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Abstract

This paper presents a new algorithm named spherical vector-based particle

swarm optimization (SPSO) to deal with the problem of path planning for un-

manned aerial vehicles (UAVs) in complicated environments subjected to multi-

ple threats. A cost function is first formulated to convert the path planning into

an optimization problem that incorporates requirements and constraints for the

feasible and safe operation of the UAV. SPSO is then used to find the optimal

path that minimizes the cost function by efficiently searching the configuration

space of the UAV via the correspondence between the particle position and the

speed, turn angle and climb/dive angle of the UAV. To evaluate the performance

of SPSO, eight benchmarking scenarios have been generated from real digital

elevation model maps. The results show that the proposed SPSO outperforms

not only other particle swarm optimization (PSO) variants including the clas-

sic PSO, phase angle-encoded PSO and quantum-behave PSO but also other

state-of-the-art metaheuristic optimization algorithms including the genetic al-

gorithm (GA), artificial bee colony (ABC), and differential evolution (DE) in

most scenarios. In addition, experiments have been conducted to demonstrate

the validity of the generated paths for real UAV operations.
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1. Introduction

Path planning is essential for UAVs to carry out tasks and avoid threats

appearing in their operating environment. A planned path should be optimal

in a specific criterion defined by the application. For most applications such as

aerial photography, mapping, and surface inspection, the criterion is typically5

to minimize the traveling distance among the visiting locations of UAVs so that

less time and fuel are required [1, 2]. The criterion can also be maximizing the

detection probability as in dynamic target search [3], minimizing the flight time

as with surveillance and rescue [4], or finding the Pareto solution for multi-

objective navigation [5]. In addition, the planned path also needs to satisfy10

the constraints relating to safety imposed by the operating environment and

feasibility imposed by the UAV. Here, safety relates to the capability of the

path to guide the UAV through threats appearing in the environment such

as obstacles. Feasibility involves the alignment of the path with UAV limits

associated with flight time, flight altitude, fuel consumption, turning rate and15

climbing angle. Path planning with enhanced safety in terms of collision-free

and feasible motion for UAVs therefore remains a challenging problem.

In the literature, several approaches have been proposed for UAV path plan-

ning such as graph search, cell decomposition, potential field and nature-inspired

algorithms. The graph search approach splits the environment into connected20

discrete regions, each forms a vertex of the graph that the path is being searched.

In [6, 7], the Voronoi diagram has been used to generate a graph which then

became the input to the Eppstein’s k -best paths algorithm [8] to find the best

path. Another graph-based algorithm is the probabilistic roadmap (PRM) that

samples the configuration space of the UAV to generate vertices of the graph25

[9]. Similar to PRM, the rapid-exploring random trees (RRT) algorithm uses

the configuration space to create a search graph. It however finds the path

by recursively adding the edge that has the smallest heuristic cost to it [10].
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Although the graph-based algorithms are effective in generating feasible flight

paths, they are not suitable to include constraints related to UAV maneuver30

and thus can result in large errors between the planned and flight paths.

The cell decomposition approach, on the other hand, represents the space as

a grid of equal cells and employs a heuristic search to find the flight path. A*

is a popular algorithm that searches the cell space using the least cost from the

current location to its neighbors and the target location [11, 12]. This algorithm35

is extended in [13] to include UAV constraints such as the turning angle. It is

then modified to become bidirectional to deal with intermittent measurements

[12]. Cell decomposition is also used in [14] for path coordination between

UAVs and UGVs, in [15] for flight surveillance and in [16] for path prediction

in real-time UAV operations. The main drawback of the cell decomposition40

approach however is the limitation in the scalable capacity as the number of

cells exponentially increases with the search space dimension.

The potential field is another approach that directly searches the continuous

space for solutions by treating the UAV as a particle moving under the influence

of an artificial potential field constructed from components associated with the45

goal and any obstacles [17, 18]. This approach has been augmented with an

additional control force to provide a shorter and smoother path [19, 20]. It is

also combined with the Hamiltonian function to enable obstacle avoidance [21]

or with the receding horizon optimization to obtain paths for multiple UAVs

without violating the collision avoidance and network connectivity constraints50

[22]. The potential field approach, however, does not consider the optimality of

the solution. It is also known to have limitations in dealing with local minima

occurred in the field.

Recently, the nature-inspired approach has become more prevalent in path

planning due to its effectiveness in dealing with UAV dynamic constraints and55

the capacity to search for the global optimum in complex scenarios. A variety

of nature-inspired algorithms have been developed for UAV path planning such

as the cuckoo search [23], genetic algorithm (GE) [24, 25], differential evolution

(DE) [26, 27], artificial bee colony (ABC) [28], ant colony optimization (ACO)
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[29], and particle swarm optimization (PSO) [1, 25, 26, 30]. Among them, PSO60

is commonly used with a number of variants introduced.

