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Abstract— Brain-computer interfaces (BCI) allow users to 

communicate directly with external devices via their brain signals. 

Recently, BCIs, and wearable computers in particular, have been 

receiving more attention by government and industry as an 

alternative means of interacting with technology. Wearable 

computers can combine highly-immersive 

virtual/augmented/mixed reality experiences for entertainment, 

health monitoring, utilitarian purposes, and, most importantly at 

present, research. With wearable computers, researchers can 

design, simulate, and finely control experiments to examine human 

brain dynamics outside the laboratory. Yet despite the power of 

BCIs, take-up is slow. This form of interaction is unnatural to 

humans and often requires external stimuli. Further, the response 

feedback produced by the computer part of the system is nowhere 

near as quick as our brains. Hence, we undertook a review of the 

current state-of-the-art in BCI research and distilled the current 

findings into a stimulus-free BCI, called direct-sense BCIs, that 

operates directly and seamlessly from our thinking. This is a novel 

paradigm that, in the short term, could substantially improve the 

quality of a user’s experience with BCI, and, over the long term, 

lead to much more widespread take-up of BCI technology. 

 
Index Terms—BCI, EEG, ECoG, direct-sense BCI, machine 

learning 

 

I. INTRODUCTION 

RAIN-computer interfaces (BCIs) provide a channel for 

humans to interact with external artificial devices by means 

of their brain activity [1-4]. In most systems, a machine learning 

algorithm decodes electrical signals in the brain into a user’s 

intentions and then transmits a recoded “mental command” to 

the device.  

Since Vidal [5] demonstrated the very first BCI, the 

technology has been applied to a multitude of applications 

focusing on neurorehabilitation, i.e., restoring voluntary muscle 

control. However, beyond helping those who depend on 

artificial limbs and similar goals, the ability to directly 

communicate with an object outside the body has tremendous 

and far-reaching benefits. Consequently, in the nearly 50 years 

since, we have witnessed an enormous rise in BCI studies and 

a great expansion of the fields these studies concern. Most 

recently, this growth has been spurred by advances in artificial 
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intelligence, material sensor technologies, and attention to the 

user-friendliness of hardware interfaces. Such is the evolution 

of the technology that, moreover, R&D into BCI has burst 

through the ivy-covered walls of academia and into the 

laboratories of industry [6]. 

Today, we find BCI in fields and applications as diverse as 

monitoring cognitive status [7], mental spellers [8, 9], robotics 

[10], and entertainment [11]. Also, a growing number of studies 

are combining BCIs with virtual reality (VR) [12] and 

augmented reality (AR) [13]. In addition to enhancing user 

experience, VR/AR is also being explored for its ability to 

construct ecologically-valid scenarios, i.e., more naturalistic 

experiments that better mimic real-life situations [14]. 

However, despite the many and wondrous benefits of BCI, 

only a small fraction of the population accept its use. Hence, we 

undertook a comprehensive review of the main components and 

limitations of current BCI systems. From our findings, we 

devised a new type of BCI that, we believe, will appeal to more 

users. The paper concludes with some suggestions for the 

research fields most likely to directly benefits from this 

reimagined BCI. 

II. CURRENT BCI TECHNOLOGIES 

BCIs consist of several main components: a scenario design, 

modules for brain signal acquisition and feature extraction, a 

classifier, and a user feedback system (Fig. 1). 

A. Brain signal acquisition  

The various brain signal acquisition systems used with BCIs 

each rely on different types of brain activity and, accordingly, 

different measuring techniques. For example, functional 

magnetic resonance imaging (fMRI) measures change in blood 

oxygen level-dependent (BOLD) signals, 

electroencephalography (EEG) measures electric signals, and 

magnetoencephalography (MEG) uses magnetic induction to 

measure the magnetic activity in the brain. Some measurement 

techniques are invasive; others non-invasive BCI [2]. With 

invasive methods, the sensor must be placed under the scalp 

and, as a result, the spatiotemporal resolution of the 

measurements is often higher. However, for obvious reasons, 

invasive methods are off-putting and prolonged use raises some 
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safety concerns, both of which are likely to limit take-up. With 

non-invasive methods, the sensors are placed on the skin, 

making this category of signal acquisition far more popular. 

However, this comes at the cost of either spatial or temporal 

resolution (refer to Fig. 2). For example, fMRI readings have a 

high spatial resolution, but the temporal resolution is low. 

Conversely, MEGs and EEGs offer a high temporal resolution, 

but relatively poor spatial resolution. Further, non-invasive data 

is easily contaminated by environmental noise. Hence, these 

brain imaging methodologies often require participants to 

remain stationary during the experiment. Additionally, the 

signal data are normally pre-processed to remove the noise 

before sending them to a classifier for further processing. 

Another consideration with brain imaging hardware is its 

portability. fMRI and MEG machines are massively heavy, 

hugely expensive machines that take up entire rooms. EEG 

systems, however, are low-cost and portable, which has made 

them an extremely popular choice as a signal acquisition 

system.  

