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A Progressive Hedging Approach for Large-scale Pavement Maintenance Scheduling 

Under Uncertainty 

 

Abstract 

This study approaches a multi-stage stochastic mixed-integer programming model for the high-

level complexity of large-scale pavement maintenance scheduling problems. The substance of 

some parameters in the mentioned problems is uncertain. Ignoring the uncertainty of these 

parameters in the pavement maintenance scheduling problems may lead to suboptimal solutions 

and unstable pavement conditions. In this study, annual budget and pavement deterioration rate 

are considered uncertainty parameters. On the other hand, pavement agencies generally face 

large-scale pavement networks. The complexity of the proposed stochastic model increases 

exponentially with the number of network sections and scenarios. The problem is solved using 

the Progressive Hedging Algorithm (PHA), which is suitable for large-scale stochastic 

programming problems, by achieving an effective decomposition over scenarios. A modified 

adaptive strategy for choosing the penalty parameter value is applied that aims to improve the 

solution process. A pavement network including 251 sections is considered the case study for 

this investigation, and the current study seeks optimal maintenance scheduling over a finite 

analysis period. The performance of the stochastic model is compared with that of the 

deterministic model. The results indicate that the introduced approach is competent to address 

uncertainty in maintenance and rehabilitation problems.  
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1. Introduction 

Road pavements are one of the fundamental components of a transportation infrastructure. 

Accordingly, they should be durable, and their condition ought to provide safe and secure roads 

for travelers over time. The pavement network condition significantly affects the economy, 

expansion, welfare, and the environment of a country. Correspondingly, pavement deterioration 

and maintenance, rehabilitation, and preservation of road networks have been an immense 

concern (Mathew and Isaac, 2014). 

Implementing a well-functioning strategy to maintain pavement at acceptable levels is essential 

for sustainable economic growth. In the United States, more than 100 billion dollars are assigned 

to maintain the pavement networks annually, and the required cost has steadily increased. Due to 

the lack of financial resources and increase in the network maintenance price, agencies and 

decision-makers have investigated various strategies (Saha and Ksaibati, 2019). The road 

agencies look for ideal maintenance planning, which simultaneously minimizes expenditures and 

enhances the condition of roadway networks. Therefore, pavement maintenance and 

rehabilitation (M&R) optimization has attracted attention in this field. M&R optimization aims 

to determine the optimal treatments for each pavement section at each time to improve the 

condition of a network with a minimal budget. Hence, modeling the M&R problem leads to a 

discrete (integer) optimization problem (Ahmed et al., 2018).  

Roadway networks usually comprise hundreds of pavement sections. Additionally, by increasing 

the number of decision variables in integer programming problems, problem complexity is 

increased exponentially. That is to say, the consideration of hundreds of sections in M&R 

scheduling optimization makes the problem non-deterministic polynomial-time hard (NP-hard). 

Therefore, finding the optimal solutions to large-scale M&R optimization problems is 

challenging and complicated, and valuable methods ought to be applied to solve these problems 

(Hafez et al., 2018). 

On the other hand, mathematical models generally assume that all of the models’ parameters are 

deterministic. Nonetheless, some of the criteria address uncertainty, and accordingly, considering 

these deterministic parameters may lead to suboptimal solutions and unreliable pavement 

conditions. The fluctuation of the network’s yearly budget and pavement deterioration process is 

considerable. Budget fluctuation originates in resource limitations and changes in government 

https://en.wikipedia.org/wiki/NP_(complexity)
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policies. Moreover, pavement behavior is entirely complicated and stochastic. In other words, 

several components, including pavement structure, traffic loads, climate conditions, and material 

quality strongly influence pavement behavior and deterioration rate. The mentioned uncertainties 

may lead to providing inaccurate solutions if these parameters’ uncertainty is not taken into 

account. Additionally, the implementation of inaccurate M&R scheduling may result in losing a 

significant amount of money and weakening the condition of the network (Menendez and 

Gharaibeh, 2017). 

2. Background 

Various approaches have been utilized to solve the M&R scheduling problem at the network 

level. Markovian models and integer programming models are the most-used techniques applied 

to plan M&R strategies. Integer programming models consider each section individually, and 

they provide discrete solutions for every single section (France-Mensah and O’Brien, 2018). On 

the flip side, Markovian models reduce the complexity of the problem and change its format 

from integer programming to linear programming. Markovian models categorize pavement 

sections into similar groups according to their characteristics and provide schedules for groups of 

pavement sections. Thus, these models are not usually capable of presenting the M&R plan for 

each section individually. As a result, Markovian models could not be qualified for scheduling 

M&R activities meticulously, but they may be valuable in order to analyze a group of pavements 

simultaneously. Moreover, Markovian models divided the pavement condition indexes (e.g., 

international roughness index (IRI) or pavement condition index (PCI)) into different levels. 

Thus, during this process, the continuous indexes convert to discrete indexes, which may reduce 

accuracy in the obtained solutions because pavement condition indicators are mostly continuous 

(Moreira et al., 2017). 

