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I.  INTRODUCTION 
T a growth rate of 1.1% annually, the forecasted figure of 
the world population in 2050 is around 9.7 billion from 

the current 7.7  billion population [1]. Additionally, rapid 
urbanization and climate change are posing threats to arable 
land and freshwater supplies on earth. To feed this large 
population, agriculture is the fundamental sector to provide 
them with food and promote sustainable economic growth 
globally. About 97% of the water on the globe is salty, and the 
remaining 3%  is freshwater [2]. Whereas only one-third of 
freshwater is flowing into rivers, lakes, underground, and two-
thirds of the world’s freshwater exists in frozen form in polar 
ice caps and glaciers [3]. In most developing countries, 
agriculture accounts for 70% of freshwater for irrigation [4]. 
Thus, efficient use of freshwater during irrigation in the arable 
land is the most important issue to reduce the cost (e.g., 
electricity bills, time) pertain to increase the crop yields.   
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Globally, irrigation is scheduled according to crops’ visual 
inspection by farmers, and as a result, about 50% of water is 
wasted by traditional irrigation systems [5]. Controlled 
irrigation approaches such as sprinkle irrigation, drip 
irrigation, and furrow irrigation reduce the wastage of water 
volume by 30-70% [6]. However, due to the open-loop 
structure, these approaches fail to maintain accurate water 
content in the soil, which ultimately reduces the quality and 
quantity of crops because under or over-irrigation reduces the 
soil nutrients [7]. Thus, there is a need of feedback on 
integrated precision irrigation practices to efficiently utilize 
water without harming the development of crops. The 
precision irrigation takes soil moisture, climate information, 
rainfall depth, and crop type to estimate the accurate amount 
of water volume and irrigation period needed to augment crop 
yields, altogether reducing farmers’ labour costs.    

The Internet of Things (IoT) provides a platform for smart 
agriculture, wirelessly connecting several soil sensors and 
context-aware sensors, different hardware (e.g., water pumps, 
sprinklers, solar system devices, etc.), and data analytical 
applications that augment farmers’ ability to resolve 
complicated agricultural issues such as soil preparation, water 
feed estimation, yields prediction, etc. throughout the whole 
growing and harvesting cycle [8]. Several mechanistic 
irrigation scheduling approaches have been proposed using 
most leverage farming land parameters-soil moisture content 
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and climate data to estimate the volume of water at specific 
time intervals [9-10].  Owing to the open-loop structure, these 
programmed irrigation systems do not ensure optimum 
irrigation planning decisions to provide promising healthy 
crop development while maintaining the soil nutrients. 
Furthermore, these methods do not include models for 
processing the real-time dynamics of soil moisture content; 
eventually, the irrigation system is not adaptable to different 
climate conditions and regions [11].   

In recent years, data-driven machine learning (ML) models 
for irrigation [12-15] are more preferred over 
physical/mechanistic models [16-17] to predict soil moisture 
content because data-driven models require less data for 
calibration as compared to mechanistic model calibration. In 
addition, ML models process spatial and temporal data easily 
in less time and show good predictive performance over 
physical models. The ML model-based irrigation systems have 
a closed-loop controller that learns from calibration, in which 
the system itself employs feedback from the comparison 
between pre-processed data and measured real-time data. In 
[13-14], authors have suggested a fuzzy-logic decision system 
to predict the volumetric soil moisture content to estimate 
optimum water needs, whereas in [15], a neural network 
(NN)-based model has been developed for water estimation 
using a threshold value of water stress levels. The 
aforementioned traditional ML approaches show good 
performance over physical models, but not robust in different 
environmental conditions, i.e., not scalable to new regions. 
These models are limited to those regions in which the model 
is calibrated and developed using those regions’ data. Limited 
learning ability makes the traditional artificial NN lose the 
information of previously processed information and chaotic 
in complex agriculture systems over time-series dynamics. 

Recurrent Neural Network (RNN) adds another feature to 
the traditional feedforward neural network (FFNN), i.e., the 
ability to preserve information from previous time steps using 
memory cells [18]. The strong learning ability and self-looped 
memory cells of the RNN model ensure accurate prediction of 
volumetric soil moisture content. The Long Short-Term 
Memory network (LSTM) is a specially designed RNN to 
represent the nonlinear relationship between input and output 
by sequentially processing the long-time series dynamics [19]. 
In [20], the authors have proposed a model to predict soil 
moisture content using deep learning in the context of soil 
moisture active passive mission of NASA. In [21], the authors 
have proposed a hydrological LSTM model to predict 
irrigation depth based on temporal dynamics: water diversion, 
precipitation, temperature, and evaporation. The forecast of 
soil moisture content by the aforementioned models is time-
consuming because they are not self-adaptable to new regions. 
In [22], the authors have found that LSTM-based model shows 
better performance than the traditional NN model.  

Prompted by the previously mentioned challenges, in this 
paper we present a deep learning NN-based IoT-enabled 
intelligent irrigation system for precision agriculture (DLiSA). 
Further, an LSTM RNN model has been employed to predict 
volumetric soil moisture content of the next day based on the 
historical temporal dynamics of climate and soil. The 
proposed model uses a closed-loop approach, which takes 
feedback from soil sensors and climate sensors that keeps its 

functionality higher in the unpredicted climate of any region. 
The major contributions of the paper are as follows:   
1) Firstly, a system model is presented for precision irrigation 

that includes a smart irrigation model and associated 
sensing IoT network model deployed on farmland. 

2) Secondly, LSTM RNN model is proposed to predict the 
volumetric soil moisture of the next day with their one-step 
training procedure.  

3) Thirdly, the irrigation scheduler is presented to decide 
whether irrigation is required or not. Water volume is 
estimated in the case of irrigation requirement and then 
irrigation period is also evaluated using sprinkled 
deployment and its flow rate.  

4) Fourthly, LSTM RNN based intelligent irrigation 
algorithm DLiSA is presented with the analysis of time 
complexity. 

5) Finally, the proposed model is calibrated and tested using 
real time-series data of three different regions. Further, the 
performance of DLiSA is compared with state-of-the-art 
algorithms subject to the prediction of soil moisture 
content, soil water deficit and water volume irrigated over 
a month. 
We organize the remaining paper as follow: In Section II, 

related works are reviewed. In Section III, IoT enabled 
Intelligent Irrigation systems are presented.  In Section IV, the 
results of the simulation are discussed and analyzed. Finally, 
in Section V, the conclusion of the paper is presented. 

II. RELATED WORK 
In recent years, numerous researcher design ML-based 

irrigation control models for optimum use of available 
freshwater resources [12-15, 23]. In [12], the authors have 
proposed a smart irrigation decision support (SIDSS) system 
for weekly irrigation using climate and soil information. The 
SIDSS uses the Adaptive Neuro-Fuzzy Inference System 
(ANFIS) to predict the volume of water for a week. In [13], a 
control irrigation system based on the Takagi-Sugeno fuzzy 
(TSF) model has been proposed to optimize the water loss 
from hydraulic systems. Furthermore, to optimize the 
parameters of TSF, a Cuckoo search algorithm with quantum 
mechanics has been used. In [23], a linear time series model 
has been proposed to predict the soil moisture deficit at the 
root zone. However, these models are better in irrigation 
control, but combining with data analytic techniques makes 
their calibration more time-consuming and limited only to the 
specific region where these are calibrated.   

In [24], the authors have compared the performance of 
support vector machine (SVM), ANFIS, and HYDRA-2D-
based models for the prediction of soil moisture content using 
soil moisture content and metrological time-series 
information. The HYDRA-2D model outperforms other ML 
models, but none of them is suitable for a different range of 
soil moisture content and precipitation. In [25], the authors 
have claimed that the nonlinear stochastic model generates the 
prediction of soil moisture content better than least squares 
SVM models, back-propagated artificial NN, and ANFIS-
based irrigation model. A data-driven methodology using 
SVM and relevance vector machine model has been proposed 
to predict the soil moisture content of the field [26]. In [27], 
data assimilation has been coupled with SVM, and a Kalman 
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filter-based model has been proposed to predict the soil 
moisture content at different depth levels. However, these  

Fig. 1. IoT-LSTM network-based Irrigation Model 

models perform well in the prediction of soil moisture content 
but suffer from excessive time-consuming data pre-processing 
steps and reliance on user intervention.   