Inspired by the behavior of bird flocking and fish schooling, PSO is a population-

based algorithm that possesses two important properties of swarm intelligence,

the cognitive and social coherence [31]. Those properties allow each particle

of the swarm to search for the solution by following its own experience and65

the swarm experience instead of using conventional evolutionary operators like

mutation and crossover. As a result, PSO is able to find the global solution

with a stable convergence in a shorter computation time compared to other

nature-inspired algorithms [32]. It is also known to be less sensitive to initial

conditions and variations of objective functions and is able to adapt to various70

environment structures via a small number of parameters including one acceler-

ation coefficient and two weight factors [33]. Due to its swarm nature, PSO can

be parallelized to run on multiple processors, graphical processing units (GPU)

or computer clusters to obtain the computation time required for both offline

and online path planning [34]. Given those advantages, PSO has been widely75

used for path planning of ground robots with different approaches introduced

such as evolutionary operator-based PSO [35], adaptive bare-bones PSO [36] or

multi-objective PSO [37, 38]. In UAV path planning, several variants have been

proposed such as the classic PSO [31, 25], phase angle-encoded PSO (θ-PSO)

[39, 40, 30], quantum-behaved PSO (QPSO) [41, 30] and discrete PSO (DPSO)80

[1, 42]. Those variants have the same population-based structure but differ in

the way they represent the search space and the solution encoded in particles

and thus result in different solutions under the same conditions of the operating

environment, dynamic constraints, and objective function. Therefore, it is im-

portant to compare those variants in different scenarios to provide clear insight85

as to which of them is preferable for UAV path planning. In addition, it is also

necessary to incorporate the maneuver properties of UAVs into the algorithms

to further improve their performance.

In this study, we address the path planning problem for UAVs by first for-

mulating an objective function that incorporates various requirements and con-90
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straints associated with the UAV and its flight path. We then introduce a

new PSO algorithm that is capable of exploiting the configuration space of the

UAV to generate quality solutions. For evaluation, eight scenarios have been

generated with increasing levels of complexity based on the use of real digi-

tal elevation model (DEM) maps. The comparisons between SPSO and other95

PSO and metaheuristic algorithms are then conducted on those scenarios to

evaluate their performance. In addition, experiments have been carried out to

verify the feasibility of the solutions generated by SPSO for UAV operation in

practical scenarios. Our contributions in this study therefore are fourfold: (i)

development of a new objective function that converts the path planning into an100

optimization problem incorporating optimal criteria and constraints associated

with the path length, threat, turn angle, climb/dive angle, and flight height

for the safe and efficient operation of UAVs; (ii) proposal of a new PSO algo-

rithm named spherical vector-based PSO (SPSO) that is capable of searching

the configuration space for the global optimal solution; (iii) benchmarking the105

performance of PSO variants including PSO, θ-PSO, QPSO and SPSO for UAV

path planning; (iv) validating the generated paths for real UAV operations.

The rest of this paper is structured as follows. Section 2 introduces the steps

to formulate the objective function. Section 3 describes PSO and its variants.

Section 4 presents SPSO and its implementation for solving the path planning110

problem. Section 5 provides comparison and experiment results. Finally, a

conclusion is drawn to end our paper.

2. Problem Formulation

In this study, the path planning problem is formulated via a cost function

that incorporates optimal criteria and UAV constraints described as follows.115

2.1. Path optimality

For efficient operation of UAVs, a planned path needs to be optimal in

a certain criterion depending on the application. With our focus on aerial
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photography, mapping, and surface inspection, we choose to minimize the path

length. Since the UAV is controlled via a ground control station (GCS), a flight120

path Xi is represented as a list of n waypoints that the UAV needs to fly through.

Each waypoint corresponds to a path node in the search map with coordinates

Pij = (xij , yij , zij). By denoting the Euclidean distance between two nodes as∥∥∥−−−−−−→PijPi,j+1

∥∥∥, the cost F1 associated to the path length can be computed as:

F1(Xi) =

n−1∑
j=1

∥∥∥−−−−−−→PijPi,j+1

∥∥∥ . (1)

2.2. Safety and feasibility constraints125

Apart from optimality, the planned path needs to ensure the safe operation

of the UAV by guiding it through threats that are typically caused by obstacles

appearing in the operation space. Let K be the set of all threats, each is assumed

to be prescribed in a cylinder with its projection having the center coordinate

Ck and radius Rk as shown in Fig.1. For a given path segment
∥∥∥−−−−−−→PijPi,j+1

∥∥∥, the130

associated threat cost is proportional to its distance, dk, to Ck. By considering

the diameter, D, of the UAV and the danger distance, S, to the collision zone,

the threat cost F2 is computed across waypoints Pij for obstacle set K as follows:

F2(Xi) =
n−1∑
j=1

K∑
k=1

Tk(
−−−−−−→
PijPi,j+1),

Tk(
−−−−−−→
PijPi,j+1) =


0, if dk > S +D +Rk

(S +D +Rk)− dk, if D +Rk < dk ≤ S +D +Rk

∞, if dk ≤ D +Rk.