B. BCI paradigms  

Obviously, BCIs need brain signals to work. However, it is 

not always appropriate to leave users to ‘think their own 

thoughts’ in the hopes that the BCI will work – especially in a 

research setting. BCI paradigms are therefore used to induce 

specific brain signals for the BCI to recognize. To date, the field 

has amassed a toolbox of scenarios that are often used to 

develop BCI technologies and applications [2, 15]. And new 

purpose-built scenarios are designed all the time. Different BCI 

paradigms and stimuli can induce responses in different regions 

of the brain. Accordingly, the scenario, the feature extractor, 

and the classifier usually need to be configured as a suite and 

tailored to the purpose at hand to at least some extent. A more 

detailed explanation through some common BCI paradigms 

follows.  

P300 Event-Related Potential (P300-ERP) 

Brain responses are elicited through infrequent stimuli, such 

as the oddball paradigm, resulting in high amplitude signals 

around 300-450 milliseconds after the stimulus onset. The 

stimulus type could be visual [8], auditory [16, 17], or tactile 

[18, 19]. Visual stimuli is one of the most popular modalities in 

P300 paradigm, especially the P300-speller scenario. 

Steady-State Evoked Potential (SSEP) 

Here, brain signals are elicited through repetitive stimulus at 

a constant frequency. Similar to the P300 paradigm, the stimuli 

could be visual (steady-state visually evoked potential – 

SSVEP) [20, 21], auditory (auditory steady-state response – 

ASSR) [22], or vibrotactile (steady-state somatosensory evoked 

potential – SSSEP) [23]. The visual modality is also the 

favoured stimuli type in SSEP. In addition to a contrast-change 

generated flicker in SSVEP, motion perception can also be used 

to generate a flicker as stimulus (steady-state motion visual 

evoked potential – SSMVEP) [24-26]. 

Motor Imagery (MI) 

With MI paradigm, the participants think about moving their 

limb to either the left or the right [27] to elicit a response pattern 

in the corresponding sensorimotor region. These types of 

scenarios typically only support a few commands. 

Error-related potentials (ErrP) 

ErrP is an ERP in response to an error when interacting with 

 

Fig. 1. A typical, basic BCI system configuration. There are five main components: a scenario design based on a BCI paradigm, modules for brain signal acquisition, 

process and feature extraction, a classifier, and a user feedback system. 

  

 

Fig. 2. The strengths and weaknesses of common brain signal acquisition 
systems. 
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the BCI. Many researchers have attempted to combine ErrP 

paradigms with a closed-loop system [28], MI [29], or visual 

P300 speller [30] to improve BCI system performance. 

Continuous Cognitive State Monitoring  

Cognitive state monitoring uses the BCI to model the mental 

state of the participant. Their brain signals and other 

physiological data are recorded, and the computer uses the data 

to predict their mental state. This technique has also been 

applied to other research domains, including emotion detection 

[31, 32] and fatigue warning [33].  

The BCI paradigm can be categorized into passive, active, or 

reactive [34] (Fig. 3): 

Passive BCI directly and involuntarily decode a user’s 

cognitive state(s) without permission from an external stimulus. 

Passive BCI is normally used for monitoring mental workloads 

[35], drowsiness [36-38], and fatigue [33, 39], and for emotion 

recognition [32]. It allows users to continuously interact with 

the experiment or task either in a laboratory or in real-life 

conditions without the interruption of a stimulus. For this 

reason, passive BCI has been widely tested and used in nearer 

to real-life scenarios, such as driving [40, 41].  

Active BCI translates user intentions into computer 

command on request, i.e., the participant signals their intention 

to interact with the BCI. MI is an example of active BCI [27]. 

Lastly, in reactive BCI, brain signals are induced by external 

stimulus, and the data is segmented based on the stimulus onset. 

This is the most popular type of monitoring for researchers. The 

stimulus can be visual, auditory, or tactile with visual and 

auditory being the most widely used. 

Note that the BCI paradigm is also categorized as a hybrid BCI 

[42]. One type of hybrid BCIs fuses primary brain signals with: 

(i) other types of brain activity, such as EEG and functional 

near-infrared spectroscopy (fNIRS) [43, 44]; or (ii) other 

sensory inputs, such as eye movements [45] and heart rhythms 

[46]. The second type combines different BCI paradigms to 

enhance performance, such as combining SSVEPs with P300 

[47, 48]. 

C. Feature extraction 

The feature extractor’s job is to draw neural features out of 

the data for the classifier to use in the next step. Commonly, 

particular measurement techniques and/or modelling scenarios 

correspond to particular regions of the brain. Hence, the 

extractor will focus on these regions. For example, with SSVEP 

and a visual stimulus, neural features will be extracted from the 

occipital region; whereas with MI, features will be mainly 

extracted from the sensorimotor cortex region.  

D. Classifier 

Classification is a critical step in any BCI system. The most 

appropriate choice is largely dependent on the dimensionality 

of the required solutions and the scenario. Overall, classifiers 

are usually supervised due to their accuracy and response times. 

Linear discrimination analysis (LDA) [49], is a common choice 

with P300- and MI-based BCIs. And canonical correlation 

analysis (CCA) is often used with SSVEP. Fuzzy neural 

networks (FNNs) [50, 51] are also a well-established strategy 

for decoding the mental state of user. FNNs have been shown 

to delivery highly accurate results with various BCI paradigms, 

including reactive [52, 53], active [54], and passive BCIs [55]. 