In [28], the authors have considered the problem of the 
deployment pattern of sensors in farmland and proposed a 

geometric-based deployment model for precision agriculture. 
Recently, the fuzzy NN models in [29, 31-33], tunnel farming 
and green roof farming are used as test cases to estimate water 
needs for different crops. As a matter of fact, these proposed 
models mostly sense the quality of raw information from 
sensors, but they fail to discuss how real-time information is 
processed accurately to predict the soil moisture content. In 
[33], LSTM rainfall-runoff model has been proposed and 
calibrated using catchment attributes (large-sample training 
dataset) and compares its performance with a soil moisture 
accounting model. Further, the learning capability of the 
LSTM model from long-term temporal dynamics proved that 
it is the most promising solution for smart irrigation. In [34], 
the authors have proposed a flexible framework for intelligent 
irrigation using IoT network. It is evident from the 
aforementioned studies that an intelligent agriculture system is 
in demand, and the timely analysis of the crop and climate is 
necessary for precision irrigation.  

III. IOT-ENABLED INTELLIGENT-IRRIGATION SYSTEM 
In this section, the design of the proposed DLiSA is 

presented in detail. 

A. System Model  
An irrigation model and sensing network model are 

presented to elaborate the architectural view of DLiSA and 
basic structural design of the IoT network for irrigation, 
respectively. 

1) Smart Irrigation Model  
The proposed irrigation model consists of four main 

components to support the end user’s (farmer’s) decision to 
irrigate the farmland with a suitable amount of water (see 
Figure 1). The first component includes a set of nodes (e.g., 
soil sensors, environmental sensor-actuator nodes, rain-gauge 
sensors). It is assumed that wireless sensor nodes are deployed 
in a planned way inside the farmland to measure air 
temperature, air humidity, soil moisture, and soil temperature. 
Actuator nodes have wired connections with water 
valves/sprinkles to control the sprinkle flow rate. Weather 
forecasting reports from a weather station or rain-gauge 
sensors are obtained as rain level are also part of the first 
component. The second component includes anchor nodes and 
servers. Anchor nodes forward received data from sensors to 
the radio gateway, which further forwards these data to a 
server for storage. The third component includes a deep 
LSTM RNN model to predict the volumetric soil moisture 
content for the next day based on the previous day’s climate 
and soil information. Furthermore, soil water retention 
capability (using a soil classifier model) and crop information 
(root growth) are sent to the irrigation scheduling system to 
estimate the volume of water need for irrigation. Additionally, 
the irrigation planner calculates the irrigation period up to that 
tenure water sprinkles are opened according to the water flow 
rate to satisfy the estimated volume of water. The output of the 
third component is sent to the authorized end-user interface 
(e.g., smartphone with irrigation application), which is part of 
the fourth component. The end-user/farmer may agree with the 
predicted irrigation plan or alter the irrigation plan that is sent 
back to the irrigation planner that regulates the irrigation 

system. The irrigation planner sends irrigation commands to 
the actuator nodes through the anchor nodes. From there, the 
commands reach the water valves/sprinklers.  

2) Sensing Network Model 
It is considered that a farmland of area Ϝ, where 𝑁𝑁 set of 

sensor nodes are located at the predefined positions 𝑝𝑝𝑛𝑛 ≜
(𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑛𝑛) ∈ Ϝ,𝑛𝑛 = 1, … .𝑁𝑁  to obtain the spatial and temporal 
information such as air temperature 𝐴𝐴Ŧ(𝑝𝑝𝑛𝑛 , 𝑡𝑡) , air humidity 
𝐴𝐴Ħ(𝑝𝑝𝑛𝑛 , 𝑡𝑡) , soil moisture 𝑆𝑆𝑀𝑀(𝑝𝑝𝑛𝑛 , 𝑡𝑡) , and soil temperature 
𝑆𝑆Ŧ(𝑝𝑝𝑛𝑛 , 𝑡𝑡), where 𝑡𝑡 is the time instant (daily basis) of the soil 
and surrounding environment. A set of anchor nodes are 
located on the farmland 𝑝𝑝𝑚𝑚 ≜ (𝑥𝑥𝑚𝑚 ,𝑦𝑦𝑚𝑚) ∈ Ϝ,𝑚𝑚 = 1, … .𝑀𝑀 , 
which provides multipath wireless connectivity to receive and 
transmit information from sensors implanted on farmland to a 
gateway. The actuator nodes are placed at the predefined 
positions 𝑝𝑝𝑎𝑎 ≜ (𝑥𝑥𝑎𝑎 ,𝑦𝑦𝑎𝑎) ∈ Ϝ,𝑎𝑎 = 1, … .𝐴𝐴   and are wirelessly 
connected to the anchor nodes and have wired connection with 
water valves/sprinklers. Additionally, the anchor nodes control 
the actuator nodes to give commands to the water 
valves/sprinklers. The  𝑎𝑎𝑡𝑡ℎ actuator node is designed to work 
in binary i.e. 𝛽𝛽(𝑎𝑎𝑡𝑡ℎ) = 0, close the water valves or 𝛽𝛽(𝑎𝑎𝑡𝑡ℎ) =
1 , open the water valves. A rain-gauge sensor node is 
deployed connecting gateways at position 𝑝𝑝𝑟𝑟  to measure the 
rain level (precipitation), and is denoted by 𝑅𝑅𝐿𝐿(𝑝𝑝𝑟𝑟 , 𝑡𝑡) where 𝑟𝑟 
is a rain-gauge sensor. Thus, the IoT network consists of 𝑁𝑁 +
𝑀𝑀 + 𝐴𝐴 + 1  sensor nodes.        

B. The Hydrological Interpretation of LSTM Network 
In this section, a hydrological aspect of the LSTM-RNN 

model is proposed to predict one-day ahead volumetric soil 
moisture content. LSTM network relates to hydrological 
aspects because the memory units of LSTM RNN process the 
hydrological data: soil moisture content, soil temperature, rain 
level, air temperature and air humidity for the prediction of 
soil moisture content of one-day ahead [21]. The LSTM-RNN 
network feed with temporal input data, 𝐼𝐼 = [𝐼𝐼1, 𝐼𝐼2 … , 𝐼𝐼𝑡𝑡. . 𝐼𝐼𝑘𝑘] 
consisting of linear independent parameters of 𝑘𝑘 consecutive 
days, and these inputs are processed side-by-side in the 
memory units of the LSTM network to predict the next day 
soil moisture content 𝑆𝑆𝑀𝑀(𝑡𝑡 + 1)  as output. In each time 
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instant (1 ≤ 𝑡𝑡 ≤ 𝑘𝑘), the current input vector containing the 
information received from the sensor nodes  i.e., 𝐼𝐼𝑡𝑡 =
[𝐴𝐴Ŧ(𝑡𝑡),𝐴𝐴Ħ(𝑡𝑡), 𝑆𝑆𝑀𝑀(𝑡𝑡),𝑆𝑆Ŧ(𝑡𝑡),𝑅𝑅𝐿𝐿(𝑡𝑡)]  is processed in each 
memory unit of the LSTM network layer.  The 𝐴𝐴Ŧ(𝑡𝑡), 𝐴𝐴Ħ(𝑡𝑡),
𝑆𝑆𝑀𝑀(𝑡𝑡),  𝑆𝑆Ŧ(𝑡𝑡), and 𝑅𝑅𝐿𝐿(𝑡𝑡)  are the average values of air 
humidity, soil moisture, soil temperature, and rain level during 
a day, respectively. For efficient learning of the proposed 
LSTM RNN model, all input data and observed output data 
are normalized, which can be done by subtracting the mean 
value of daily data and dividing the result by the standard 
deviation, where mean and standard deviation are calculated 
from the training period only for normalization purposes.   
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Fig. 2. Information flow in one LSTM unit 

A 2-layered LSTM RNN network consisting of 𝑘𝑘 memory 
units in each layer is presented. The internal operation of 
𝑡𝑡𝑡𝑡ℎ  LSTM memory unit is shown in Figure 2, which evaluates 
the mapping from the input sequence 𝐼𝐼𝑡𝑡 to output 𝑂𝑂𝑡𝑡  using the 
given Eq. (1) to Eq. (6). To control the flow of information in 
the LSTM network, each LSTM unit consists of hidden state 
vector ħ𝑡𝑡,  cell memory state vector  ℂ𝑡𝑡 , and three gates.  