According to the abovementioned concepts, integer programming models outperform Markovian 

models in terms of presenting M&R activities. Nevertheless, by expanding the problem’s 

dimension, the complexity of integer programming problems is exponentially raised. Small 

integer problems can be easily solved by conventional techniques such as branch and bound 

algorithm. However, these techniques are not qualified to solve large-scale integer problems in 

logical time (Khiavi and Mohammadi, 2018). 
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To overcome this deficiency, investigators have employed decomposition techniques and 

metaheuristic algorithms (Karabakal et al., 1994). Decomposition techniques modify the 

structure of the problem, and some sub-problems are generated. Afterward, some strategies to 

handle the master problem and sub-problems and some strategies to create solutions are taken 

into account (Rahmaniani et al., 2017). Decomposition techniques solve the sub-problems and 

subsequently aggregate their optimal solutions. Benders decomposition, Lagrangian relaxation, 

and progressive hedging algorithm (PHA) are some of the most applicable decomposition 

techniques (Carøe and Schultz, 1999). 

Karabakal et al. (1994) and Dahl and Minken (2008) used the Lagrangian relaxation method in 

order to decompose network M&R problems into separate sub-problems. Consequently, the 

decomposed problems were solved by the shortest method in the abovementioned studies. In 

those investigations, pavement condition index and the improvement of pavement treatments 

were classified into different ranges so as to be applied in the shortest path algorithm (Karabakal 

et al., 1994; Dahl and Minken, 2008). Likewise, Gao and Zhang (2012) used the Lagrangian 

relaxation method to decompose a network M&R problem. Then, they solved the obtained sub-

problems by the branch-and-cut procedure. The pavement condition index does not need to be 

decomposed to discrete ranges in the branch-and-cut procedure (Gao and Zhang, 2012). 

Metaheuristic algorithms were designed to overcome the other methods’ deficiencies. That is to 

say, metaheuristic algorithms were fabricated to solve NP-hard problems. However, these 

methods cannot assess the quality of the presented solutions. Metaheuristic algorithms generally 

contain some parameters that considerably impact the algorithm process and quality of solutions. 

The metaheuristic parameters should be calibrated, and finding the optimal value of these 

parameters is a complicated task. Hence, metaheuristic algorithms may not yield optimal 

solutions due to a lack of reliability.  

Metaheuristic algorithms are inspired by natural facts, social behaviors, swarm intelligence, and 

evolution competitions, and they solve optimization problems with a combination of random 

search methods and mathematical rules (Naseri et al., 2020). A genetic algorithm has been 

extensively applied to tackle the high-level complexity of large-scale network maintenance 

planning problems (Chan et al., 1994; Ferreira et al., 2002; Fwa et al., 1996; Mathew and Isaac, 

2014; Meneses and Ferreira, 2012; Charles Pilson et al., 1998). Moreover, particle swarm 
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optimization is the other most-used metaheuristic algorithm that has been used to find the 

optimal or near-optimal solutions to M&R problems (Tayebi et al., 2013). 

On the other hand, the problems’ deterministic parameters are generally taken into consideration. 

Nonetheless, uncertainty exists in some parameters, which leads to enhancing the precision of 

the model and providing trustworthy solutions.  

As such, uncertainty is usually spotted in budget estimation due to several political and financial 

issues. Furthermore, there is a mismatch between the budget allocated to pavement maintenance 

and rehabilitation and the budget assigned to network expansion and new road construction. 

Hence, the predicted budget may significantly differ from the absolute budget allocated to M&R 

activities. Meanwhile, the pavement performance model is generally considered to be 

deterministic. Nevertheless, pavement deterioration is stochastic and probabilistic for several 

reasons such as traffic load variations, climate change, and these agents’ interactions (Fani et al., 

2020).  

There are various approaches to the M&R optimization problem under uncertainty. Stochastic 

programming, probabilistic programming, and robust optimization are the most valuable 

techniques applied to consider uncertainty consequences in M&R optimization problems. 

Gao et al. (2013) employed a multi-stage stochastic programming method to scrutinize the 

influences of uncertainty on an M&R optimization problem. The mentioned model was a 

Markovian model in which the budget uncertainty was considered annually. A case study with an 

approximate length of 16000 kilometers located in the United States was taken into account. The 

roads in this network were categorized into three different groups. The probabilistic transfer 

matrix was determined for each group, and two methods (Lagrangian relaxation and scenario 

reduction) were utilized to solve the problem (Gao et al., 2013). 

Fan and Wang (2014) employed a stochastic integer linear programming model, and by virtue of 

that model budget uncertainty was taken into account in M&R scheduling. Three budget 

scenarios, including low, medium, and high budget, are considered each year during the analysis 

period. A small-scale network containing ten pavement sections was the case study for that 

investigation. The problem was solved under various scenarios, and the advantages of 

incorporating the uncertainty were taken into consideration (Fan and Wang, 2014). 
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Fani et al. (2020) investigated the budget uncertainty and pavement deterioration uncertainty 

among a mixed integer-linear programming model. To that end, a multi-stage stochastic method 

was modeled and applied to an M&R optimization problem. Four scenarios were introduced for 

each year using a combination of different deterioration rates and various budgets. Two case 

studies consist of four, and 21 pavement sections were analyzed. The results revealed that the 

introduced stochastic programming model is highly qualified to consider budget uncertainty and 

deterioration uncertainty simultaneously, and that method is capable of presenting optimal 

solutions for all scenarios (Fani et al., 2020). 