Nevertheless, there are so many classifiers to choose from and 

so many factors that come into play in that decision, that even 

a brief review is beyond the scope of this paper. 

E. User-feedback 

User feedback comes in various forms but tends to be 

dependent on the model and application (Fig. 4). Movement is 

a common medium, e.g., the movement of robot [54, 56, 57], 

wheelchair [58-60], vehicle [61-63], or quadcopter [64] – or 

even a holographic image [65]. However, the most typical form 

is to simply provide feedback on a standard computer monitor. 

Not only are monitors ubiquitous and convenient, but the 

scenario stimulus and feedback can be provided in one place.  

Recently, however, a growing number of systems are 

providing user feedback on a wearable computer display in the 

form of VR [66, 67] or AR [13, 68, 69]. Combining BCI with a 

wearable computer provides a richer user experience, but 

further, the two systems can work to mutual benefit. While the 

BCI provides a direct communication channel to the wearable 

computer, the wearable computer brings more realism to a 

scenario than a conventional 2D monitor.  

III. LIMITATIONS OF CURRENT BCI DESIGNS 

BCI technology developed gradually, with slow and steady 

attention from government and, more recently, industry [6]. Yet 

despite the tremendous benefits BCIs might bring to our daily 

lives, they are still far from ubiquitous. There are still many 

limitations that need to be overcome before that happens. 

Among these many challenges are improvements to the 

materials sensor are made from to enhance signal acquisition, 

more accurate machine learning methods, solutions to low 

information transfer rates (ITR), and strategies or innovations 

to avoid stimulus-fatigue. These latter two issues are commonly 

felt to be today’s key barriers to further development, and the 

two problems are somewhat interlinked. To increase ITRs, 

 

Fig. 3. The typical BCI paradigms.  
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BCIs often tweak visual stimuli in ways that lead to the second 

limitation – stimulus-fatigue [9, 20, 70-74]. One final issue is 

that most BCIs only work when the subject is stationary. 

Clearly, this precludes many real-life activities and severely 

 

Fig. 4. Some example of the BCI applications that have been developed in Lin's laboratory – known as the Computational Intelligence and Brain-Computer 
Interfaces (CIBCI) lab. (a) An assistive robot system based on a SSVEP-based BCI (reactive BCI). The complete system offers five different types of assistance 

that can be requested through five flickers. (b) Another type of assistive robot system based on an MI-based BCI. In this system, the participant has two options to 

interact with the system (active BCI). (c) Mental workload estimation in more realistic situations: driving and spatial navigation. These experiments are based on 
passive BCIs which monitor the participants' cognitive loads as they perform the task. 

  



 

 

5 

limits the scope of applications BCI is useful for. These 

limitations are discussed in more detail in the next sections. 

A. Fatigue-related stimuli 

Visual stimulus is the most commonly used with high-ITR 

systems [20, 70-73], but it often results in eye fatigue for the 

participant, which means scenarios must be short. For this 

reason, there have been many attempts to make visual stimuli 

more comfortable for the participant. For example, with 

SSVEP, researchers have explored ways to develop a high-

frequency flicker, which is believed to help reduce visual 

fatigue. Typically, the target flicker frequency is between 50-

60 Hz – a level referred to as critical flicker frequency (CFF) – 

which is where the flicker becomes undiscernible to the naked 

eye. With even higher frequencies, some researchers have 

reported smaller SSVEP amplitudes. However, in an 

experiment with LED lights, Sakurada, et al. [75] were able to 

detect higher-amplitude SSVEP signals at flicker frequencies 

greater than CFF. Thus, efforts to evaluate the optimal 

stimulus/feedback device among monitors, head-mounted 

displays, and other alternatives is ongoing. 

Another attempt to ease the fatigue caused by visual stimuli 

was to introduce motion [24, 25]. In contrast to switching 

between black and white colour or twinkling, as is common 

with SSVEP, SSMVEP generates a stimulus that drifts in a non-

specific direction. This elicits brain signals in the occipital 

region. Unfortunately, SSMVEP models are still limited to a 

few commands. 

B. Low information transfer rates (ITRs) 

The communication speed of BCIs is measured in terms of 

information transfer rates (ITR) [76], calculated by the formula  

𝐵 = 𝑙𝑜𝑔2𝑁 +  𝑃 𝑙𝑜𝑔2𝑃 + (1 − 𝑃)𝑙𝑜𝑔2
1−𝑃

𝑁−1
             (1) 

where N is the number of targets, and P is the probability of 

hitting a target. 

 Other metrics for measuring BCI performance have been 

proposed, but ITR is by far the most widely used. These 

alternatives include word symbol rate (WSR) [16], practical bit 

rate (PBR) [77], characters per minute (CPM) [78], output 

characters per minute (OCM) [79], mutual information [80]. 

 The two main methods of increasing an ITR are either to 

increase the number of commands or to increase the accuracy 

of classifications for the brain signals. However, even with 

speed improvements, the current rates do not meet the standards 

required for a BCI to become a part of one’s daily life. The BCI 

with highest reported ITR can reach up to 325.33 ± 38.17 bits 

per minute [70]. However, their scenario decoded single 

character per time, which is not like our daily communication – 

by full sentences. Furthermore, extending these results to larger 

scales has not been successful so far. 