The first gate resembles to forget gate; it controls which 
information of previous cell memory state ℂ𝑡𝑡−1  needs to be 
forgotten up to what degree. The output vector of the forget 
gate is given as: 

ƒ𝑡𝑡 = 𝜎𝜎�𝑤𝑤ƒ𝐼𝐼𝑡𝑡 + 𝑧𝑧ƒħ𝑡𝑡−1 + 𝑏𝑏ƒ�,   (1) 

where ƒ𝑡𝑡 ∈ {0,1} is the sigmoid function, 𝑤𝑤ƒ  and 𝑧𝑧ƒ  are the 
adjustable weight parameters, and 𝑏𝑏ƒ is the bias vector and 
altogether known as - learnable coefficients. For the first time 
instant (𝑡𝑡 = 0), ħ𝑡𝑡 and ℂ𝑡𝑡  are initialized with a vector of zero 
length defined by the user input parameters of the network. In 
the next step, the cell memory state vector is updated using 
𝑡𝑡𝑎𝑎𝑛𝑛ℎ hyperbolic tangent layer and can be expressed as: 

ℂ𝑡𝑡� = tanh(𝑤𝑤ℂ�𝐼𝐼𝑡𝑡 + 𝑧𝑧ℂ�ħ𝑡𝑡−1 + 𝑏𝑏ℂ�) ,  (2) 

where ℂ𝑡𝑡�  ∈ {−1,1}  and 𝑤𝑤ℂ� , 𝑧𝑧ℂ� ,𝑏𝑏ℂ�  are another set of 
learnable coefficients. Additionally, the output of the second 
gate (termed as input gate), controls the information to a 
certain degree that is used for updating the cell memory state 
ℂ𝑡𝑡  in the current time instant, and is given as: 

  ɨ𝑡𝑡 = 𝜎𝜎(𝑤𝑤ɨ𝐼𝐼𝑡𝑡 + 𝑧𝑧ɨħ𝑡𝑡−1 + 𝑏𝑏ɨ),    (3) 

where ɨ𝑡𝑡 ∈ {0,1} is sigmoid function, and 𝑤𝑤ɨ , 𝑧𝑧ɨ , 𝑏𝑏ɨ are another 
set of learnable coefficients for the input gate. Now, by using 
the results of Eq. (1) and Eq. (3), the cell memory state vector 
is updated as follows:  

ℂ𝑡𝑡 = ƒ𝑡𝑡ʘ ℂ𝑡𝑡−1  + ɨ𝑡𝑡ʘ ℂ𝑡𝑡� ,    (4) 

 where ʘ denotes the multiplication between the elements of 
the gate and cell memory state vector. The first term of Eq. (4) 

can be interpreted as what information of the previous cell 
memory state vector ℂ�𝑡𝑡−1  needs to be forgotten (ƒ𝑡𝑡  close to 
zero) and what information needs to be stored (ƒ𝑡𝑡  close to 
one). Similarly, the second term can be interpreted as up to 
what degree new input information needs to be stored (ɨ𝑡𝑡 close 
to one) and what information can be ignored (ɨ𝑡𝑡 close to zero).  

The final or third gate is the output gate (𝒪𝒪𝑡𝑡 ), which 
controls up to what extent information of current cell memory 
state vector are flown to next hidden state ħ𝑡𝑡, and is given as: 

𝒪𝒪𝑡𝑡 = 𝜎𝜎(𝑤𝑤𝒪𝒪𝐼𝐼𝑡𝑡 + 𝑧𝑧𝒪𝒪ħ𝑡𝑡−1 + 𝑏𝑏𝒪𝒪),   (5) 

where 𝒪𝒪𝑡𝑡  ∈ {0,1}is sigmoid function, and 𝑤𝑤𝒪𝒪  , 𝑧𝑧𝒪𝒪  , and 𝑏𝑏𝒪𝒪 are 
the set of learnable coefficients for the output gate. 
Furthermore, the new hidden state ħ𝑡𝑡 is calculated using Eq. 
(4) and Eq. (5), and it can be expressed as: 

ħ𝑡𝑡 = tanh(ℂ𝑡𝑡)ʘ 𝒪𝒪𝑡𝑡    (6) 
The last output of the LSTM layer is sent to a fully connected 
dense layer containing a single neuron, and the final predicted 
output 𝑦𝑦𝑝𝑝𝑟𝑟𝑝𝑝  is calculated as:  

𝑦𝑦𝑝𝑝𝑟𝑟𝑝𝑝 = 𝑤𝑤𝑑𝑑ħ𝑘𝑘 + 𝑏𝑏𝑑𝑑,     (7) 

where ħ𝑘𝑘 represents the output of the last LSTM layer, and 𝑤𝑤𝑑𝑑 
and 𝑏𝑏𝑑𝑑 are the weight coefficients and bias term of the fully 
connected dense layer.     

C. The Training Procedure 
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Fig.3. Illustration of one training step 

For training of the proposed LSTM RNN model, data (e.g., 
volumetric soil moisture, soil temperature, climate data (air 
temperature, air humidity), and rainfall) are obtained from the 
Indian metrological department. Once the model is trained, it 
is saved for the prediction of volumetric soil moisture content 
of one day ahead. A schematic representation to train the 
model in one iteration step using training data is shown in 
Figure 3. For training and testing purposes, the dataset is 
divided into a 70:30 ratio respectively to avoid network 
overfitting. In one iteration step, a subset of the training 
sample (mini-batch) is randomly taken from experience replay 
memory. The size of the mini-batch is a power of two (2𝑟𝑟), 
where 𝑟𝑟 is the number of samples that are taken to update the 
network learnable coefficients. The random sample in the 
training phase enhances the learnable ability of the proposed 
LSTM network. Every sample contains the input of a 
normalized dataset  𝐼𝐼𝑡𝑡  and one output 𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜  (normalized 
observed) value for the previous ‘𝑘𝑘’ days. The LSTM network 
simulates the predicted output 𝑦𝑦𝑝𝑝𝑟𝑟𝑝𝑝  on the given input and 
compares it with the observed value. The learnable 
coefficients and bias of the LSTM network are updated 
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according to the loss function, which is calculated as a root 
mean-squared error (RMSE) with respect to the combined set 
of weights  𝑊𝑊𝑡𝑡, and it is given by: 

𝐿𝐿(𝑊𝑊𝑡𝑡) = �
∑ �𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜−𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝�

2𝑝𝑝
𝑡𝑡=1

𝑟𝑟
�
0.5

  (8) 

The loss function  𝐿𝐿(𝑊𝑊𝑡𝑡)  trends to zero estimate the good 
prediction value. The LSTM network weight is updated using 
a stochastic gradient descent method, which updates the 
network parameters 2𝑟𝑟 times (number of random samples in a 
mini-batch) in one iteration.  The network weight is updated 
with learning rate 𝛼𝛼𝛼𝛼 {0,1} using the following equation:  

𝑊𝑊𝑡𝑡+1 = 𝑊𝑊𝑡𝑡 + 𝛼𝛼 𝜕𝜕𝐿𝐿(𝑊𝑊𝑡𝑡)
𝜕𝜕𝑊𝑊𝑡𝑡    (9)  

D. Irrigation Scheduling and Planning 
The irrigation scheduler and irrigation planner are proposed 

to estimate the spatial and temporal distribution of water 
needed for the farmland for the next day. 