(2)

Note that while D is determined by the UAV size, S depends on several fac-

tors such as the application, operating environment and positioning accuracy.135

For instance, S can be chosen from tens of meters in static environments with

good GPS signal to hundreds of meters for environments with moving objects

and weak GPS signal for positioning.
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Figure 1: Determination of the threat cost.

During operation, the flying altitude is often constrained between the two

given extrema, the minimum and maximum heights. For example with sur-

veying and search applications, it is required the visual data to be collected

by the camera at a specific resolution and field of view and thus constrain the

flying altitude. Let the minimum and maximum heights to be hmin and hmax

respectively. The altitude cost associated to a waypoint Pij is computed as:

Hij =


|hij −

(hmax + hmin)

2
|, if hmin ≤ hij ≤ hmax

∞, otherwise,

(3)

where hij denotes the flight height with respect to the ground as illustrated in

Fig.2. It can be seen that Hij maintains the average height and penalises the140

out-of-range values. Summing Hij for all waypoints gives the altitude cost:

F3(Xi) =

n∑
j=1

Hij . (4)

The smooth cost evaluates the turning and climbing rates which are essential

to generate feasible paths. As shown in Fig.3, the turning angle, φij , is the angle

between two consecutive path segments,
−−−−−−→
P ′ijP

′
i,j+1 and

−−−−−−−−→
P ′i,j+1P

′
i,j+2, projected

on the horizontal plane Oxy. Let
−→
k be the unit vector in the direction of the z145

axis, the projected vector can be calculated as:

−−−−−−→
P ′ijP

′
i,j+1 =

−→
k × (

−−−−−−→
PijPi,j+1 ×

−→
k ), (5)
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Figure 2: Altitude cost explanation.

Hence, the turning angle is computed as:

φij = arctan


∥∥∥−−−−−−→P ′ijP

′
i,j+1 ×

−−−−−−−−→
P ′i,j+1P

′
i,j+2

∥∥∥
−−−−−−→
P ′ijP

′
i,j+1.

−−−−−−−−→
P ′i,j+1P

′
i,j+2

 . (6)

The climbing angle, ψij , is the angle between the path segment
−−−−−−→
PijPi,j+1 and

its projection
−−−−−−→
P ′ijP

′
i,j+1 onto the horizontal plane. It is given by:

ψij = arctan

 zi,j+1 − zij∥∥∥−−−−−−→P ′ijP
′
i,j+1

∥∥∥
 . (7)

The smooth cost is then computed as:150

F4(Xi) = a1

n−2∑
j=1

φij + a2

n−1∑
j=1

| ψij − ψi,j−1 |, (8)

where a1 and a2 are respectively the penalty coefficients of the turning and

climbing angles.

2.3. Overall cost function

By considering the optimality, safety and feasibility constraints associated

with a path Xi, the overall cost function can be defined of the form:155

F (Xi) =

4∑
k=1

bkFk(Xi), (9)

where bk is the weight coefficient, and F1(Xi) to F4(Xi) are respectively the

costs associated to the path length (1), threat (2), smoothness (4), and flight

height (8). The decision variable is Xi that includes of list of n waypoints

8
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Figure 3: Turning and climbing angle calculation.

Pij = (xij , yij , zij) so that Pij ∈ O, where O is the operating space of UAVs.

Given those definitions, the cost function F is fully determined and can be used160

as the input for the path planning process.

3. Related PSO algorithms for UAV path planning

With the cost function F defined in (9), the path planning becomes an

optimization problem in which the aim is to find the path X∗ that minimizes F .

As F in general is a complicated multimodal function, solving it using classic165

methods such as hill climbing is not feasible due to local maxima. Instead,

heuristic and metaheuristic methods are often used to provide quality solutions

in a reasonable amount of time. This section describes the classic PSO and

its variants including θ-PSO and QPSO which are among the most popular

metaheuristic algorithms used for UAV path planning.170

3.1. Particle swarm optimization

PSO is a stochastic optimization method working in light of swarm intel-

ligence. Each particle i in the swarm is characterized by its position, Xi =

9

Admin
Highlight

Admin
Cross-Out

Admin
Inserted Text
such



(xi1, xi2, ..., xiN ), and velocity, Vi = (vi1, vi2, ..., viN ), in the search space ofN di-

mensions. It searches for the optimal solution by compromising between its own175

experience reflected via the local best position, Li = (li1, li2, ..., liN ), and the

swarm experience reflected via the global best position, Lg = (Lg1, Lg2, ..., LgN ).