C. Stationary BCI 

Conventionally, BCI studies are performed in a laboratory 

with subjects who participate in a scenario while maintaining a 

stationary position. Introducing BCI into real-life activities 

presents huge challenges. First, real-life situations are more 

complex than the relatively controlled environment of a lab, 

and, second, as previously mentioned, most non-invasive 

systems are highly sensitive to noise and not clever enough to 

distinguish between their human host and, say, a radio. To 

overcome these limitations, Gramann et al. [81] developed a 

mobile brain/body imaging (MoBI) system. This advancement 

sparked a host of studies in cognitive neuroscience on human 

brain dynamics in ambulatory conditions [see, e.g., [81]. Yet, 

the majority of MoBI studies are still heavily focused on offline 

analysis. Most of the benefits MoBI promises in bringing BCI 

closer to real-life conditions are yet to be realized. 

IV. DIRECT-SENSE BCIS  

BCIs, which allow the brain to collaborate with a device and 

interact directly with the environment, are widely considered to 

be a "disruptive technology". This is certainly so for the next-

generation of wearable human-computer interfaces (HCI), such 

as AR glasses. However, the existing BCI technology still relies 

on stimuli that is unnatural to humans. We do not stare at 

(flickering) lights or look at flashing photos to silently interact 

with people or things. We do not train our thoughts to move our 

left hand or blink our eyes twice to catch somebody’s attention. 

What is natural to us is to see, hear, and speak to the world. In 

the vein, electrocorticography (ECoG) signals, sensed by 

invasive intracranial measurement, can decode speech [82, 83] 

and also determine the object of one’s attention in thought [84]. 

Despite the rich, informative resolution invasive sensors 

provide, today’s investigation are largely limited to animals, 

such as pigs [85], rodents [86], and monkeys [84]. And, even 

though a 2-month test with pigs show the latest technology in 

invasive sensors from Neuralink might be safe for longer-term 

use, FDA-approved permanent human implants are likely 

decades away. Moreover, invasive BCI is thought by most to be 

the stuff of dystopian science fiction, not a trendy-and-oh-so-

useful fashion accessory, and overcoming these preconceptions 

will not be easy or quick. For the foreseeable future, non-

invasive sensors provide the only practical opportunity for 

investigating cognitive processes in the brain.  

That said, non-invasive sensors can only detect cortical 

activity from large populations of nearby synchronized 

neurons. Therefore, despite gradual advancements in non-

invasive sensors over the last decade, most BCI applications 

still rely heavily on external stimulus to induce neural activity. 

The choice of stimulus type depends on the scenario, but 

whether visual or auditory, stimulus-related fatigue or a low 

ITR is all but unavoidable. In addition, trials generally need to 

be repeated many times to ensure a high signal-to-noise ratio 

(SNR). These drawbacks mean BCI applications are still a long 

way from finding their way into our daily lives.  

The development of technology that allows users to 

communicate without audible speech has been an active area 

investigation, with several modalities along the lines of 

movement emerging from this research – for example, 

spellers[87], SSVEPs [88], and MI-based BCIs [89]. These 

interfaces have taken numerous forms to provide a more 

naturalistic, language-based mode of communication, including 

word recognition via magnetic implants and sensors [90]. 

However, approaches such as these require active motor skills; 

they are not movement-independent. Moreover, they are not a 

particularly natural way of communicating. A more natural 

approach is to capture and decode the neural signals that 

directly correspond to speech production [91-95], i.e., to use 

‘the voice in our head’. Such systems not only have great 
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potential to transform the lives of patients with severe motor 

dysfunction, they also provide great opportunities to unveil how 

the brain expresses human intention.  

A new system being developed in the laboratory of Chang 

[83] indicates that it is possible to create a synthesized version 

of a person's voice that can be controlled by activity in the 

speech centre of the brain. Their demonstration showcased the 

BCI’s ability to generate entire spoken sentences based on an 

individual’s brain activity. Unfortunately, the system currently 

only operates off multi-channel intracranial EEG recordings 

and is limited to preparing patients for epilepsy diagnosis. 

Nevertheless, the knowledge and results gleaned from their 

research are still incredibly valuable in the pursuit of EEG-

based direct-speech BCIs. 

In this article, we foresee a next-generation solution in the 

field of BCI technology called direct-sense BCI (DS-BCI) that 

can seamlessly decode the brain signals linked to our natural 

senses without additional stimulus – speech and vision to begin 

with – in two separate systems called direct-speech BCI and 

direct-sight BCI, respectively. In the sections that follow, we 

first review the current literature on direct speech/direct sight, 

and then discuss our proposals for further development. 

V. DIRECT-SPEECH BCIS 

The ultimate goal of the direct-speech BCI is to translate silent 

speech from neural signals into system commands. This 

approach not only provides an alternative channel of interaction 

with BCIs for healthy users, it could also be an important 

assistive tool for people who are not able to speak.  

As mentioned, there are currently ECoG-based invasive 

direct-speech tools [82, 96-99] and non-invasive EEG sensors 

that can decode inner speech. 

A. Studies on invasive direct-speech BCIs 

Direct speech tools can be divided into those where the 

participants imagine speaking and where they actively speak 

without sound [82, 83, 96-100], known as imagined 

articulations [97, 99] or imagined words [98], and silent speech 

[101], respectively. 