1) Irrigation  Scheduler  

The goal of the irrigation scheduler is to maintain soil 
moisture content between lower and upper bounds. The upper 
bound denotes the maximum water retention capacity in the 
soil, and the lower bound is the threshold value of soil 
moisture content; anything below the lower bound indicates 
the need for irrigation. Triggering the irrigation plan on 
farmland depends upon the soil characteristic (i.e., water 
retention) capability. According to the predefined set of soil 
labelled (𝐶𝐶𝑣𝑣;𝑣𝑣 = 1, … . .𝑉𝑉) by the United States Department of 
Agriculture (USDA) [35], the maximum likelihood estimation 
(MLE) technique classifies the soil type as follows: 

𝐶𝐶 = ∆{ 𝑑𝑑[𝑎𝑎𝑣𝑣𝑎𝑎(𝑆𝑆𝑀𝑀(𝑡𝑡)),𝑅𝑅𝐿𝐿(𝑡𝑡)]}, 𝐶𝐶 ∈ [𝐶𝐶𝑣𝑣;𝑣𝑣 = 1, … . .𝑉𝑉], (10) 

where 𝑑𝑑 denotes the diffusion rate of average volumetric soil 
moisture and rain level. The average volumetric soil moisture 
content is defined as 𝑎𝑎𝑣𝑣𝑎𝑎(𝑆𝑆𝑀𝑀(𝑡𝑡)) = 1

𝑛𝑛
∑ 𝑆𝑆𝑀𝑀(𝑝𝑝𝑛𝑛 , 𝑡𝑡)𝑁𝑁
𝑛𝑛=1 . Once 

the soil type is classified by MLE, then maximum soil water 
retention (𝑠𝑠𝑤𝑤𝑝𝑝) capacity in the farmland is calculated as: 

 𝑠𝑠𝑚𝑚𝑎𝑎𝑚𝑚
𝑤𝑤𝑝𝑝 = 𝛿𝛿�𝐶𝐶,𝑎𝑎𝑣𝑣𝑎𝑎 𝑆𝑆𝑀𝑀(𝑡𝑡)�|𝐶𝐶=𝐶𝐶𝑣𝑣,   (11) 

where 𝛿𝛿(. ) is the empirical relation between soil type and soil 
moisture similar to that defined in paper [36]. In irrigation, the 
soil water retained at crop root 𝑠𝑠𝑡𝑡

𝑤𝑤𝑝𝑝  at a time instant  𝑡𝑡  is 
equivalent to the depth of moisture content in soil (mm of 
water), and is given by: 

𝑠𝑠𝑡𝑡
𝑤𝑤𝑝𝑝 = 1000 × 𝑆𝑆𝑀𝑀(𝑡𝑡) 𝑝𝑝𝑟𝑟 ,   (12) 

where  𝑝𝑝𝑟𝑟  defines the thickness of plant root in meters, and 𝑆𝑆𝑀𝑀 
(m3/m3) is volumetric soil content.  
The water deficit in soil (𝑚𝑚𝑚𝑚) of the farmland at time 𝑡𝑡  is 
given by:  

𝑠𝑠𝑡𝑡
𝑤𝑤𝑑𝑑 = 𝑠𝑠𝑚𝑚𝑎𝑎𝑚𝑚

𝑤𝑤𝑝𝑝 − 𝑠𝑠𝑡𝑡
𝑤𝑤𝑝𝑝     (13) 

The upper bound of water deficit (𝑠𝑠𝑡𝑡
𝑤𝑤𝑢𝑢𝑜𝑜) will be zero, when 

𝑠𝑠𝑡𝑡
𝑤𝑤𝑝𝑝  reaches to maximum soil water retention 𝑠𝑠𝑚𝑚𝑎𝑎𝑚𝑚 ,

𝑤𝑤𝑝𝑝 i.e., 
�𝑠𝑠𝑚𝑚𝑎𝑎𝑚𝑚

𝑤𝑤𝑝𝑝 − 𝑠𝑠𝑚𝑚𝑎𝑎𝑚𝑚
𝑤𝑤𝑝𝑝 �, and irrigation is not required. The lower 

bound for the water deficit 𝑠𝑠𝑡𝑡
𝑤𝑤𝑡𝑡ℎ  varies with the crop growth 

rate. However, for the time instant 𝑡𝑡, a threshold value is fixed 
by using farmers’ knowledge. Now to estimate the water 
deficit 𝑠𝑠𝑡𝑡+1

𝑤𝑤𝑑𝑑 at time 𝑡𝑡 + 1   (for the next day), the proposed 
LSTM RNN will be used. In case of water deficit in soil i.e. 
𝑠𝑠𝑡𝑡+1
𝑤𝑤𝑑𝑑 ≤ 𝑠𝑠𝑡𝑡

𝑤𝑤𝑡𝑡ℎ , the irrigation process is scheduled to calculate 
the amount of water needed for irrigation for the next day.  

2) Water Volume Estimation  

Once the evaluation scheduler decides to irrigate the 
farmland, this step calculates the amount of water needed in 
volume � 1

𝑚𝑚3�  by subtracting the average water deficit from 
rain level as: 

           𝑉𝑉(𝑡𝑡) = 1
𝑁𝑁
∑ 𝑉𝑉(𝑝𝑝𝑛𝑛 , 𝑡𝑡)𝑁𝑁
𝑛𝑛=1   

= 1
𝑁𝑁
∑ �𝑠𝑠𝑚𝑚𝑎𝑎𝑚𝑚

𝑤𝑤𝑝𝑝 (𝑝𝑝𝑛𝑛 , 𝑡𝑡)− 𝑠𝑠𝑡𝑡
𝑤𝑤𝑝𝑝(𝑝𝑝𝑛𝑛 , 𝑡𝑡)� −𝑁𝑁

𝑛𝑛=1 𝑅𝑅𝐿𝐿(𝑡𝑡) (14) 
The water volume 𝑉𝑉(𝑡𝑡) is the average value estimated by the 
sensor nodes implanted on the farmland at position𝑝𝑝𝑛𝑛 , 𝑛𝑛 =
1, . .𝑁𝑁.   

3) Irrigation Planner 

In this step, the irrigation planner determines the spatial and 
temporal distribution of water needed over the farmland. 
Towards this end, the information about actuators such as 
position, numbers, and water flow rate must be known. As 
previously defined, actuators control the water flow of each 
sprinkle𝑟𝑟 (𝛽𝛽(𝑎𝑎𝑡𝑡ℎ) ∈ {0,1}). For spatial distribution, the field 
is partitioned into some square sub-farmlands. Each sub-
farmland contains actuator nodes because each actuator node 
acts differently according to the estimated need of water 
volume in each sub-farmland. Let us define 𝐹𝐹𝑎𝑎  ∈ 𝐹𝐹, 𝑎𝑎 =
1, …𝐴𝐴  as sub-farmland irrigated by installed actuators in 
position 𝑝𝑝𝑎𝑎 ∈ 𝐹𝐹𝑎𝑎 ,𝑎𝑎 = 1, . .𝐴𝐴. The sensor nodes are deployed in 
sub-farmland such that 𝑁𝑁 = ∑ 𝑁𝑁𝑎𝑎𝐴𝐴

𝑎𝑎=1 , where 𝑁𝑁𝑎𝑎 , 𝑎𝑎 = 1, …𝐴𝐴 
are the subset of nodes’ positions in 𝑝𝑝𝑛𝑛 ∈ 𝐹𝐹𝑎𝑎  .The period for 
irrigation at each actuator node is given as: 

𝜑𝜑𝑎𝑎(𝑡𝑡) = 1
𝑁𝑁𝑎𝑎
∑ 𝜑𝜑𝑛𝑛(𝑝𝑝𝑛𝑛 , 𝑡𝑡)|𝑝𝑝𝑛𝑛∈𝐹𝐹𝑎𝑎
𝑁𝑁𝑎𝑎
𝑛𝑛=1 ,  𝑎𝑎 = 1,2, … ,𝐴𝐴 , (15) 

where 𝜑𝜑𝑛𝑛  is the period for irrigation computed by each 
sensing node at their position as: 

𝜑𝜑𝑛𝑛(𝑝𝑝𝑛𝑛 , 𝑡𝑡) =
𝑉𝑉(𝑝𝑝𝑛𝑛 , 𝑡𝑡)
𝜔𝜔𝑜𝑜𝑝𝑝𝑟𝑟(𝑝𝑝𝑛𝑛) 

= 𝜑𝜑𝑜𝑜𝑝𝑝𝑡𝑡(𝑡𝑡)×𝜔𝜔𝑜𝑜𝑝𝑝𝑡𝑡(𝑝𝑝𝑛𝑛 ,𝑡𝑡)
𝜔𝜔𝑜𝑜𝑝𝑝𝑝𝑝(𝑝𝑝𝑛𝑛)  ,  (16) 

where 𝑉𝑉(𝑝𝑝𝑛𝑛 , 𝑡𝑡) is the volume of water expressed as optimal 
irrigation period 𝜑𝜑𝑜𝑜𝑝𝑝𝑡𝑡(𝑡𝑡) under an optimal water flow rate of 
sprinklers 𝜔𝜔𝑜𝑜𝑝𝑝𝑡𝑡(𝑝𝑝𝑛𝑛  , 𝑡𝑡)  at the sensor’s deployed position.  