For a swarm of M particles, the compromise is carried out by the following equa-

tions:

vk+1
ij ← wkvkij + η1r1j(l

k
ij − xkij) + η2r2j(l

k
gj − xkij) (10)

xk+1
ij ← xkij + vk+1

ij , (i = 1, 2, ...,M ; j = 1, 2, ..., N), (11)

where k represents the kth generation, xij ∈ [xmin, xmax] and vij ∈ [vmin, vmax]180

are respectively the jth dimension of the ith particle’s position and velocity,

wk is the inertial weight, η1 and η2 are respectively the cognitive and social

coefficients, and r1j and r2j are two random samples within [0, 1] drawn from a

uniform probability distribution. The values of η1 and η2 determine the moving

tendency of particles toward the local best and global best position. The weight185

wk, on the other hand, represents the compromise between the exploration

(global search) and exploitation (local search). It is often chosen to be smaller

over generations to increase the exploitation when the swarm is getting closer

to the optimal solution.

When using PSO for UAV path planning, the position of each particle en-190

codes a candidate path. Hence, the swarm is equivalent to a matrix of M paths,

X = [X1, X2, ..., XM ]T , each includes a list of N waypoints of the form:

Xi = (xi1, yi1, zi1, xi2, yi2, zi2, ..., xi,N , yi,N , zi,N ). (12)

As the start and end points of all paths are fixed, they are not included in

the particle position. A path of n waypoints is thus represented by a particle

of dimension 3N , N = n − 2. During the optimization process, the particles195

evolve according to (15) and (16) based on the evaluation in (9) to converge to

the best path.
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3.2. Phase angle-encoded particle swarm optimization

θ-PSO uses angles instead of Cartesian coordinates to represent particle

positions [39, 40, 30]. In θ-PSO, a path of n waypoints is described by a vector200

of 3N angles:

Θi = (θi1, ..., θiN , θi,N+1, ..., θi,2N , θi,2N+1, ..., θi,3N ), (13)

where N = n − 2 and θij is within the interval [−π/2, π/2]. The velocity

associated to each particle is then expressed by angle increments as:

∆Θi = (∆θi1, ...,∆θiN ,∆θi,N+1, ...,∆θi,2N ,∆θi,2N+1, ...,∆θi,3N ). (14)

Hence, the update equations for θ-PSO are given by:

∆θk+1
ij ← wk∆θkij + η1r1j(γ

k
ij − θkij) + η2r2j(γ

k
gj − θkij) (15)

θk+1
ij ← θkij + ∆θk+1

ij , (i = 1, 2, ...,M ; j = 1, 2, ..., 3N), (16)

where Γi = [γi1, γi2, ..., γi,3N ] and Γg = [γg1, γg2, ..., γg,3N ] are respectively the205

phase angles of the local and global best positions of particle i.

To evaluate the fitness, a monotonic function is used to map particles from

the angular space to the coordinate space. Let the monotonic function be f :

[−π/2, π/2] → [xmin, xmax], there is one and only one position Xi mapped by

f corresponding to any given position Θi. That position is given by [39]:210 
xij = f(θij),

f(θij) =
1

2
[(xmax − xmin)sin(θij) + xmax + xmin].

(17)

It can be seen from (17) that θ-PSO introduces nonlinearity to the candi-

date paths by adding more waypoints to their middle section and thus aims to

improve the search capacity in that area of the operating environment.

3.3. Quantum-behaved particle swarm optimization

QPSO assumes particles have a quantum state described by a wavefunction215

ψ(x, t) and is attracted by a Delta potential well [41]. The probability that

11



a particle appears at position x is then described via its probability density

function |ψ(x, t)|2, which can be derived from the time-dependent Schrödinger

equation. By using the Monte Carlo simulation method, that position is updated

by the following equation:220

xk+1
ij = pkij ± 0.5Lk

ij ln(1/r), (18)

where r ∈ (0, 1) is a random number drawn from a uniform probability distri-

bution and pkij is a local attractor computed as:

pkij = alkij + (1− a)lkgj , (19)

where a ∈ (0, 1) is a random number of uniform distribution. Lk
ij is the param-

eter computed by:

Lk
ij = 2β|mbestkj − xkij |, (20)

mbestkj =

M∑
i=1

lkij/M, (21)

where mbest is the mean best position of the swarm and β is the contraction-

expansion coefficient. Noting that particles in QPSO do not maintain the ve-

locity component but only the position.225

In path planning, QPSO represents a flight path as a set of N waypoints

similar to PSO. Those waypoints are encoded through the position of particles

which is then updated by 18.