In terms of the concept of optimization with chance constraints, Wu and Flintsch (2009) 

proposed a multi-objective Markovian model. In that model, budget uncertainty is considered for 

network M&R optimization problems. A normal distribution with an average value of 20 million 

dollars and a standard deviation of two million dollars was associated with the yearly budget. 

Given that the budget parameter was located on the right side of constraint, the chance constraint 

remained linear. The case study was a part of Virginia with a near length of 8000 kilometers (Wu 

and Flintsch, 2009). 

Similarly, robust optimization has been applied to planning M&R activities in the pavement 

networks. Gao and Zhang (2009) introduced an integer programming model to solve an M&R 

optimization problem at the project level. The pavement performance model and the 

improvement gained by pavement treatments were predicted by the application of linear 

regression and historical data. The independent variables’ coefficient of the model, as well as 

treatment costs, were considered to be uncertain parameters (Gao and Zhang, 2009). Ng et al. 

(2009) presented an integer programming model in which uncertainty was considered for the 

pavement deterioration process and the improvement obtained through pavement treatments (Ng 

et al., 2009). The budget uncertainty under a robust optimization approach was explored in Al-

Amin’s (2013) investigation. In this regard, an integer programming model is employed to solve 

a network comprising ten pavement sections. The results indicated that robust optimization is an 

appropriate technique to consider the probabilistic budget reduction in M&R optimization 

problems (Al-Amin, 2013). 

To the best of the authors’ knowledge, although pavement maintenance and rehabilitation 

scheduling have been investigated in large-scale networks, uncertainty has not received enough 
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attention in large-scale networks due to the increasing complexity of the problem. That is to say, 

in the integer programming models, uncertainty has generally been considered in small networks, 

which is not practical for real networks because they typically contain hundreds of sections. To 

this end, uncertainty is taken into account for real large-scale pavement networks in this study in 

order to overcome the mentioned deficiencies. Whereas the decision-makers and agencies 

generally face large-scale networks comprising many pavement sections, proposing a model to 

tackle these networks could be a valuable achievement because expenditures can be managed 

through the mentioned model, and the precision of the optimal solution can be significantly 

increased. 

 

3. Aims and scope 

The current study aims to propose an algorithm to solve the pavement M&R scheduling problem 

for real large-scale networks under budget and pavement deterioration uncertainties. To this end, 

the problem is expressed as a multi-stage stochastic mixed-integer programming model so as to 

determine the uncertainty of the budget and pavement deterioration rate. The non-deterministic 

parameters are modeled by a number of possible realizations. A powerful algorithm called 

“progressive hedging algorithm” is employed to achieve the purposes of this study. PHA is a 

scenario-based decomposition technique that analyzes problems heuristically, and it can handle 

such large-scale stochastic problems. PHA has been profitably utilized to solve multi-stage 

stochastic programs with integer variables.  

 

4. Problem formulation 

In this section, the notations are initially presented. Afterward, the pavement condition index and 

performance model used in this study are introduced. Then, the multi-stage stochastic 

programming optimization model applied to considering budget uncertainty and pavement 

deterioration rate uncertainty in network M&R problems is described. 

 

4.1. Notations 
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Table 1 presents the sets (indices), pavement condition parameters, general parameters, 

uncertainty parameters, and the decision variable used in this study. In this table, IRI is the 

international roughness index. 

Table 1. The notation of the problem formulation 

Indices 
𝑰𝑰 Set of pavement network sections, 𝑰𝑰 = {1,2,3, … , I} 
𝑲𝑲 Set of M&R treatments, 𝑲𝑲 = {1,2,3, … , K}, treatment K is the most expensive 

and effective 
𝑺𝑺 Set of uncertainty scenarios, 𝑺𝑺 = {1,2,3, … , S} 
𝑻𝑻 Set of time in the analysis period, 𝑻𝑻 = {1,2,3, … , T} 

Pavement condition parameters 
𝑰𝑰𝑰𝑰𝒊𝒊𝒊𝒊 Initial IRI of section i 
𝑰𝑰𝑰𝑰𝒎𝒎𝒊𝒊𝒎𝒎 Minimum possible condition of each of all sections during each time period 
𝑰𝑰𝑰𝑰𝒎𝒎𝒎𝒎𝒎𝒎 Maximum acceptable condition of each of all sections during each time period 
𝑰𝑰𝑰𝑰𝒎𝒎𝒏𝒏𝒏𝒏 Condition of pavement after reconstruction 
𝑰𝑰𝑰𝑰𝒊𝒊

∗ IRI ideal level at the end of the analysis period 
𝒏𝒏𝒊𝒊𝒊𝒊 Performance (IRI) jump of section i because of applying treatment k 

General parameters 
𝑨𝑨𝒊𝒊 Area of section i 
𝑵𝑵𝒊𝒊𝒊𝒊 Maximum allowable number of treatment k to be applied to section i during the 

analysis period 
𝑪𝑪𝒊𝒊𝒊𝒊𝒊𝒊 Average maintenance unit cost of applying treatment k to section i at time 

period t 
Uncertainty parameters 

𝜷𝜷𝒔𝒔 The deterioration rate in trend curve model for scenario s 
𝑩𝑩𝒊𝒊
𝒔𝒔 The available budget at time period t for scenario s 