Overall, 𝜑𝜑𝑎𝑎(𝑡𝑡), 𝑎𝑎 = 1, … .𝐴𝐴 is the irrigation period for all 
the actuators that represent the irrigation schedule computed 
by the event scheduler, i.e., soil moisture content is below the 
threshold value. Afterward, this information is given to the 
farmers’ application smartphone or authorized users. 
Thereafter, farmers analyze the estimated water capacity from 
the present capacity of water tanks/reservoirs, according to 
which farmers can modify the water need to plan and send 
back commands to the irrigation scheduler to start the 
irrigation process. If the water volume in reservoirs is less than 
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the estimated water capacity, the motor pumps should fill the tank up to at least 80% of its capacity.     
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Fig.4. Block Diagram of Predictive Irrigation Schedule

E. The LSTM RRN-based Irrigation Algorithm 
The pseudo-code (Algorithm 1) and block diagram (Figure 

4) are presented to recite the proposed intelligent irrigation 
framework in a nutshell. The input parameters 𝐼𝐼𝑡𝑡 =
[𝐴𝐴Ŧ(𝑡𝑡),𝐴𝐴Ħ(𝑡𝑡), 𝑆𝑆𝑀𝑀(𝑡𝑡),𝑆𝑆Ŧ(𝑡𝑡),𝑅𝑅𝐿𝐿(𝑡𝑡) ] are applied to the trained 
LSTM network subject to predict the volumetric soil moisture 
𝑆𝑆𝑀𝑀(𝑡𝑡 + 1) content one day ahead. The predicted volumetric 
soil moisture content conjunction with crop information (root 
growth) and soil information is used to estimate the irrigation 
timing and amount of water needed for the proper growth of 
crops, which ultimately gives the best economic return to 
farmers.   

Algorithm 1 LSTM RRN-based intelligent irrigation algorithm 

1. Training: 
1. Initialize  the experience replay memory set and maximum number of 

episode  
2. Initialize the learnable coefficient 𝑊𝑊𝑡𝑡  with random weights 
3. Initialize ħ0 , ℂ0 = 0 of length 𝑘𝑘  
4. For  𝐸𝐸𝑝𝑝𝑜𝑜 = 1, … … .𝐸𝐸𝑝𝑝𝑜𝑜𝑚𝑚𝑎𝑎𝑚𝑚  
5. Sample the random mini-batch of size 2𝑟𝑟  
6. For each 𝑡𝑡 = 1,2 … . .𝑘𝑘   
7. fetch any random sample from mini-batch 

𝐼𝐼𝑡𝑡 = [𝐴𝐴Ŧ(𝑡𝑡),𝐴𝐴Ħ(𝑡𝑡), 𝑆𝑆𝑀𝑀(𝑡𝑡), 𝑆𝑆Ŧ(𝑡𝑡),𝑅𝑅𝐿𝐿(𝑡𝑡)] and 𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜 
8. Calculate ƒt (Eq. 1), ℂt�  (Eq.2), ɨt (Eq.3) 
9. Update  cell memory state ℂ𝑡𝑡 (Eq.4) 
10. Calculate 𝒪𝒪𝑡𝑡 (Eq. 5), ħ𝑡𝑡 (Eq. 6) 
11. End for  
12. Output : ħ = {ħ1, … . .ħ𝑘𝑘}  
13. Calculate simulated predicted output 𝑦𝑦𝑝𝑝𝑟𝑟𝑝𝑝  (Eq.7) 
14. Evaluate loss function Eq.(8) 
15. Update the LSTM weight parameter  𝑊𝑊𝑡𝑡  by performing stochastic 

Gradient descent loss optimization using Eq. (9)  
16. End for  

2. Prediction: 
1. Observe the environment and collect the current  day information 

𝐼𝐼𝑡𝑡 = [𝐴𝐴Ŧ(𝑡𝑡),𝐴𝐴Ħ(𝑡𝑡), 𝑆𝑆𝑀𝑀(𝑡𝑡), 𝑆𝑆Ŧ(𝑡𝑡),𝑅𝑅𝐿𝐿(𝑡𝑡)] 
2. Feed the current day as input to trained LSTM model   
3. Predict the one–day ahead soil moisture content 𝑆𝑆𝑀𝑀(𝑡𝑡 + 1) 
4. Store the tuple (input and output) in experience replay memory set. 

3. Irrigation Scheduler: 
1. Classify the soil Eq. (10) 
2. Calculate maximum water capacity of farmland Eq .(11) 
3. Take crop root growth information and soil type as input to estimate 

the water deficit 𝑠𝑠𝑡𝑡+1
𝑤𝑤𝑑𝑑  Eq. (13) 

4. If    𝑠𝑠𝑡𝑡+1
𝑤𝑤𝑑𝑑 ≤ 𝑠𝑠𝑡𝑡

𝑤𝑤𝑡𝑡ℎ  
5. Estimate water volume 𝑉𝑉(𝑡𝑡) for irrigation using Eq. (14) 
6. Else  
7. Input for next time step, i.e., go to Step 2. Prediction 

4. Irrigation Planner: 

1. Take sprinkler water flow rate 𝜔𝜔𝑜𝑜𝑝𝑝𝑟𝑟(𝑝𝑝𝑛𝑛) as input  
2. Estimated irrigation time for all actuators 𝜑𝜑𝑎𝑎(𝑡𝑡) Eq.(16) 
3. Execute the irrigation plan  

1) Complexity Analysis 

The time complexity of the proposed algorithm mainly 
depends upon training procedure- line no.1 to line no. 3 
initialization takes constant time of order 𝑂𝑂(1). From line no. 
6 to line 11 is the training procedure of the input 𝐼𝐼𝑘𝑘 taken from 
mini-batch of size 2𝑟𝑟 for the 𝑘𝑘 number of LSTM units as ħ𝑘𝑘. 
Further, time complexity depends upon the total weight of the 
LSTM units in the layer. Each LSTM unit has four recurrent 
connections: the direct connection from the input layer to the 
output layer, forget gates, input gates, and output gates. 
Moreover, each unit has a total 𝐼𝐼𝑘𝑘 + ħ𝑘𝑘 numbers of inputs for 
the current time slots. Since four recurrent connections means 
a total 4(𝐼𝐼𝑘𝑘 + ħ𝑘𝑘) weight associated with each unit. Moreover, 
each layer has ħ𝑘𝑘  number of LSTM units, thus overall 
4ħ𝑘𝑘(𝐼𝐼𝑘𝑘 + ħ𝑘𝑘) weight associated with that LSTM layer.  The 
weight associated with the output layer is ħ𝑘𝑘 × 𝒪𝒪𝑘𝑘, where the 
total number of outputs generated by the output layer is 𝒪𝒪𝑘𝑘. 
The total weight corresponding to the three gates is ħ𝑘𝑘 × 3. 
Therefore, total weights 𝑊𝑊𝑇𝑇𝑜𝑜𝑡𝑡  associated with the LSTM layer 
is computed as:  

   𝑊𝑊𝑇𝑇𝑜𝑜𝑡𝑡 = 4ħ𝑘𝑘(𝐼𝐼𝑘𝑘 + ħ𝑘𝑘) + ħ𝑘𝑘 × 𝒪𝒪𝑘𝑘 + ħ𝑘𝑘 × 3  (17) 

From line no. 12 to line no. 15 is predication and updating 
the network weight takes constant time 𝑂𝑂(1) using stochastic 
gradient descent optimization. The training procedure runs for 
either the maximum number of the episode or until 
convergence. Thus, the overall time complexity of the training 
procedure is 𝑇𝑇(𝑡𝑡𝑟𝑟𝑎𝑎𝑡𝑡𝑛𝑛) = 𝑂𝑂(𝑊𝑊𝑇𝑇𝑜𝑜𝑡𝑡). 

Line no. 3 in the prediction procedure consumes 𝑂𝑂(1)  
time to predict  𝑆𝑆𝑀𝑀(𝑡𝑡 + 1) for the next day in the already 
trained LSTM RNN model. Whereas irrigation scheduler and 
irrigation planner consists of equations and if-else statement, 
and their execution takes place at a constant time of order 
𝑂𝑂(1).  Thus, the overall time complexity of the proposed 
algorithm is evaluated as 𝑂𝑂(𝑊𝑊𝑇𝑇𝑜𝑜𝑡𝑡). 