4. Spherical vector-based PSO for UAV path planning

Exploiting maneuver characteristics of UAVs, we propose in this study the230

SPSO algorithm and provide its implementation to solve the path planning

problem.

4.1. Spherical vector-based PSO algorithm

SPSO encodes each path as a set of vectors, each describes the movement of

the UAV from one waypoint to another. Those vectors are represented in the235
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spherical coordinate system with three components including the magnitude

ρ ∈ (0, path length), elevation angle ψ ∈ (−π/2, π/2), and azimuth angle φ ∈

(−π, π). A flight path Ωi with N nodes is then represented by a hyper spherical

vector of 3N dimensions:

Ωi = (ρi1, ψi1, φi1, ρi2, ψi2, φi2, ..., ρiN , ψiN , φiN ), N = n− 2. (22)

By describing the position of a particle as Ωi, the velocity associated to that240

particle is described by an incremental vector:

∆Ωi = (∆ρi1,∆ψi1,∆φi1,∆ρi2,∆ψi2,∆φi2, ...,∆ρiN ,∆ψiN ,∆φiN ). (23)

Denoting spherical vector (ρij , ψij , φij) as uij and velocity (∆ρij ,∆ψij ,∆φij)

as ∆uij , the update equations for SPSO are given by:

∆uk+1
ij ← wk∆ukij + η1r1j(q

k
ij − ukij) + η2r2j(q

k
gj − ukij) (24)

uk+1
ij ← ukij + ∆uk+1

ij , (i = 1, 2, ...,M ; j = 1, 2, ..., N), (25)

where Qi = (qi1, qi2, ..., qi,N ) and Qg = (qg1, qg2, ..., qg,N ) are respectively the

sets of vectors representing the local and global best positions of particle i.245

In order to determine Qi and Qg, it is required to map a vector-based flight

path Ωi to a direct path Xi so that the associated cost can be evaluated. The

mapping of vector uij = (ρij , ψij , φij) ∈ Ωi to waypoint Pij = (xij , yij , zij) ∈ Xi

can be conducted as:

xij = xi,j−1 + ρijsinψijcosφij , (26)

yij = yi,j−1 + ρijsinψijsinφij , (27)

zij = zi,j−1 + ρijcosψij . (28)

Denoting the map as ξ : Ω → X, the local and global best positions can be250

computed as:

Qi =

 Ωi if F (ξ(Ωi)) < F (ξ(Qi−1))

Qi−1 otherwise
, (29)

13



Qg = argmin
Qi

F (ξ(Qi)). (30)

The rationale for our use of the spherical vector in SPSO is the correspon-

dence between the magnitude, elevation and azimuth components of the vector

with speed, turning angle and climbing angle of the UAV. As a result, the

particles of SPSO search for solutions in the configuration space instead of the255

Cartesian space and hence have a higher probability of finding quality solutions.

More importantly, constraints relating to the turning and climbing angles can

be directly implemented via the elevation and azimuth angles of the spherical

vector so that the search space can be significantly reduced. In some scenarios,

for example when the UAV flies at a constant speed, the magnitude can be fixed260

to further reduce the search space for better search capacity.

4.2. Implementation of SPSO for UAV path planning

The pseudo code of SPSO is shown in Fig.1. It shares the same structure as

other PSO variants including parameter initialization, particle generation and

swarm evolution, but is different in the representation of particles’ position,265

velocity and update equations. Therefore, parallelism can be used as in [1] to

speed up the calculation process. During algorithm execution, infeasible solu-

tions appeared will be assigned an infinite cost value so that they will not be

chosen as final output solutions.

5. Results270

To evaluate the performance of SPSO, we have conducted a number of com-

parisons and experiments with details as follows.

5.1. Scenario setup

The scenarios used for evaluation are based on real digital elevation model

(DEM) maps derived from LiDAR sensors [43]. Two areas of Christmas Island275

in Australia with different terrain structures are selected and then augmented

to generate eight benchmarking scenarios as shown in Fig.4 and Fig. 5. In those
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/* Initialization: */

1 Get search map and initial path planning information ;

2 Set swarm parameters w, η1, η2, swarm size;

3 foreach particle i in swarm do

4 Create a random path Ω0
i ;

5 Assign Ω0
i to particle’s position;

6 Compute fitness F (ξ(Ωi)) of the particle;

7 Set local best Qi of the particle to its fitness;

8 end

9 Set global best Qg to the best fit particle;

/* Evolutions: */

10 for k ← 1 to max generation do

11 foreach particle i in swarm do

12 Compute velocity ∆Ωk
i ; /* Eq.24 */

13 Compute new position Ωk
i ; /* Eq.25 */

14 Map Ωk
i to Xk

i in Cartesian space; /* Eq.26 - 28 */

15 Update fitness F (Xk
i ); /* Eq.9 */

16 Update local best Qi; /* Eq.29 */

17 end

18 Update global best Qg; /* Eq.30 */

19 Save best position Ω∗ associated with Qg ; /* the best path */

20 end

Algorithm 1: Pseudo code of SPSO for UAV path planning.
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scenarios, the number and location of threats, represented as red cylinders, are

chosen at different levels of complexity.