The superior temporal gyrus (STG) in the human auditory 

region plays a vital role in understanding spoken language [82, 

102, 103]. Thus, it is in this region that we find stable data 

features for direct-speech BCIs. For example, Pasley, et al. 

[103] demonstrate STG neural activity recorded by invasive 

sensor ECoG can be directly decoded into acoustics. Further, 

its high gamma power makes it one of the more stable neural 

features for speech recognition. Moses, et al. [104] used high 

gamma powers to decode English phonemes, while Mugler, et 

al. [105] reached 63% accuracy when classifying a single 

phoneme. Recognition accuracy can get higher still when 

gamma power is combined with lower frequency power [106].  

The sensorimotor has also been reported as providing good 

signals for decoding intended speech. Studies have reported 

high classification accuracy with anywhere from 2 up to 39 

classes. Exact statistics include 70% for 2 classes [107], 73% 

for 3 classes [108], 41-45% for 4 classes [98, 105], 20% for 38 

classes [109], and 37% for 39 classes [110].  

All these studies, however, are limited to speech 

classification, and the results are highly dependent on the 

segment length of the neural data. Therefore, these solutions 

only work with small vocabularies, and the potential to extend 

their capabilities to a larger vocabulary size might be limited.  

It is also unclear as to whether these techniques will ever be 

able to reach normal communication speeds. To date, only 

Anumanchipalli et al.’s [61] strategy of combining neural data 

from both the STG and the sensorimotor region has achieved 

high communication speeds. This approach fuses neural signals 

from vocal track movements during acoustic production to 

decode full spoken sentences. Although variations in sensor 

locations, patient status, and other factors make it is difficult to 

directly compare the different invasive systems, the ability to 

decode an entire sentence from neural activity in [83] brings 

hope to developing a non-invasive counterpart for use by the 

wider population. 

B. Studies on non-invasive direct-speech BCIs 

As a non-invasive measurement technique, EEG-based BCI 

technology is easily deployable and can be used without the 

need for neurosurgery – a big plus. However, there is limited 

literature on classifying imagined articulations and words from 

EEG signals. Most studies to date are only at the stage of 

deciphering vowels, comparing two different phonemes [111], 

or distinguishing between several specific single words [112, 

113]. Zhao and Rudzicz [114] used a classification approach to 

identify phonological categories from EEG-based silent speech. 

In this same line, González-Castañeda et al. [115] were able to 

classify five different imagined words: up, down, left, right, and 

select. Krishna et al. [116] devised an automatic speech 

recognition system based on deep learning that could decipher 

continuous EEG signals into a limited English vocabulary of 

four words and five vowels. These results have inspired the 

team to explore an online direct-speech BCI with portability. 

As this review shows, EEG-based speech recognition is only 

at the stage of handling extremely limited vocabularies. Even a 

full sentence is still beyond the grasp of this technology, and 

recognition rates still have much room for improvement. 

Bottom line, non-invasive direct-speech BCIs are far away from 

being able to interpret naturistic silent speech. 

C. Further development for direct-speech BCIs 

The relationship between overt and covert speech has been 

debated extensively [117-119]. Although at present there is no 

definitive position on the precise nature of this relationship, it 

has been posited that covert speech is a truncated form of overt 

speech in that the stages of production are the same for both up 

until the point of vocalization [118]. Phonemic similarity has 

been observed with similar magnitudes for both overt and 

covert speech production [117]. According to Levelt [120], 

covert speech is part of an overall speech production system that 

is used for predictive simulation. These “forward models” of 

linguistic representations suggest that cover speech is produced 

in much the same way as overt speech, minus vocal articulation 

[120]. Nevertheless, there are still some significant differences 

in brain activity between the two processes. For example, fMRI 

data reveals that covert speech elicits greater activation in 
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several areas of the brain [121]. These findings require further 

evaluations with non-invasive EEG systems and overt/covert  

speech.  

Limited success aside, given the immaturity of this 

technology, arguably, the two greatest limitations at present are 

low accuracy and participant population too heavily drawn 

from patients, not normal, healthy people. Thus, future research 

into direct-speech BCIs may look to improving classifiers, and 

doing so with data recorded from healthy users. One approach 

might be to combine fruitful neural features from studies with 

invasive techniques, such as combining low and high-frequency 

powers from the auditory and sensorimotor regions [106]. 

VI. DIRECT-SIGHT BCIS 

The aim of direct-sight BCI is to momentarily detect what and 

which object in the scene is the target object in a person's mind 

based on their EEG signals as they naturally look around an 

environment. This is an innovative approach to target detection 

as current BCI methods still rely on stimulus onset to induce 

event-related potential (ERP), such as P300. For example, a 

scenario might repeatedly display a series of candidate object 

images, which is an unnatural and nonintuitive way of 

communicating.  

The ability to rapidly recognize an object visually is an 

essential skill in our daily life, which is one of the reasons why 

object recognition is an active research field in both computer 

vision and visual neuroscience studies [122, 123]. In this 

regard, these two fields have a strong bilateral relationship. The 

following review does not cover all findings in both fields, 

rather, just some key results object recognition that might prove 

useful to the future development of direct-sight BCIs. 