IV. SIMULATION AND RESULT ANALYSIS 
In this section, simulations are performed to evaluate the 

effectiveness and potentialities of the proposed intelligent 
irrigation system (DLiSA) using real-time information from 
three different sites. This section is divided into three parts. In 
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the first part, simulation environment settings are discussed. In 
the second part, calibration and testing of DLiSA are 
discussed. The comparative analysis of the independent test 
fields is discussed in the third part. 

A. Simulation Environment Settings  
The simulation of the proposed DLiSA for soil moisture 

content prediction is implemented using Python 3.8.1. Numpy 
and pandas libraries are used for data preprocessing and data 
management. TensorFlow 1.2.1 framework is used to 
implement LSTM RRN. The primary in-built functions of the 
TensorFlow used in the proposed model simulation script are 
as follows: 1) RNN (input, weights, biases) to create and 
trained the LSTM network; 2) squaredelta() to evaluate the 
loss function in the network; 3) GradientDescentOptimizer(): 
to update the network weight parameters; and 4) 
tf.global_variables_initializer(): to initialize and process all the 
variables. We have used a two-layer LSTM network where the 
length of a cell/hidden state in each layer is set at 20. The 
dropout is set to be 10%  to avoid overfitting to make the 
network more robust in learning features during the training 
period. We train the proposed model with a length of input 
data sequence for 1.5 years of metrological data to predict the 
soil moisture content for the next day. The size of the mini-
batch is set at 256 samples, whereas the training interval 
(defined as the number of iterations after which the model is 
updated) is set at 10. 

For the performance analysis of the proposed model, two 
state-of-the-art models are considered, namely the feed-
forward artificial neural network (FFANN) approach [32] and 
threshold-based (T-based) approach [37]. The FFANN 
approach predicts the volumetric soil moisture content daily, 
and irrigation time and volume of water are estimated to 
maintain the soil moisture content in the predefined range. In 
the T-based approach, continuous monitoring of soil moisture 
content is done during irrigation to control the actuators for 
opening or closing water valves according to a simple rule:  

𝛽𝛽(𝑎𝑎𝑡𝑡ℎ) = �1         𝑡𝑡𝑖𝑖 𝑎𝑎𝑣𝑣𝑎𝑎(𝑆𝑆𝑀𝑀(𝑡𝑡)) < 𝑆𝑆𝑡𝑡ℎ𝑀𝑀  
0                           𝑜𝑜𝑡𝑡ℎ𝑝𝑝𝑟𝑟𝑤𝑤𝑡𝑡𝑠𝑠𝑝𝑝 

   ;  a=1….A   (18) 

where 𝑆𝑆𝑡𝑡ℎ𝑀𝑀  is the threshold value of soil moisture content 
defined by a farmer as the target value.  
Two types of scale are used to quantify the performance of 
state of the art models: (i) Quantitative performance scale to 
estimate the saving of water volume as: 

𝛺𝛺(𝑡𝑡) = 𝑉𝑉(𝑡𝑡)�−𝑉𝑉(𝑡𝑡)
𝑉𝑉(𝑡𝑡)�  × 100    (19) 

where 𝑉𝑉(𝑡𝑡)�   represents the reference volume water used to 
evaluate percentage improvement in terms of water-saving by 
state-of-the-art models to measure water volume 𝑉𝑉(𝑡𝑡);  (ii) 
Qualitative performance scale to measure the crop growth rate  
in terms of water deficit of the soil (𝑚𝑚𝑚𝑚) as: 

𝛹𝛹(𝑡𝑡) = �
𝑙𝑙𝑜𝑜𝑤𝑤      𝑡𝑡𝑖𝑖 𝑠𝑠𝑡𝑡

𝑤𝑤𝑑𝑑 < 15 𝑚𝑚𝑚𝑚
𝑚𝑚𝑝𝑝𝑑𝑑𝑡𝑡𝑚𝑚𝑚𝑚   𝑡𝑡𝑖𝑖 15 𝑚𝑚𝑚𝑚 ≤ 𝑠𝑠𝑡𝑡

𝑤𝑤𝑑𝑑 ≤ 70 𝑚𝑚𝑚𝑚
ℎ𝑡𝑡𝑎𝑎ℎ         𝑡𝑡𝑖𝑖 𝑠𝑠𝑡𝑡

𝑤𝑤𝑑𝑑 > 70 𝑚𝑚𝑚𝑚
         (20) 

The water deficit is measured by expert farmers through 
observation of the color of crop leaf and the growth of 
branches.  

For experimental validation, we create a wireless 
architecture consisting of 𝑁𝑁 = 9 sensing nodes, 𝑀𝑀 = 3 anchor 
nodes, and 𝐴𝐴 = 3 actuators, deployed in the farming area 𝐹𝐹 of 
size 12 × 102 𝑚𝑚2.  The sensor nodes are deployed close to the 
plant, and actuators are installed in proximity to electric water 
valves to open or close them according to the irrigation 
scheduler. The farming area is divided into three sub-farming 
areas (𝐴𝐴 = 3) to irrigate with different state-of-the-art models 
for comparison analysis (see Figure 5). The first farming area 
(𝐹𝐹1) is used for proposed DLiSA, the second farming area (𝐹𝐹2) 
belongs to the FFANN approach, and third farming area (𝐹𝐹3) 
is used for the T-based approach.  

B. LSTM-RNN model Calibration and Testing  

Acutator

Sensor

Anchor 
Node

Gateway

𝐹𝐹1 𝐹𝐹2 𝐹𝐹3 

 
Fig. 5. Wireless architecture placed in the farming area 

The calibration or training of the proposed DLiSA is 
performed using data obtained from a web-enabled 
geographical information system server named the India 
Water Resource Information System (India-WRIS) in 
collaboration with the Indian Space Research Organization, 
which provides a single-window system to obtain metrological 
data (air temperature, air humidity, rainfall level, etc.) and 
hydrological data (soil moisture and soil temperature) for 
different sites in the country [38-39]. We obtained the 
metrological data for three different sites (as Project River 
Basin Atlas of India), including air temperature, air humidity, 
and rainfall from the Indian metrological department over one 
and a half year 𝑖𝑖𝑟𝑟𝑜𝑜𝑚𝑚 1𝑜𝑜𝑡𝑡  June 2017 to 31𝑜𝑜𝑡𝑡  Dec. 2018, i.e., 
578 days data to capture at least the temporal dynamics of the 
full annual cycle. The volumetric soil moisture content and 
soil temperature in all sites are measured by cosmic-ray soil 
moisture sensors (Model CRS-1000/B) [40] having a 
horizontal range of 200 m and measuring depth for soil 
moisture up to 20𝑚𝑚. The obtained data is resampled to daily 
average (24 ℎ) and feed into DLiSA to predict the volumetric 
soil content for the next day for all sites. The details of the site 
and soil type (USDA agency) are used for training the 
proposed DLiSA, which are summarized in Table I. To avoid 
overfitting of the network, the dataset for each site is divided 
into a 70: 30 ratio i.e. 433 days of data for training and the 
remaining 145 days’ data for testing. This division is done to 
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validate the proposed DLiSA using the posterior temporal 
dataset before the training period.   

TABLE 1.  
DETAILS OF SITES USED FOR MODEL TRAINING 

Site Name Soil Type Land Cover 
Kanpur (Uttar Pradesh) (Ganga basin)  Clay Grassland 
Ludhiana (Punjab) (Sultlej Basin) Sandy loam Farmland 
Mayur  Vihar (Delhi) (Yamuna basin) Loam Arable 

The results in Figure 6 (a-c) show predicted soil moisture 
content over measured soil content with respect to 433 days 
(training period) for three different sites (see Table 1) by 
setting up 𝛼𝛼 = 0.8 . It is evident from the results that the 
predicted value of the soil moisture content in the initial days 
of the year has many variations from the measured values. 
This can be attributed to the reason that DLiSA behaves 
naively and does not have much knowledge about sites. As the 
training period (days) increases, the predicted value is close to 
the measured value. This observation affirms that the learning 
ability of the proposed DLiSA is higher than underlying 
dynamic temporal information. The soil moisture content 
varied from 0.12 to 0.24 𝑚𝑚3 𝑚𝑚3⁄ .  

 

 

 
Fig. 6. Measured soil moisture content and predicted soil moisture 
content by DLiSA for the three training sites: (a) Kanpur, (b) Ludhiana, 
and (c) Mayur Vihar.  