For comparisons, all PSO variants are implemented with the same set of280

parameters: w = 1 with the damping rate of 0.98, η1 = 1.5 and η2 = 1.5.

The swarm size is chosen to be 500 particles and the number of iterations is

200. The number of waypoints are respectively selected as n = 12 and n = 22

corresponding to 10 and 20 line segments. In each comparison, all algorithms

are run 10 times to find the average and standard deviation values. In addi-285

tion, a statistical metric named paired sample t-test [44] is used to evaluate the

significance of mean differences between SPSO and other PSO algorithms. The

notation D+ implies that the mean value of SPSO is statistically better than the

comparing PSO, D− implies that it is worse than the comparing PSO, whereas

N means that the difference is insignificant and NA stands for “Not Applica-290

ble”. The level of confidence in t-test evaluations is set to α = 0.05 equivalent

to 95%.

5.2. Comparison between PSO algorithms

The top view of the resultant paths for n = 12 generated by PSO algorithms

are shown in Fig.4 and Fig.5. It can be seen that all algorithms are able to295

generate feasible paths that fulfill the requirements on the path length, threat,

turn angle, climb/dive angle and height. Their optimality, however, varies with

scenarios. For simple scenarios 1, 2, 5, and 6, all algorithms converge well

with slight differences in their fitness values. The t-test values in Table 1 also

show that some differences in scenarios 1 and 5 are statistically insignificant.300

For more complicated scenarios 3, 4, 7, and 8, their performance however is

much different. SPSO is able to obtain near-optimal solutions, whereas PSO

and θ-PSO only converge to relatively good solutions. QPSO is not able to

find quality solutions. This result can be further confirmed by Table 1 which

presents the average, standard deviation, and paired sample t-test of the fitness305

values. It shows that SPSO statistically achieves the best fitness with D+ t-test

in most scenarios while QPSO is only good in simple scenarios. PSO and θ-
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(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

Figure 4: Top view of the paths generated by the PSO variants for scenarios 1 to 4
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(a) Scenario 5 (b) Scenario 6

(c) Scenario 7 (d) Scenario 8

Figure 5: Top view of the paths generated by the PSO variants for scenarios 5 to 8
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Table 1: Fitness values of the paths generated by the PSO variants with 10 line segments

(n = 12)

Scenario SPSO PSO θ-PSO QPSO

- Mean Std t-test Mean Std t-test Mean Std t-test Mean Std t-test

1 4683 104 NA 4683 98 N 4643 50 N 4826 162 D+

2 4699 94 NA 5059 41 D+ 5006 69 D+ 5958 220 D+

3 5486 38 NA 5761 20 D+ 5766 32 D+ 7470 462 D+

4 4994 28 NA 5781 56 D+ 5794 46 D+ 7120 761 D+

5 5441 27 NA 5476 37 N 5518 37 D+ 5508 33 D+

6 5362 59 NA 5514 67 D+ 5486 45 D+ 5474 21 D+

7 5778 94 NA 5838 39 D+ 5800 43 N 5965 193 D+

8 6006 63 NA 6396 29 D+ 6368 46 D+ 8093 259 D+

PSO introduce relatively good results in all scenarios with stable convergence

reflected via small deviations.

Figure 6 provides a closer look at the behavior of the variants by showing310

their best fitness over iterations. It is recognizable that all variants converge in a

similar fashion except QPSO. It is due to the fact that QPSO does not originate

from the interaction of biological swarms but the transition in quantum states

of particles. On another note, SPSO presents the best performance as it has a

direct mapping between the properties of particles and UAV parameters to gain315

advantages in exploring the search space. Figure 7 shows the 3D and side views

of the paths obtained by SPSO for scenarios 4 and 8, the two most challenging

scenarios. It can be seen that the paths are smooth and valid with the flight

height maintained properly with respect to the terrain.