A. Studies on invasive direct-sight BCIs 

The ventral stream of the brain is closely related to object 

recognition [124]. While the parts of the brain at the beginning 

of the visual system, like V1, process the basic features of an 

object, such as its edges, the higher-level regions, such as 

inferior temporal cortex (IT), perform a kind of object 

recognition that associates the things we see with categories. 

The V2 and V3 regions are believed to process intermediate 

data in a transition from a shape at the low-level to follow object 

recognition at the high-level. The IT plays an important role in 

object recognition [123, 125] because it is believed that this is 

where the brain stores object representations.  

Hung, et al. [125] presented a classifier that could reach up 

to 70% accuracy in object categorization (out of 8 categories of 

objects) and around 23% for object identification (out of 77 

grey-scale objects). Kar, et al. [84] demonstrated the critical of 

recurrent neural circuitry of a brain’s ventral stream network in 

an object identification. Two adult male rhesus monkeys 

participated in the task. One had three microelectrode arrays 

implanted in the IT cortex of his left hemisphere and two in the 

right as well as one array in the V4 cortex of the right 

hemisphere. The other monkey had the same implants, just in 

reverse. The scenario was designed such that the subjects 

recognized an object one in ten times from a stimulus of 1,320 

images (132 images per object). The nine non-recognizable 

images showed the object with various odd treatments, 

including scale, eccentricity, contrast, blur, clutter, and 

occlusion. Their results show that recurrent circuits in the 

ventral stream (V1, V2, V4, and IT) are an essential part of 

identifying objects. Hence, features from the IT [125] or 

recurrent circuitry [84] of the ventral stream that are currently 

proving useful to object recognition could, with adaption, prove 

valuable to direct-sight BCI.  

B. Studies on non-invasive direct-sight BCIs 

Most humans can recognize an object within tens of 

milliseconds [126]. Thus, a fast-paced time series style of brain 

imaging like MEG or EEG might be a more suitable choice for 

direct-sight (and generic) BCIs than fMRI or fNIR.  

Kietzmann, et al. [127], for example, measured the brain 

signals of 16 right-handed participants while they identified 

objects using a high-density MEG system [127]. In the scenario 

design, there were 92 different objects across a number of 

categories, including human body parts, human faces, animal 

bodies, animal heads, natural objects, and artificial/manmade 

objects. They found that a substantial recurrent process happens 

within first 300 milliseconds after stimuli onset that involves 

both cascading forward and reversing information exchanged 

across regions in the ventral stream. Moreover, they 

demonstrated that a deep recurrent neural network performs 

better than a feed-forward deep neural network with object 

recognition. Such brain-inspired recurrent network models 

have already proven to be significantly useful to the field of 

machine vision [127, 128] and could do the same for non-

invasive direct-sight BCIs. 

Classifying image-related EEG signals is another relevant 

aspect of direct-sight BCIs. In this stream, El-Lone et al. [129] 

used a traditional classifier to distinguish between biological 

and non-biological objects from EEG signals with 82.7% 

accuracy. Parekh et al. [130] used advanced deep learning 

algorithms to enhance the performance of object recognition. 

The architecture comprised a CNN with outlier removal to 

classify 2-class EEG signals, which achieved 88.0% accuracy. 

Additionally, a set of RNN-based visual discriminative models 

were used to learn from EEG manifold data. This configuration 

reached a maximum accuracy of 82.9% on 40 classes. Parekh 

et al.’s [112] study marks the beginning of research into visual 

recognition with multiple-classes of objects from EEG signals. 

Another approach taken by two different teams of researchers, 

[131, 132], is to combine deep and ensemble learning with an 

ICA region-level bi-directional neural network. With the same 

40-class dataset, this strategy yielded a maximum accuracy of 

97.1%, showing that EEG-based object recognition is feasible. 

Clearly, much more development is required as the current 

systems are limited to working with only a few object 

categories at a time, and the tasks are both simple and designed 

to be performed under laboratory conditions. Also, recognizing 

and classifying high-resolution objects is not a quick process. 

Transplanted into the real-world, with clutter, background 

scenery, and motion, the knowledge and results gleaned so far 

might not hold. 

C. Further development of direct-sight BCIs 

To date, most neuroscience studies on object recognition are 

based on MEG or MRI signals and only involve invariant 

images (i.e., objects of the same size on a blank or simple 

background) [127, 133]. Thus, the related findings might not be 
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generated features, which can be applied for complex daily 

activity [134]. Moreover, most studies have focused on features 

drawn from signals in the ventral stream, known to be mental 

object representations from the inferior temporal (IT) region. 

However, the human brain is a comprehensive biological 

system that can provide fast, efficient, and robust solutions to 

object recognition. Therefore, examining the whole-brain 

connectivity may uncover a much more extensive underlying 

mechanism of object recognition.  

More importantly, in conventional EEG-based studies, the 

P300 paradigm has been used extensively, usually in 

conjunction with the occipital (O1, O2, Oz channels) and/or 

parietal regions (Pz channels). However, direct-sight BCIs may 

benefit substantially more if conventional features from the 

posterior region were combined with the neuroscientific 

findings from the ventral stream. 