 

 

 
Fig. 7 Percentage error for the three training sites (a) Kanpur, (b) 
Ludhiana, and (c) Mayur Vihar.  

The results in Figure 7(a-c) show the corresponding 
percentage error between measured and predicted soil 
moisture content values in the training period for each of the 
three sites. The percentage error is evaluated by dividing the 
difference between the predicted values and measured values 
by measured values. It can be clearly observed that the 
percentage error for some training periods is negative. This 
can be attributed to the reason that generation of soil moisture 
prediction is less than the measured values. This may highlight 
that the soil prediction for the next day is a rainy day rather 
than a sunny day. It is also worthy to note that the average 
percentage error for the site Mayur Vihar is between 
−0.2 𝑡𝑡𝑜𝑜 0.2, which is less than for the other two sites (varying 
from −0.4 𝑡𝑡𝑜𝑜 0.4). This can be attributed to the reason that the 
proposed model is trained first for the Kanpur site, then the 
Ludhiana site, and finally for the Mayur Vihar site. So, the 
gradually proposed model learns about the environment, and 
when it comes to the last site, the predicted value is much 
closer to the measured value and, in turn, the error is 
minimized for the Mayur Vihar site. Once the model is 
trained, the next phase is to test the model. The testing of the 
proposed model is exemplified by data not used during the 
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training. Testing of the model is done by using the dataset 
( 145 𝑑𝑑𝑎𝑎𝑦𝑦𝑠𝑠 ) kept aside for each of the training sites. The 
proposed model takes the average value of the previous three 
days’ climate variables and present soil moisture content to 
predict the average volumetric soil moisture content of the 
next day. The performance of the trained model is assessed by 
the root mean squared error as defined by Eq. (8). The 
prediction/validation performance of the proposed model for 
three different sites is presented in Table II.  

TABLE II.  
TRAINING CROSS-VALIDATION PERFORMANCE 

Site Name  RMSE (𝑚𝑚3 𝑚𝑚3⁄ ) 
Kanpur (Uttar Pradesh)  (Ganga basin)  0.048 
Ludhiana(Punjab)  (Sutlej Basin)  0.012 
Mayur Vihar (Delhi)  (Yamuna basin)  0.014 

It is evident from the RMSE values in Table 2 that the 
DLiSA can generate accurate (close to zero) predictions of the 
volumetric soil content for each site. This observation affirms 
that the network weight parameter of the proposed LSTM 
RNN model is correctly updated during each training period. 
This is because DLiSA uses a stochastic gradient descent 
approach to update the network parameters, which avoids the 
explosion of network weights and helps the model to learn 
faster. It is also noteworthy that for the training site at Kanpur, 
the proposed model does not provide good prediction 
performance, i.e., the RMSE value is far from zero. This can 
be attributed to the reason that the data used in the training 
period slightly varies from the dataset used in the testing 
period. Overall, the proposed DLiSA used for the prediction in 
different sites further enhances the saving of water volume in 
the development of various crops.   

C. Comparative Analysis in the Independent Test Field 
In this section, the water volume estimation and irrigation 

timing have been validated in the test farming area as 
suggested by state-of-the-art models. Three independent 
irrigations are scheduled by the DLiSA, FFANN, and T-based 
models respectively, starting with the same initial conditions, 
and the irrigation starts at 𝑡𝑡 = 11: 00 AM. The range of the 
soil moisture content is to be set by experimental observation 
between 0.14 to 0.24 𝑚𝑚3 𝑚𝑚3⁄  for adequate crop growth.     

1) Comparative Analysis of Volumetric Soil Moisture 
Content   

 
Fig. 8. Comparison of Volumetric soil moisture content after the 
irrigation period 

A comparison of soil moisture content between proposed 
DLiSA and state of the art models for one irrigation period is 
shown in Figure 8. For the prediction of soil moisture content 

one day ahead, previous days’ climate information and soil 
information are feed into the proposed model and FFFAN, 
whereas T-based models continuously monitor soil moisture 
content. The temporal volumetric soil content 𝑎𝑎𝑣𝑣𝑎𝑎 𝑆𝑆1𝑀𝑀  (𝑝𝑝𝑛𝑛 , 𝑡𝑡) 
(𝑝𝑝𝑛𝑛 ∈ 𝐹𝐹1 ,𝑛𝑛 = 1,2,3 )  , 𝑎𝑎𝑣𝑣𝑎𝑎 𝑆𝑆2𝑀𝑀  (𝑝𝑝𝑛𝑛 , 𝑡𝑡 ) (𝑝𝑝𝑛𝑛 ∈ 𝐹𝐹2 ,𝑛𝑛 = 4,5,6 ) 
and 𝑎𝑎𝑣𝑣𝑎𝑎 𝑆𝑆𝑜𝑜𝑀𝑀  (𝑝𝑝𝑛𝑛 , 𝑡𝑡 ) (𝑝𝑝𝑛𝑛 ∈ 𝐹𝐹3 ,𝑛𝑛 = 7,8,9),  and the irrigation 
period are also illustrated in Figure 8. The optimal water flow 
rate of sprinkler is set to be 𝜔𝜔𝑜𝑜𝑝𝑝𝑡𝑡 = 3.0 (𝑙𝑙 ℎ⁄ ) for all the state 
of the art models. For the proposed model, the maximum soil 
retention 𝑠𝑠𝑚𝑚𝑎𝑎𝑚𝑚

𝑤𝑤𝑝𝑝 = 440.23(𝑙𝑙 𝑚𝑚3⁄ ) capability is measured by Eq. 
11 using predicted volumetric soil content (𝑎𝑎𝑣𝑣𝑎𝑎 𝑆𝑆𝑀𝑀(𝑡𝑡) =
0.12𝑚𝑚3 𝑚𝑚3)⁄ . Generally, the soil moisture content is lower 
than the upper range i.e. 0.21 𝑚𝑚3 𝑚𝑚3⁄  for the proposed model 
from (𝑎𝑎𝑣𝑣𝑎𝑎 𝑆𝑆𝑀𝑀(𝑡𝑡) = 0.12𝑚𝑚3 𝑚𝑚3)⁄  to save water and adequate 
crop growth. The crop root depth is 𝑝𝑝𝑟𝑟 = 0.25 𝑚𝑚 and the soil 
surface is 0.25 𝑚𝑚2, according to the observation of farmers. 
The actual water content  𝑠𝑠𝑡𝑡

𝑤𝑤𝑝𝑝|𝑡𝑡=11:00 𝐴𝐴𝑀𝑀 = 245.13 (𝑙𝑙 𝑚𝑚3⁄ ) is 
calculated using Eq. 12. The water deficit ( 𝑠𝑠𝑡𝑡

𝑤𝑤𝑑𝑑 =
195.1 (𝑙𝑙 𝑚𝑚3⁄ )) is calculated using Eq. 13, i.e., 𝑠𝑠𝑡𝑡

𝑤𝑤𝑑𝑑 = 83%, 
which is an indicator of irrigation needs. Now, the total 
volume of water (𝑉𝑉1(𝑡𝑡) =  195.1(𝑙𝑙 𝑚𝑚3⁄ ) × 0.25 (𝑚𝑚) ×
0.25(𝑚𝑚2) = 12.19 𝑙𝑙) is estimated using Eq. 14. Furthermore, 
using the optimal water flow rate of sprinkle 𝑟𝑟𝜔𝜔𝑜𝑜𝑝𝑝𝑡𝑡 =
3.0 (𝑙𝑙 ℎ⁄ ), the irrigation period is calculated using Eq. 15, i.e. 
𝜑𝜑1(𝑡𝑡)|𝑡𝑡=11:00𝐴𝐴𝑀𝑀 = 4.06 ℎ. For the FFANN, the net volume of 
water (𝑉𝑉2(𝑡𝑡) = 15.78 𝑙𝑙)  and irrigation period 
is  𝜑𝜑2(𝑡𝑡)|𝑡𝑡=11:00𝐴𝐴𝑀𝑀 = 5.26 ℎ , whereas for the T-based 
approach, the threshold value of soil moisture is set at  𝑆𝑆𝑡𝑡ℎ𝑀𝑀 =
0.17 𝑚𝑚3 𝑚𝑚3⁄ , which is higher than the lower range of soil 
moisture content. The irrigated volume of water (𝑉𝑉3(𝑡𝑡) =
21.88 𝑙𝑙)  stopped at  𝜑𝜑3(𝑡𝑡)|𝑡𝑡=6:30𝑃𝑃𝑀𝑀 = 7.3ℎ , when the 
continuous measured soil moisture content satisfies the 
condition 𝑎𝑎𝑣𝑣𝑎𝑎(𝑆𝑆𝑀𝑀(𝑡𝑡)) > 𝑆𝑆𝑡𝑡ℎ𝑀𝑀  .  