𝒑𝒑𝒔𝒔 The probability of occurrence of scenario s 
𝑰𝑰𝑰𝑰𝒊𝒊𝒊𝒊

𝒔𝒔  The roughness of section i at time period t for scenario s 
𝑰𝑰𝑰𝑰𝒊𝒊𝑻𝑻

𝒔𝒔  The roughness of section i in the last year of analysis period for scenario s 
𝝃𝝃𝒊𝒊𝒔𝒔 The realizations of the stochastic process until time period t for scenario s 

Decision variable 
𝒎𝒎𝒊𝒊𝒊𝒊𝒊𝒊𝒔𝒔  The binary decision variable that indicates whether the treatment k at time 

period t applied to section i for the scenario s 
 

4.2. Pavement performance indicators 
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Pavement performance indicators play a pivotal role in the pavement management system 

(PMS). With the aid of pavement performance indicators, pavement deterioration trends can be 

analyzed, and it is indicated that when the pavement arrives at a critical condition, the 

application of treatments is vital. The IRI is an essential performance index strongly correlated 

with pavement safety and driver convenience. IRI provides information about the pavement 

surface, and it has thus been considered one of the most important indicators. Driving on rough 

roadways results in drivers’ inconvenience, velocity reduction, likely vehicle breakdown, travel 

time increase, and increased user costs. Various performance indicators assess pavement quality, 

and IRI is one of these fruitful indicators. Based on the aforementioned concepts, the IRI is taken 

into account as the pavement performance indicator in this study (Tsunokawa and Schofer, 

1994). 

Different performance models have been proposed for the IRI. One of the most applicable and 

well-recognized performance models is the trend curve model, which was introduced by 

Tsunokawa and Schofer (1994). The deterioration function of the trend curve model is illustrated 

in Figure 1. As can be seen, this method represents that the ratio of IRI-to-initial IRI follows a 

particular exponential trend. In other words, the IRI-to-initial IRI ratio can be fitted in an 

exponential curve over time. If the condition of pavement is equal to 𝐼𝐼𝐼𝐼𝑖𝑖𝑡𝑡0, the condition of this 

pavement at the time 𝑡𝑡∗ in the future (𝑡𝑡∗ > 𝑡𝑡) is evaluated based on Eq. (1). 

 

𝐼𝐼𝐼𝐼𝑖𝑖𝑡𝑡∗ = 𝐼𝐼𝐼𝐼𝑖𝑖𝑡𝑡0 exp (𝛽𝛽(𝑡𝑡∗ − 𝑡𝑡0))                                                                                                  (1)     
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Figure 1. Roughness deterioration and the effect of an M&R treatment on roughness at the time t 

 

The trend curve model has been utilized at the project and the network level in many studies 

(Gao and Zhang, 2012; Li and Madanat, 2002; Ouyang and Madanat, 2006, 2004; 

Seyedshohadaie et al., 2010). In the optimization model of this investigation proposed in the 

following section, various deterioration models can be applied based on the pavement 

performance indicator. In this study, the trend curve model is employed because IRI is taken into 

account as the pavement performance indicator. That is to say, the methodology presented in this 

investigation is qualified to apply to other pavement performance measurements and other 

deterioration functions. 

 

4.3. Stochastic model 

In this paper, the budget and deterioration rate uncertainties in M&R optimization problems are 

modeled through multi-stage stochastic programming. Stochastic programming is a framework 

for optimization problems in which some decision variables are non-deterministic. Stochastic 

programming aims to make a suitable decision that is feasible for all of the scenarios and 

optimizes an average value of stochastic variables’ function and decisions (Mirhasani and 

Hooshmand Khaligh, 2013). 

In one of the stochastic programming approaches, uncertainty is defined by a set of discrete 

scenarios, and the future uncertainty impact is predicted. The scenario-based stochastic 

programming is a valuable method in which decision-makers consider uncertainty based on 

determining feasible future status. For each scenario, a possibility is estimated, and it is expected 

that each scenario occurs with its corresponding possibility. In this situation, the purpose is to 

find an optimal solution that provides an appropriate level for all scenarios. For instance, if 𝑡𝑡 =

1, … ,𝑇𝑇 stages exist in a problem, and  𝜉𝜉𝑡𝑡𝑠𝑠 represents the realizations of the stochastic process 

until time period t for scenario s, the decision process with 𝑇𝑇 stages is according to Figure 2 (a. 

Shapiro et al., 2009). 
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Figure 2. Decision-making steps in multi-stage stochastic programming 

 

Regarding Figure 2, the first stage decisions are made in multi-stage stochastic programming. 

Afterward, a stochastic process affects the performance of first stage decisions. Subsequently, 

the second stage decisions are made to compensate for the likely undesirable influences of the 

first stage decisions. Then, the second stochastic process is realized, which impacts the first and 

second stages of decision performance. Consequently, the decisions are made in the third stage, 

and this process is continued until the final stage decisions are made (A. Shapiro et al., 2009). 