To compare the scalability of PSO variants, we increased the number of320

waypoints to n = 22 in another comparison. The result presented in Table 2

shows that QPSO does not perform well in most scenarios, especially scenarios

3, 4 and 8 when its particles could not evolve to find better solutions. PSO

and θ-PSO perform properly for simple scenarios but for complicated scenarios

19
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Table 2: Fitness values of the paths generated by the PSO variants with 20 line segments

(n = 22)

Scenario SPSO PSO θ-PSO QPSO

- Mean Std t-test Mean Std t-test Mean Std t-test Mean Std t-test

1 4757 91 NA 4821 54 N 4827 63 N 5246 236 D+

2 4906 141 NA 4900 162 N 4903 136 N 5379 201 D+

3 6202 172 NA 6521 291 D+ 6260 355 N 16926 0 D+

4 5373 179 NA 6146 335 D+ 6201 451 D+ 15406 354 D+

5 5806 222 NA 6188 133 D+ 6330 237 D+ 6572 320 D+

6 5718 130 NA 5844 275 D+ 5733 173 N 6049 68 D+

7 5951 132 NA 5992 197 N 6338 363 D+ 7143 372 D+

8 6152 111 NA 7016 281 D+ 7134 782 D+ 13828 0 D+

like 4, 5, and 8, the quality of solutions is degraded due to their limitation in325

exploring large search space. SPSO, on the other hand, performs well in most

scenarios thanks to the spherical vector-based encoding mechanism that allows

its particles to search in the configuration space.

5.3. Comparison with other metaheuristic algorithms

To further evaluate the performance of SPSO, we have compared its perfor-330

mance with other state-of-the-art metaheuristic algorithms including the genetic

algorithm (GA), artificial bee colony (ABC), and differential evolution (DE). GA

is implemented as in [25] with three mutation operations: add a node, delete

a node and merge two nodes. ABC is implemented in its standard form [45].

DE is also implemented in its standard form [46], but with some changes in the335

swarm size and iterations due to its characteristic which performs better over a

large number of iterations [47]. Specifically, DE is implemented with the swarm

size of 100 and the iteration number of 1000 to ensure the algorithm convergence

at the same number of fitness evaluations as with other algorithms.

Table 3 shows the fitness results. It can be seen that SPSO outperforms340

other algorithms with increasing margins and D+ t-test for complicated scenar-
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(h) Scenario 8

Figure 6: Best fitness values over iterations of the PSO algorithms
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(a) Scenario 4: 3D view

(b) Scenario 8: 3D view

(c) Scenario 4: Side view (d) Scenario 8: Side view

Figure 7: The planned paths generated by SPSO for scenarios 4 and 8

Table 3: Fitness values of the paths generated by the SPSO and other metaheuristic

algorithms with 10 line segments (n = 12)

Scenario SPSO GA DE ABC

- Mean Std t-test Mean Std t-test Mean Std t-test Mean Std t-test

1 4683 104 NA 4782 145 N 5014 6 D+ 4822 49 D+

2 4699 94 NA 5357 113 D+ 5040 14 D+ 5020 56 D+

3 5486 38 NA 6761 94 D+ 5716 2 D+ 5882 266 D+

4 4994 28 NA 6325 224 D+ 5741 4 D+ 5325 118 D+

5 5441 27 NA 5676 117 D+ 5482 9 D+ 5608 34 D+

6 5362 59 NA 5424 81 D+ 5665 36 D+ 5676 41 D+

7 5778 94 NA 5919 75 D+ 5633 17 D− 5976 75 D+

8 6006 63 NA 7274 554 D+ 6290 72 D+ 6719 90 D+
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ios 3, 4, 7 and 8. However, DE performs well for complicated scenarios and has

a stable convergence with small deviations due to its exploration capacity over

a large number of iterations. ABC performs relatively well while GA shows the

least stable performance. The reason for the unstable performance of GA lies345

in its operator ‘delete a node’. This operator removes waypoints from a path to

reduce the search dimensions so that the probability of finding quality solutions

is increased. That operator, however, also reduces the resolution of candidate

paths causing them insufficient to adapt to complex threats as with scenarios

3, 4, and 8.350

Figures 8 and 9 provide the top view of the paths generated. It can be

seen that all algorithms are able to generate collision free paths. However,

SPSO introduces the smoothest and shortest paths in most scenarios. DE does

not introduce the best paths for simple scenarios but provides near-optimal

solutions for the complicated ones. It reflects the nature of DE that carries355

out exploration via mutation and selection to generate quality solutions but is

limited in exploitation to find the optimal solutions. Similarly, ABC tends to

generate average paths due to the compromise among different types of bees.

Finally, GA generates paths that consist of only several line segments and sharp

turns as the result of node deletion.360

Figure 10 shows the best fitness over iterations where the values obtained

by DE is scaled to 200 iterations for the sake of comparison. It can be seen

that GA converges quickly to premature solutions due to search dimension re-

duction. ABC presents slow convergence because of its weakness in exploration.

DE has steady convergence which shows the efficiency of its differential opera-365

tor. Finally, SPSO has sufficiently fast convergence due to the balance between

exploitation and exploration implemented via the social and coherence coeffi-

cients.