It can be observed from the results that the soil moisture 
content of the proposed model reaches reference moisture 
0.21 𝑚𝑚3 𝑚𝑚3⁄  quickly compared to the FFANN and T-based. 
This can be attributed to the reason that the proposed model 
handles the temporal input better than state-of-the-art models. 
This is due to the fact that the proposed model receives 
feedback from the soil sensors to predict soil moisture content 
close to the measured value. whereas, the T-based shows the 
worst performance in terms of water volume saving because 
the longer irrigation period would exceed the maximum soil 
water retention capability and ultimately exceed the soil 
moisture content ( > 0.24 𝑚𝑚3 𝑚𝑚3⁄ ). The volume of water-
saving as a qualitative performance using Eq. 19 of the 
proposed scheme is 22.75%, 44.28 % more than the FFANN 
and T-based approaches, respectively. Moreover, after 
irrigation, the water deficit of the soil as visually identified by 
farmers turns out to be (𝑠𝑠𝑡𝑡

𝑤𝑤𝑑𝑑 = 60 𝑚𝑚𝑚𝑚) in the medium range 
for the proposed model and worst for the T-based approach 
�𝑠𝑠𝑡𝑡

𝑤𝑤𝑑𝑑 < 10 𝑚𝑚𝑚𝑚� , showing an excessive amount of water in 
the soil that is responsible for the death of crops.     

2) Soil Moisture Content over One Month  
A comparative analysis of soil moisture prediction between 

DLiSA and FFANN is presented in Figure 9 for sub-farming 
areas 𝐹𝐹1  and 𝐹𝐹2  respectively for one month. The T-based 
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approach is modeled to measure soil moisture content 
continuously. It can be observed from the results that the 
proposed model can predict the soil moisture content close to 
the measured value because DLiSA forms a closed-loop 
system, receiving feedback from both the soil moisture sensors 
and climate sensors. Also, the linear approach of processing 
temporal information leads to the prediction of soil moisture 
content to an accurate value in the proposed model, whereas 
FFANN works in an open-form system and its complex 
processing feature of hidden neurons is not able to predict the 
soil moisture content accurately close to the measured value. It 
is also observed that the proposed model used in 𝐹𝐹1 predicts 
soil moisture content value on average 0.19 𝑚𝑚3 𝑚𝑚3⁄ over the 
month, whereas FFANN predicts average soil moisture 
content in 𝐹𝐹2 as 0.20  𝑚𝑚3 𝑚𝑚3,⁄  and for the T-based approach 
in  𝐹𝐹3,  the predicted average soil moisture content 
is 0.17  𝑚𝑚3 𝑚𝑚3⁄ , which is not close to the measured value and 
implies the excess need for water volume for irrigation in both 
approaches. This is because the DLiSA responds quickly to a 
drastic change in nature and triggers the irrigation schedule 
with an optimal amount of water volume when the soil 
moisture content goes below the predefined threshold value. It 
is also seen from the results that for 
1𝑜𝑜𝑡𝑡 , 7𝑡𝑡ℎ , 13𝑡𝑡ℎ , 19𝑡𝑡ℎ , 25𝑡𝑡ℎ  𝑎𝑎𝑛𝑛𝑑𝑑 31st  days of the month, soil 
moisture content is below the lower range 0.14 𝑚𝑚3 𝑚𝑚3⁄  value 
for all state-of-the art-models. Thus, irrigation schedules 
follow estimated water volume in each state-of-the-art model.  

3) Soil water deficit over one month  

 
 

 

A comparison of soil moisture deficit 𝑠𝑠𝑡𝑡
𝑤𝑤𝑑𝑑  between DLiSA 

and state-of-the-art models over one month is presented in 
Figure 10. It is evident from the results that soil moisture 
deficits measured by the DLiSA for most of the days are 
stretched out in the medium range (25 𝑚𝑚𝑚𝑚 ≤ 𝑠𝑠𝑡𝑡

𝑤𝑤𝑑𝑑 ≤ 55 𝑚𝑚𝑚𝑚) 
as defined by qualitative measurement in Eq. 20. This 
observation affirms that DLiSA predicts the soil moisture 
content accurately and saves a larger amount of water. It can 
also be clearly observed from the results that the negative 
value of soil water deficits in the case of the T-based approach 
represents overwatering, i.e., the soil moisture content is 
above the framing area capacity. In the FFANN approach, the 
soil moisture mostly varied in the range of 22𝑚𝑚𝑚𝑚 ≤ 𝑠𝑠𝑡𝑡

𝑤𝑤𝑑𝑑 ≤
63 𝑚𝑚𝑚𝑚 over days of the month, and estimated  𝑠𝑠𝑡𝑡

𝑤𝑤𝑑𝑑 using the 
T-based approach falls below the lower range that shows 

overwatering. This observation affirms that FFANN can save 
more water in the irrigation process than the T-based approach 
because FFANN uses hidden layer and weight adjustment of 
the network in the prediction of soil moisture content, which is 
better than the threshold-based approach. It is also noteworthy 
that 𝑠𝑠𝑡𝑡

𝑤𝑤𝑑𝑑 crosses above the upper range (𝑠𝑠𝑡𝑡
𝑤𝑤𝑑𝑑 > 70 𝑚𝑚𝑚𝑚) of the 

specified limit only six times over the month, and irrigation is 
scheduled accordingly. Overall, the proposed model can 
maintain the soil moisture deficit in the specified range and is 
able to change irrigation planning adequately for crop growth.   

4) Irrigated Water Volume for One Month 

The result in Figure 11 shows the irrigated water volume 
for one month using actuators. It can be observed from the 
results that irrigation is scheduled in one month six times in 
each state-of-the-art model. This can be attributed to the 
reason that predicted soil moisture content is in the range of 
prescribed values, and irrigation is required only when the 
water deficit in the soil is lower than the threshold value.  It is 
also noteworthy that the average water volume is about 
13.69 𝑙𝑙 for the proposed model, whereas the average volume 
of water for the FFANN and T-based models are about 
17.77 𝑙𝑙 and 24.25 𝑙𝑙,  respectively. The average volume of 
water saved in these six irrigation schedules for the proposed 
algorithm are 23 % and 43% with respect to the FFANN and 
T-based models, respectively. This can be attributed to the 
reason that storing and processing temporal information into 
LSTM memory cells effectively and correctly estimates the 
irrigation time and water volume for the development of 
crops, which ultimately provides economic benefits to 
farmers. It can also be noted that in the middle of the month 
(13𝑡𝑡ℎ  day), the need for water is maximum, which is about 
16.25 𝑙𝑙, 19.23,𝑎𝑎𝑛𝑛𝑑𝑑 26.76 𝑙𝑙 for the proposed model, FFANN, 
and T-based models, respectively. This is due to the 
measurement of higher temperatures and less humidity in the 
air by the deployed sensors in the sub-farming area. 

 
Fig. 11. Total irrigated water volume over days of the month 

V. CONCLUSION AND FUTURE WORK 
In this paper, a recurrent neural network-based intelligent 

irrigation system for precision agriculture has been presented 
for the prediction of soil moisture content.  It focuses on the 
crucial requirements of agriculture such as the amount of 
water saved and irrigation period by controlling the 
functionality of the irrigation scheduler. The calibration and 
testing of the proposed DLiSA are carried out for three 
different sites over 1.5 years. The performance of the DLiSA 
is compared to state-of-the-art models subject to the prediction 
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of soil moisture content over one month, which shows a high 
degree of reliability in the designed IoT system architecture-
based farming area. Overall, the proposed model shows high 
water saving compared to the FANNN and T-based models by 
maintaining the soil moisture deficit within the allowed range. 
In future research, we will design a predictive irrigation 
scheduler that can also predict rainfall depth in addition to soil 
moisture content, which will ensure that more water is to be 
saved through maximum utilization of rainfall depths.  
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