Accordingly, in this investigation the uncertainty related to budget and deterioration rate is 

defined as a set, including the feasible combinations of budget and deterioration rate over the 

planning horizon. Therefore, the various amounts of budgets and different values of deterioration 

rates can be considered in a model. To illustrate this point, assume that a problem comprises 𝑇𝑇 

stages. If two feasible amounts of budget and two feasible values of deterioration rate exist in 

each stage (𝑡𝑡), the number of all scenarios is equal to ∏ 2 × 2𝑇𝑇
𝑡𝑡=1 = 4𝑇𝑇. 

Based on the aforementioned concepts, the multi-stage stochastic mixed integer programming for 

M&R optimization problems is modeled according to Eqs. (2) to (10). 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ∑ ∑ 𝑝𝑝𝑠𝑠|𝐼𝐼𝐼𝐼𝑖𝑖𝑇𝑇𝑠𝑠 − 𝐼𝐼𝐼𝐼𝑖𝑖∗|𝑆𝑆
𝑠𝑠=1

𝐼𝐼
𝑖𝑖=1                                                                                          (2) 

∑ ∑ 𝐴𝐴𝑖𝑖𝐶𝐶𝑖𝑖𝑖𝑖𝑡𝑡𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑠𝑠𝐾𝐾
𝑖𝑖=1

𝐼𝐼
𝑖𝑖=1 ≤ 𝐵𝐵𝑡𝑡𝑠𝑠        ∀𝑡𝑡 ∈ 𝑇𝑇,∀𝑠𝑠 ∈ 𝑆𝑆                                                                          (3) 
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𝐼𝐼𝐼𝐼𝑖𝑖𝑡𝑡𝑠𝑠 = 𝐼𝐼𝐼𝐼𝑖𝑖0 exp(𝛽𝛽𝑠𝑠𝑡𝑡) + ∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑠𝑠 𝑀𝑀𝑖𝑖𝑖𝑖 exp�𝛽𝛽𝑠𝑠(𝑡𝑡 − 𝑗𝑗)�𝐾𝐾−1
𝑖𝑖=1

𝑡𝑡
𝑗𝑗=1 + (𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛 −

𝐼𝐼𝐼𝐼𝑖𝑖0 exp(𝛽𝛽𝑠𝑠𝑡𝑡))𝑥𝑥𝑖𝑖𝐾𝐾𝑡𝑡𝑠𝑠     ∀𝑀𝑀 ∈ 𝐼𝐼,∀𝑠𝑠 ∈ 𝑆𝑆                                                                                                                            

(4) 

𝐼𝐼𝐼𝐼𝑖𝑖𝑡𝑡𝑠𝑠 ≥ 𝐼𝐼𝐼𝐼𝑚𝑚𝑖𝑖𝑛𝑛        ∀𝑡𝑡 ∈ 𝑇𝑇,∀𝑠𝑠 ∈ 𝑆𝑆                                                                                                 (5) 

𝐼𝐼𝐼𝐼𝑖𝑖𝑡𝑡𝑠𝑠 ≤ 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚       ∀𝑡𝑡 ∈ 𝑇𝑇,∀𝑠𝑠 ∈ 𝑆𝑆                                                                                                (6) 

∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑠𝑠𝐾𝐾
𝑖𝑖=1

𝑇𝑇
𝑡𝑡=1 ≤ 𝑁𝑁𝑖𝑖𝑖𝑖        ∀𝑀𝑀 ∈ 𝐼𝐼,∀𝑠𝑠 ∈ 𝑆𝑆                                                                                     (7) 

∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑠𝑠𝐾𝐾
𝑖𝑖=1 = 1       ∀𝑀𝑀 ∈ 𝐼𝐼,∀𝑡𝑡 ∈ 𝑇𝑇,∀𝑠𝑠 ∈ 𝑆𝑆                                                                                    (8) 

𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑠𝑠 ∈ {0,1}, 𝐼𝐼𝐼𝐼𝑖𝑖𝑡𝑡𝑠𝑠 ≥ 0                                                                                                                 (9) 

𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑚𝑚 = 𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑛𝑛       ∀𝑀𝑀 ∈ 𝐼𝐼,∀𝑘𝑘 ∈ 𝐾𝐾,∀𝑡𝑡 ∈ 𝑇𝑇,∀𝑀𝑀 ∈ 𝑆𝑆,∀𝑀𝑀 ∈ 𝑆𝑆, 1 ≤ 𝑀𝑀 < 𝑀𝑀 ≤ 𝑆𝑆, 𝜉𝜉𝑡𝑡𝑚𝑚 = 𝜉𝜉𝑡𝑡𝑛𝑛                  (10) 

 

Eq. (2) indicates the model objective function. According to all budget and deterioration rate 

scenarios, this objective function Eq. (2) minimizes the distances between pavement condition 

level and an ideal level in the last year of the analysis period. The pavement condition ideal level 

is targeted by policymakers and decision-makers. Eq. (3) displays budget constraint, in which the 

annual summation of M&R treatment costs ought to be lower than the yearly budget each year 

and for all scenarios. The pavement condition at time 𝑡𝑡 is calculated based on the deterioration 

rate and the improvement achieved by treatments. The IRI calculation constraint is presented in 