VII. THE FEASIBILITY OF NON-INVASIVE DIRECT-SENSE BCIS 

Developing DS-BCIs will present challenges that require 

tremendous effort to overcome. The first and greatest barrier to 

general use is the issue of invasive vs. non-invasive sensors. No 

matter which technique proves to be the ultimate medium, the 

sensors will need to be safe, easy to use, reusable and affordable 

if BCIs are to develop broad appeal. It is hard to envisage 

invasive techniques winning this battle.  

Among the non-invasive brain imaging methodologies, 

M/EEG seems more suitable for real-time BCI application due 

to its high temporal resolution. However, the great concern is 

its poor spatial resolution, which might be a barrier for 

accurately detecting the source location of brain activity. 

Solutions to this problem include estimating cortical activity by 

solving the inverse problem from high-density M/EEG 

channels [127] (Fig. 5). There are many toolboxes that offer 

support for solving the inverse problem of M/EEG [135], such 

as EEGLAB [136], brainstorm [137] and MNE [138]. However, 

optimizing these algorithms for fast computation online takes 

time and effort.  

Noise is another concern. Non-invasive EEG data is quite 

sensitive and easily affected by the noise created when 

participants move or physically interact with the environment. 

Even eye-blinking can introduce noise. Therefore, almost all 

results involving non-invasive BCIs are based on stationary 

subjects. The advent of MoBI systems is helping to solve this 

problem with greater tolerance to body movements and better 

noise-cleaning techniques [139-143]. Moreover, the MoBI 

approach is demonstrating that useful neural features can be 

extracted from the occipital region of participants as they walk 

via a visual epoch potential paradigm  [144]. Even in extreme 

situations where the participant is running, the MoBI approach 

still performs quite well [145].  

The next challenge turns us to the realm of machine learning 

and the methods BCIs rely on. Studies on invasive DS-BCIs 

have yielded high decoding accuracies with recurrent neural 

networks in offline conditions. Considering the advancements 

in deep learning in recent years, neural networks, computer 

vision, and DS-BCIs may benefit substantially from new 

feature extraction, and classification methodologies. 

Developments in models may also assist with the shift from 

offline to online settings.  

Last but not least, the portability of brain imaging hardware 

will need to be tackled. EEG systems are already portable, and 

there are many models in the market, but the types with gel-

based sensors are unwieldy and can be time-consuming to put 

on. However, experiments show that some of the models with 

dry sensors can provide reliable output in a range of evaluation 

scenarios from auditory oddball [146] and MI [147], to driver 

vigilance [148] or security [149]. Thus, the high-quality dry 

sensors that are emerging may help overcome this problem 

[150-154]. In addition, there has been intensive progress in the 

development of portable brain scanners – mobile MEG [155]. 

Therefore, there is a new horizon in mobile brain imaging 

hardware to explore that will help us investigate cognitive 

performance in a much more natural setting.  

VIII. BCIS MEET WEARABLE COMPUTERS 

For our purposes, the term “wearable computers” refers to 

wearable VR and AR headsets. These devices are characterized 

 

Fig. 5. The inverse solution for brain source localization from M/EEG data. 

(a) The schematic of the forward/inverse problem in M/EEG. (b) The dipole 
fitting solution. (c) The distributed source solution.  
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by their fast computation speeds, ability to generate digital 

content and capacity to offer deeply immersive user 

experiences. Conventionally, users interact with a BCI through 

static and simple stimuli, which lacks the natural dynamism of 

real-life [14]. VR/AR could give researchers more freedom to 

simulate scenarios that are much closer to real-life tasks as 

stimuli to collect neural data [14, 156-158]. 

In addition, beyond the ability to directly decode a subject’s 

sensory information, DS-BCI frameworks might also provide 

new infrastructures for investigating the neural mechanisms of 

other cognitive processes and in more natural situations 

including those involving physical interaction and motor 

execution. As such, the combination of DS-BCIs and wearable 

computers shows great potential for leveraging user 

experiences (Fig. 6). For instance, Fig. 7 illustrates a combined 

mobile wet-sensor EEG system (the MOVE system by Brain 

Product, Munich, Germany) and the Microsoft Hololens 2, with 

an MI-based BCI experiment. This completely mobile AR-BCI 

system can examine cognitive processes in humans in various 

scenarios outside of the laboratory without conventional 

restrictions. Furthermore, configuration and setup of this 

system could be made substantially easier by using a high-

quality dry-sensor EEG (Fig. 8). 

In the following sections, we explore three potential 

applications for DS-BCIs, reviewing progress to date and 

showcasing the future promise of this technology. These 

applications are spatial navigation, inattentional blindness, and 

motion sickness. 

A. Ambulatory Spatial Navigation 

Navigation is an essential skill that humans use every day. It 

is not a perspective we really think about, but “not getting lost” 

substantially reduces stress, conserves effort and energy, and 

frees up an enormous amount of mental resources that can be 

allocated to other tasks.  