5.4. Experimental verification

We have conducted several experiments to evaluate the validity of the gener-370

ated paths for real UAV operations. The UAV used is a 3DR Solo drone that can

23



(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

Figure 8: Top view of the paths generated by SPSO and other metaheuristic algorithms for

scenarios 1 to 4
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(a) Scenario 5 (b) Scenario 6

(c) Scenario 7 (d) Scenario 8

Figure 9: Top view of the paths generated by SPSO and other metaheuristic algorithms for

scenarios 5 to 8
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(h) Scenario 8

Figure 10: Best fitness values over iterations of SPSO and other metaheuristic algorithms
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(b) Experimental field with a monorail bridge

Figure 11: The drone and field used in experiments

be programmed to fly automatically via ground control station software named

Mission Planner as shown in Fig. 11a. The field used is a park in Sydney which

has a monorail bridge that the drone needs to flight through as shown in Fig.

11b. The field is augmented with threats to create two experimental scenarios.375

Scenario 1 has a flat surface with 5 threats, whereas scenario 2 has 4 threats

and includes the monorail bridge with sharp changes in height as shown in Fig.

12a and Fig. 12b. The longitude and latitude of the start and goal locations for

scenario 1 is (-33.87643,151.191778) and (-33.875711,151.192643), and scenario

2 is (-33.875849, 151.191528) and (-33.87513,151.192394) respectively. Those380

locations, together with the terrain map and flight constraints are used as in-

puts of SPSO to generate waypoints. The waypoints are then uploaded to the

drone via Mission Planner for autonomous flight.

Figure 12a shows the planned and flight paths obtained in real time from

Mission Planner for scenario 1. It can be seen that the flight path is collision free385

and overlaps well with the planned path. The flight height, which is basically

constant, also matches the planned path as shown in Fig. 12c. Similar results

have been obtained for scenario 2 as shown in Fig. 12b and Fig. 12d. Notably,

the drone can track the planned path to carry out abrupt changes in height to

fly over the monorail bridge. Besides, the good match between the planned and390

flight paths indicates not only the validity of the path planning algorithm but

also the accuracy of the positioning system implemented in the drone.
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Figure 12: Experimental flight results
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5.5. Discussion

Through comparisons and experiments, it is recognizable that SPSO is capa-

ble of generating feasible, safe and optimal paths for UAV operation. It performs395

especially well in complicated scenarios where many obstacles and threats ap-

pear reflected via its small fitness values and D+ t-test evaluations. The main

drive for that effective performance is changes in the search space, from the

Cartesian to configuration space, where quality solutions can be obtained. Be-

sides, constraints on UAV dynamics such as turning and climbing angles can400

be directly integrated into SPSO’s variables to narrow down the search space.

Nevertheless, hard constraints are being used in this study which may not be

optimal for operations in which UAV states such as speed and altitude rapidly

change over time.

In our design, the cost function is scalable in the sense that additional re-405

quirements like fuel consumption can be added as a term Fk with weight bk to

the overall cost function (9). However, choosing the right values of bk to reflect

the relationship among requirements may become complicated as the number

of requirements increases. In those situations, multi-objective optimization can

be considered to fulfill the task.410

On another note, SPSO introduces relatively fast convergence as can be seen

in Fig.6 and Fig.10 due to coherent interactions among particles. However, like

many other PSO variants, it faces the problem of premature convergence where

its particles converge to a local optimum in certain scenarios. This is the case

with scenario 7 where DE performs better than SPSO due to its exploitation415

capability obtained via mutation and recombination. It suggests that a relevant

randomization mechanism such as mutation, random walk or Lévy flight [48]

needs to be used to deal with the problem of premature convergence.

6. Conclusion

We have presented a new algorithm, SPSO, for the problem of UAV path420

planning with the focus on the safety and feasibility of the paths generated.
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The cost function is designed so that the constraints associated with optimality,

safety and feasibility are simultaneously incorporated. SPSO is developed based

on the correspondence between intrinsic motion components of the UAV and

the search space. Comparisons on eight benchmarking scenarios generated from425

DEM maps show that SPSO achieves the best quality paths in most scenarios.

PSO and θ-PSO have stable convergence whereas QPSO only performs well for

simple scenarios. Comparisons with other metaheuristic algorithms including

GA, ABC, and DE also confirm the superior performance of SPSO. Experiments

with real UAVs show the validity of the generated paths for practical operations.430

Besides, the correspondence between the particles of SPSO and UAV motion

allows the kinematic constraints of UAV to be incorporated when necessary to

further improve the path planning performance.

Our future work will focus on calculating the exact constraints on the config-

uration space to be used for SPSO based on UAVs’ dynamic model. We will also435

explore the applicability of SPSO to other optimization problems by evaluating

its performance on different benchmarking functions.
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