Eq. (4). The last statement in Eq. (4) implies that for treatment 𝐾𝐾 (reconstruction), the condition 

of pavement before treatment is not effective. In other words, if treatment 𝐾𝐾 (reconstruction) is 

applied to pavement, the condition of the corresponding pavement changes to a new pavement 

condition (𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛), and the condition of pavement before reconstruction does not influence the 

condition gained after the treatment. Eq. (5) shows the minimum acceptable value of IRI, and the 

pavements’ roughness cannot be lower than this threshold. Concerning Eq. (6), the roughness of 

pavements should be lower than a particular level, and this level is determined by decision-

makers. The maximum allowable number of each treatment during the planning horizon is 

restricted by Eq. (7). The maximum allowable number of treatments is estimated based on 

implementation limitations, agency resources, the effective life of each treatment, and decision-

makers’ judgments. Eq. (8) guarantees that only one mode of M&R treatment is selected and 
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applied to each section at each time in the analysis period. Eq. (9) reveals that 𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑠𝑠  is a binary 

decision variable. That is to say, in the circumstances that a treatment is chosen for pavement at a 

definite time, the decision variable is one, and it otherwise equals zero. Eq. (10) presents the non-

anticipativity constraints, which correlates with the decisions of similar scenarios. In each stage, 

two scenarios are called “indistinguishable” if their history is the same, and it cannot be 

predicted which of them is going to happen in the future. Otherwise, realization indicates that the 

history of the two scenarios are not entirely equal, and these scenarios are distinctive. The non-

anticipativity constraints guarantee that a similar decision is made for two scenarios if they are 

indistinguishable. 

 

5. Methodology  

The model defined in the previous part is an NP-hard problem. Therefore, the PHA introduced 

by Rockafeller and Wets (1991) is employed to handle the high complexity of the model. The 

PHA is a scenario-based decomposition technique that classifies the problem into some 

individual sub-problems. Ultimately, single-scenario solutions are aggregated. This method 

utilizes a penalty parameter (quadratic) for non-anticipativity constraint violation. Rockafeller 

and Wets (1991) expressed that the impact of the penalty term on solution quality and PHA 

performance is considerable. Nevertheless, provide no procedure to optimize this parameter. In 

that regard, different authors have proposed various methods to update the penalty term over 

multiple iterations. 

 

5.1. Progressive hedging algorithm 

The M&R optimization stochastic model is presented in Eqs. (2) to (10) in section 4.3. The 

model can be separated into scenarios provided that non-anticipativity constraints that unite and 

connect all of the scenarios are overlooked. The non-anticipativity constraints can be written as 

follows: 

𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑠𝑠 = 𝐸𝐸�𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑠𝑠
′ �𝑠𝑠′ ∈ 𝑆𝑆𝑡𝑡𝑠𝑠�                                                                                                             (11) 

Where 𝑆𝑆𝑡𝑡𝑠𝑠 = �𝑠𝑠′�𝜉𝜉𝑡𝑡𝑠𝑠 = 𝜉𝜉𝑡𝑡𝑠𝑠
′�. Eq. (11) can be changed into 𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑠𝑠 = 𝑥𝑥�𝑖𝑖𝑖𝑖𝑡𝑡𝑠𝑠  with: 
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𝑥𝑥�𝑖𝑖𝑖𝑖𝑡𝑡𝑠𝑠 =
∑ 𝑝𝑝𝑠𝑠′𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖

𝑠𝑠′
𝑠𝑠′∈𝑆𝑆𝑖𝑖

𝑠𝑠

∑ 𝑝𝑝𝑠𝑠′𝑠𝑠′∈𝑆𝑆𝑖𝑖
𝑠𝑠

                                                                                                                  (12) 

It was recommended that augmented Lagrangian is considered in PHA modeling (Rockafeller 

and Wets, 1991). The augmented Lagrangian model is represented in Eqs. (13) to (20). In these 

equations, 𝜆𝜆 represents the Lagrange multipliers vector assigned to the non-anticipativity 

constraints, and 𝜌𝜌 > 0 signifies a penalty parameter. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ∑ ∑ 𝑝𝑝𝑠𝑠|𝐼𝐼𝐼𝐼𝑖𝑖𝑇𝑇𝑠𝑠 − 𝐼𝐼𝐼𝐼𝑖𝑖∗|𝑆𝑆
𝑠𝑠=1

𝐼𝐼
𝑖𝑖=1 + ∑ (𝜆𝜆𝑡𝑡𝑠𝑠(𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑠𝑠 − 𝑥𝑥�𝑖𝑖𝑖𝑖𝑡𝑡𝑠𝑠 ) + 𝜌𝜌/2‖𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑠𝑠 − 𝑥𝑥�𝑖𝑖𝑖𝑖𝑡𝑡𝑠𝑠 ‖2)𝑇𝑇

𝑡𝑡=1                          

(13) 

∑ ∑ 𝐴𝐴𝑖𝑖𝐶𝐶𝑖𝑖𝑖𝑖𝑡𝑡𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑠𝑠𝐾𝐾
𝑖𝑖=1

𝐼𝐼
𝑖𝑖=1 ≤ 𝐵𝐵𝑡𝑡𝑠𝑠        ∀𝑡𝑡 ∈ 𝑇𝑇                                                                                                      

(14) 