Yet most investigations of navigation in neural dynamics 

have been conducted with the participants sitting still. It is, 

therefore, reasonable to consider that the neural features we find 

in stationary examinations might not fully reflect the same 

cognitive processes we use when actually physically navigating 

in real life. Most of what we know in this regard has been 

determined from studies with animals and extrapolated to 

humans or painstakingly replicated in carefully designed 

experiments. For example, findings from a grid-cell scenario 

with rodent neural networks [159] have been replicated in 

humans through fMRI [160]. Theta modulations during 

ambulation have also been found to be consistent between the 

rodent [86] and human brain networks [161]. However, the 

 

Fig. 6. The direct-sense BCI system in real-life situation. 
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participants in these studies were patients suffering from 

epilepsy, and it is possible that their disease has an impact on 

the neural features extracted from their brain activity. Progress 

in DS-BCIs could help researchers inspect more specific neural 

during more natural forms of navigation, including with healthy 

participants. Recently, Kim and Maguire [162] published 

evidence of disorientation in neural activity from a stationary 

fMRI investigation. Greater understanding of this finding and 

adapting the insights to DS-BCIs could lead to an application 

that stops people from becoming lost. We imagine an AR 

headset that recognizes when a person is becoming disoriented 

and displays information to help them correct their route. 

B. Inattentional Blindness 

Inattentional blindness (IB) is the word for when you’re 

staring right at something and can’t even see it [163, 164]. The 

general thinking is that it occurs when one’s attention is 

preoccupied. However, at present, our knowledge of the EEG-

based biomarkers for detecting IB in real-time and the efficacy 

of these markers in mixed-reality scenarios is not well 

understood. DS-BCIs could address this gap with modelling 

that recognizes "see but not perceive" phenomena in AR 

scenarios. 

Although some studies have explored the potential 

neurophysiological correlations between IB and brain activity, 

such as visual awareness negativity and post-stimulus alpha 

suppression [165-167], no systematic research has been 

undertaken on reliable EEG-based biomarkers for building a 

model that can detect IB in real-time in natural scenarios. In a 

recent VR project, Schöne et al. [168] implemented the famous 

gorilla paradigm proposed in [163] as a real-life 3D scenario. 

They found participants were significantly more likely to notice 

the gorilla in this format. However, as yet, no study on IB 

biomarkers has adopted an immersive mixed-reality scenario 

(i.e., AR) where virtual objects will pop up in a real visual 

scene. In future, DS-BCIs could provide a framework that 

would not only make this possible but also easy. 

Further, there is limited information on how the adaptive 

presentation of virtual objects might mitigate IB or enhance 

situational awareness in AR scenarios. Morse et al. [169] 

modelled the role of transient dynamics in IB by manipulating 

relevant stimulus input features in an offline experiment design. 

Some studies on predicting the incidence of IB have 

investigated different factors that might affect and, more 

particularly, reduce its occurrence [163, 170]. However, no 

study explains how to handle unexpected objects to reduce IB 

and enhance situational awareness in real-time. A closed-loop 

DS-BCI scheme may help researchers address any subject-

dependent factors that could affect IB, as evidenced in [171]. 

Our vision is for a wearable device that can increase the user’s 

situational awareness by triggering a visual/auditory/tactile 

warning when it detects an inattentional visual object in the 

user’s field of view.  

C. Predicting motion sickness to enhance the user experience 

As the popularity of wearable computers grows, so do reports 

of motion sickness while using a head-mounted display [172-

175]. There are various reasons for why AR and VR lead to 

motion sickness, attributed to both software and hardware 

[176], but one of the major factors is content. Among the many 

efforts to prevent motion sickness in general, and with VR 

specifically, Chen, et al. [177] finds evidence for strong links to 

 

Fig. 7.  A portable AR-BCI system. (a) A participant interacts with AR content via a Microsoft Hololens 2 device and an MI-based BCI. The brain signals are 

recorded with Brain Product’s MOVE system. (b) The AR content is seen projected into the participant’s view as an overlay on top of a real table. There are three 
actions the participant can control the cartoon character to perform: waving one hand (by thinking about moving one’s left hand), clapping both hands (by thinking 

about moving one’s right hand), and dance (by thinking about moving two’s foot). The classifier output is presented as a bar plot (top right corner) of the three 

corresponding actions. 
  

 

Fig. 8.  The fully portable system that combines a dry-sensor EEG system and 

AR glasses. The participant wears a dry-sensor MINDO 8 device and 

Microsoft HoloLens 2 at the side and front views. Brain data on the 
participant’s cognitive state is collected for decoding via the portable MINDO 

8 device while they interact with the AR content via Microsoft HoloLens 2. 
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alpha power at the occipital midline from a simulated VR 

driving scenario (see also [178, 179]). Thus, brain dynamics can 

predict motion sickness. 

Again, however, most of the studies in this area involve 

stationary participants. DS-BCIs would allow researchers to 

explore the neural features associated with motion sickness in 

much greater detail, in more scenarios, and in more realistic 

scenarios. From this level of research, we could unpack stable 

and reliable motion sickness biomarkers. Ultimately, a 

wearable DS-BCI would not only benefit the end user’s 

experience of the content by preventing motion sickness, but 

also enhance the development of both technologies.  

IX. CONCLUSION 

Recent advancements in the field of BCIs have been striking. 

This article surveys these most recent contributions. What we 

find is that building a closed-loop system to translate user 

intentions into BCI instructions has moved from a distant goal 

to a feasible possibility. From a comprehensive review of the 

current state-of-play in stimulus-free, DS-BCI systems, we 

foresee a novel, wearable system that can directly decode a 

user’s sensory data. We believe the high transfer rate and 

natural interaction modes of these next-generation BCIs will 

bring this technology closer to real-life application.  
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