more complicated in digital domain. Therefore,
a proper selection of P should satisfy a practical imag-
ing requirement. Given z′ = 0.48m, ideal 2-D point-target
images I(x′, y′, 0.48) reconstructed by PCD method with
P = 5, 10, 15 and by correlation method are presented in
Fig. 8. It is obvious that the ambiguities caused by the plane
approximation becomes increasingly negligible when P is
larger than 10. In conventional 2-D PCD imaging analysis,
an image quality factor related to P derived from the PCD
error function can quantify the PCD imaging performance
[20]. Given the required image quality, the P can be easily
selected. Based on the Gaussian beam model, the slant range
variation in lateral direction can be seen as a parabolic function
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Fig. 10. Reconsturcted 3-D effect images of a metal knife: (a) PCD THz image with P = 5, (b) PCD THz image with P = 10, (c) PCD THz image with
P = 15, and (d) time-domain correlation THz image.

similar to the approximation in the 2-D PCD imaging analysis.
Therefore, the selection of P in the proposed 3-D PCD
imaging can follow the same guideline [20].

C. Complexity Analysis

In the final simulation experiment, we compare the compu-
tational cost between the proposed PCD THz imaging method
and the time domain correlation method. Due to the same
imaging process in range direction, the same 2-D image
I(x′, y′, 0.48) with a size of 0.3m×0.6m = 150∆y×300∆x
is reconstructed by PCD and correlation method respectively
with the same parameters adopted in the reconstruction of Fig.
8. Given z′ = 0.48m, the synthetic aperture size 3W (z′, kc) is
approximately equal to 0.07m= 70∆y = 70∆x. The number
of complex multiplications used to reconstruct an image pixel
and the full 2-D image is 712 = 5041 and 151 ∗ 301 ∗ 712 ≈
2.3 × 108 respectively. Based on the 2-D recursive imaging
process, the number of complex multiplications can be reduced
to 151∗301∗(3∗102 +3∗10+1) ≈ 1.5×107, thus validating
the reduced complexity in the proposed imaging method.

V. EXPERIMENTAL 3-D THZ IMAGING RESULTS

In this section, the real 3-D THz imaging data acquired
from the THz imaging system described in Section II are
used to validate the proposed 3-D PCD THz imaging method.
As seen in Fig. 1, two Ku-band SFCW signals are firstly
generated respectively with the same 1.6-GHz bandwidth and
a fixed 25-MHz frequency difference. After a ×12 multiplier,
the measured THz SFCW signal with a 199.5-GHz center
frequency and 19.2-GHz bandwidth is transmitted from the
THz antenna. The equivalent beam waist is set to 0.0047
m. With a 0.48-m distance from the observed scene, the
THz platform moves along the track described in Fig. 1
and the echoes are received repeatedly with spatial intervals
∆x = 0.004m and ∆y = 0.004m respectively. After another
×12 multiplier, the reference THz SFCW signal with 199.8-
GHz center frequency and 19.2-GHz bandwidth is mixed with
the scattered echoes and transmitted signal respectively, and
then the 300-MHz intermediate frequency (IF) signals are
obtained by detectors after the filters. Finally, the baseband
complex 3-D THz imaging data can be recovered from the
measured and reference signals in digital domain after analog-
to-digital converters. The proposed 3-D PCD THz imaging
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Fig. 11. 3-D slice PCD THz images in lateral direction reconstructed with different ranges z′ = 0.464m, 0.472m, 0.48m, 0.488m and 0.496m respectively:
(a) I(x′, y′, 0.464), (b) I(x′, y′, 0.472) (c) I(x′, y′, 0.48) (d) I(x′, y′, 0.488) and (e) I(x′, y′, 0.496).
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Fig. 12. 3-D slice time-domain correlation THz images in lateral directions reconstructed with different ranges z′ = 0.464m, 0.472m, 0.48m, 0.488m and
0.496m respectively: (a) I(x′, y′, 0.464), (b) I(x′, y′, 0.472) (c) I(x′, y′, 0.48) (d) I(x′, y′, 0.488) and (e) I(x′, y′, 0.496).

method is finally applied to reconstruct the THz image by
using MATLAB2019.

The optical and the reconstructed 3-D effect images of a
metal knife are shown in Fig. 9 and Fig. 10 respectively. It
is evident that the shape of the knife can be reconstructed
accurately by PCD imaging with P = 10 and 15 com-
pared with the optical image, thus validating the proposed
PCD implementation in a practical THz imaging system. The
comparison among Figs. 10a, 10b and 10c shows that a
higher quality PCD imaging can be achieved by the increasing
P but the improvement is not significant after P is larger
than 10. Therefore, P = 10 is suitable for this practical
system. To simplify and accelerate the THz scanning process
in the experiment, the spatial sampling intervals are set to
∆x = 4mm and ∆y = 4mm, thus leading to some tiny ghost
targets in Fig. 10. Due to the higher imaging accuracy, these
ghost targets are reconstructed more clearly by time-domain
correlation method as seen in Fig. 10c and Fig. 10d. Therefore,
this experimental results can validate the effectiveness of
the time-domain correlation and the proposed PCD imaging
methods.

To further demonstrate the 3-D imaging performance in
range direction, the 3-D slice images in lateral directions
at different ranges from z′ = 0.464m to z′ = 0.496m
reconstructed by PCD and time-domain correlation methods
respectively are shown in Figs. 11 and 12. We can see that
the PCD imaging performs very well, similar to the time-
domain correlation imaging in range direction. Since the knife
handle is closer to the THz platform than the knife blade seen
from Fig. 9, the shape of the handle is firstly shown in the
reconstructed image I(x′, y′, 0.464) and gradually disappears
when z′ is larger. By contrast, the shape of blade becomes
clearer in the reconstructed image I(x′, y′, 0.496).

VI. CONCLUSION

A fast 3-D PCD THz imaging system is proposed in this pa-
per. We firstly introduce the 3-D time-domain correlation THz
imaging in terms of the system configuration, THz propagation
model and the imaging process in details. The range and lateral
resolutions are also demonstrated from the derived close-form
expression of the PSF. Based on the plane approximation
of the range surface, a 2-D recursive imaging process is
developed, by which the computational cost of the correlation
method can be significantly reduced. The imaging principle,
implementation and complexity analysis are presented, and
the simulated and experimental results validate the imaging
performance of the proposed 3-D PCD algorithm. The work
presented in this paper provides a novel fast synthetic aperture
3-D time-domain THz imaging method.
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