𝐼𝐼𝐼𝐼𝑖𝑖𝑡𝑡𝑠𝑠 = 𝐼𝐼𝐼𝐼𝑖𝑖0 exp(𝛽𝛽𝑠𝑠𝑡𝑡) + ∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑠𝑠 𝑀𝑀𝑖𝑖𝑖𝑖 exp�𝛽𝛽𝑠𝑠(𝑡𝑡 − 𝑗𝑗)�𝐾𝐾−1
𝑖𝑖=1

𝑡𝑡
𝑗𝑗=1 + (𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛 −

𝐼𝐼𝐼𝐼𝑖𝑖0 exp(𝛽𝛽𝑠𝑠𝑡𝑡))𝑥𝑥𝑖𝑖𝐾𝐾𝑡𝑡𝑠𝑠     ∀𝑀𝑀 ∈ 𝐼𝐼  (15) 

𝐼𝐼𝐼𝐼𝑖𝑖𝑡𝑡𝑠𝑠 ≥ 𝐼𝐼𝐼𝐼𝑚𝑚𝑖𝑖𝑛𝑛        ∀𝑡𝑡 ∈ 𝑇𝑇                                                                                                                            

(16) 

𝐼𝐼𝐼𝐼𝑖𝑖𝑡𝑡𝑠𝑠 ≤ 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚       ∀𝑡𝑡 ∈ 𝑇𝑇                                                                                                                           

(17) 

∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑠𝑠𝐾𝐾
𝑖𝑖=1

𝑇𝑇
𝑡𝑡=1 ≤ 𝑁𝑁𝑖𝑖𝑖𝑖        ∀𝑀𝑀 ∈ 𝐼𝐼                                                                                                              

(18) 

∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑠𝑠𝐾𝐾
𝑖𝑖=1 = 1       ∀𝑀𝑀 ∈ 𝐼𝐼,∀𝑡𝑡 ∈ 𝑇𝑇                                                                                                             

(19) 

𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡𝑠𝑠 ∈ {0,1}, 𝐼𝐼𝐼𝐼𝑖𝑖𝑡𝑡𝑠𝑠 ≥0                                                                                                                                             

(20) 

Additionally, Rockafeller and Wets (1991) declared that 𝑥𝑥�𝑖𝑖𝑖𝑖𝑡𝑡𝑠𝑠  in Eq. (13) should be fixed so as to 

gain full separability. Consequently, the problem should be solved repeatedly, and the amount of 

𝑥𝑥�𝑖𝑖𝑖𝑖𝑡𝑡𝑠𝑠  and the Lagrange multipliers vector ought to be updated over consecutive resolutions. The 

mentioned processes are the procedure of PHA, whose steps are as follows: 
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First step: Set 𝑥𝑥�𝑠𝑠,0 = � 𝑥𝑥�𝑖𝑖𝑖𝑖1
𝑠𝑠,0 , … ,𝑥𝑥�𝑖𝑖𝑖𝑖𝑇𝑇

𝑠𝑠,0 � and w=0. Choose 𝜆𝜆𝑠𝑠,0 = 0,𝜌𝜌0 > 0. 

Second step: Calculate 𝑥𝑥𝑖𝑖𝑖𝑖
𝑠𝑠,𝑛𝑛+1 = �𝑥𝑥𝑖𝑖𝑖𝑖1

𝑠𝑠,𝑛𝑛+1, … ,𝑥𝑥𝑖𝑖𝑖𝑖𝑇𝑇
𝑠𝑠,𝑛𝑛+1 �, s=1,…,S by solving all sub-problem 

scenarios regarding equations (13) to (20). 

Third step: For s=1,…,S and t=1,…,T set 𝑥𝑥�𝑖𝑖𝑖𝑖𝑡𝑡
𝑠𝑠,𝑛𝑛+1 =

∑ 𝑝𝑝𝑠𝑠′𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖
𝑠𝑠′,𝑤𝑤+1

𝑠𝑠′∈𝑆𝑆𝑖𝑖
𝑠𝑠

∑ 𝑝𝑝𝑠𝑠′𝑠𝑠′∈𝑆𝑆𝑖𝑖
𝑠𝑠

   

Fourth step: Set 𝜌𝜌𝑛𝑛+1 and 𝜆𝜆𝑡𝑡
𝑠𝑠,𝑛𝑛+1 = 𝜆𝜆𝑡𝑡

𝑠𝑠,𝑛𝑛 + 𝜌𝜌𝑛𝑛�𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡
𝑠𝑠,𝑛𝑛+1 − 𝑥𝑥�𝑖𝑖𝑖𝑖𝑡𝑡

𝑠𝑠,𝑛𝑛+1�, 𝑡𝑡 = 1, … ,𝑇𝑇, 𝑠𝑠 ∈ 𝑆𝑆.  

Fifth step: Check the termination criteria. If the criteria are met, stop the algorithm. Otherwise, 

update the 𝑤𝑤 ← 𝑤𝑤 + 1 and come back to the second step. 

The following model needs some modifications to be completed. For instance, the fifth step 

requires practical termination criteria. Rockafeller and Wets (1991) claimed that Eq. (21) can be 

an appropriate termination criterion in order to stop the model. 

�∑ 𝑝𝑝𝑠𝑠�𝑥𝑥𝑖𝑖𝑖𝑖
𝑠𝑠,𝑛𝑛+1 − 𝑥𝑥�𝑖𝑖𝑖𝑖

𝑠𝑠,𝑛𝑛�
2

𝑠𝑠∈𝑆𝑆 ≤ 𝜀𝜀                                                                                          (21) 

Another modification is relevant to the primal variables’ initialization. Chiche (2012) analyzed 

this issue and recommended setting primal variables as the sub-problem solution associated with 

𝑠𝑠 without the non-anticipativity constraints. 

5.2. Penalty parameter update 

The penalty parameter (𝜌𝜌) plays a crucial role in the PHA convergence. Rockafeller and Wets 

(1991) applied a penalty parameter constant in order to converge the PHA. Many researchers 

have put this parameter into practice, and it has been revealed that the penalty parameter 

significantly affects the algorithm’s behavior. Mulvey and Vladimirou (1991) proved that the 

value of 𝜌𝜌 considerably impacts the convergence rate of the PHA. Helgason and Wallace (1991) 

declared that 𝜌𝜌 ought to be as small as possible, while it should be large enough to assure the 

convergence.  

Some studies have been conducted to examine the ideal value of the penalty parameter and its 

influence on affected variables. Reis et al. (2005) considered a descending factor as the penalty 

parameter, and this parameter was reduced gradually over multiple iterations. On the other hand, 
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some authors have allocated ascending factors to the penalty parameter (Carpentier et al., 2012; 

Crainic et al., 2011). Hvattum and Løkketangen (2009) employed a restraint method to update 

the penalty parameter based on Eq. (21). Goncalves et al. (2012) utilized an ascending factor in 

proportion with non-anticipativity violation. Gul (2010) proposed a new technique to update the 

penalty parameter over multiple iterations. In that technique, the penalty parameter can be 

changed dynamically in order to enhance the PHA performance. The penalty parameter is 

increased when the dual variables do not progress, and it is reduced when primal variables stop 

progressing. Zephyr et al. (2014) applied non-anticipativity indicators and optimality-based 

coefficients to update the penalty parameter dynamically. Thus, the penalty parameter is allowed 

to be reduced or increased with that method. 

Zehtabian and Bastin (2016) analyzed some of the well-recognized techniques and proposed a 

new adaptive method to improve the performance of the algorithm process. This novel method 

updated the penalty parameter efficiently and converged to optimality in all of the analyzed 

problems. Accordingly, the speed of the introduced method was far more than that of most of the 

other methods. The penalty parameter is updated intelligently according to both dual and primal 

spaces. In that regard, the penalty parameter is increased when non-anticipativity constraints are 

suitably represented. However, the penalty parameter is reduced if the approximation is not 

sufficient. In this investigation, the method presented by Zehtabian and Bastin (2016) is used to 

update the penalty parameter because of its high efficiency. 

In the strategy introduced by Zehtabian and Bastin (2016), the variation of 𝑥𝑥�𝑠𝑠,𝑛𝑛 is initially 

checked to prevent non-anticipativity constraints from being enforced when the right non-

anticipativity solution is not spotted, or when the non-anticipativity approximation is not 

adequate. Hence, if the primal variables change considerably, the penalty parameter is not 

allowed to increase. Moreover, a trade-off between the quadratic penalty and the Lagrangian 

function is considered. To this end, if the solution is stabilized and extensive violations are 

observed in non-anticipativity constraints, the penalty parameter is moderately increased, and 

otherwise the penalty parameter is fixed. Ultimately, if none of the mentioned statuses is 

recognized, the primary space converges, and the penalty parameter is increased for dual space 

convergence. For more information about the algorithm implementation and penalty parameter 
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update, the authors encourage the reader to peruse the details provided by Zehtabian and Bastin 

(2016). 

 

6. Numerical case study 

A real large-scale network is considered the case study of the proposed model. The model is 

solved by PHA, and the results are presented in this section. The problem modeling is coded in 

GAMS software. Likewise, the model is run in GAMS software. A Core i7-6700HQ computer 

with 2.60 GHz CPU and RAM of 16 GB is employed to run the mentioned code. The case study 

and its characteristics and the required parameters of optimization modeling are introduced 

before presenting the results. 

 

6.1. Case study features and model parameters 

A real pavement network with an approximate length of 988 kilometers is the case study of the 

current investigation. This case study includes 251 primary asphalt pavement sections, which are 

primary road, out of the cities and located in Tehran. The sections’ characteristics and conditions 

are extracted from Iran’s Road Maintenance and Transportation Organization (RMTO) (Iran’s 

Road Maintenance and Transportation Organization, 2018).   

To sum up, the average length of all sections is 3.94 kilometers. The longest and the shortest 

sections length in the network are equal to 16.3 and 2.4 kilometers, respectively. Moreover, the 

IRI is considered the performance indicator, and the average value of IRI for all network sections 

is 3.77 m/km in the initial year. Among all network sections, the minimum and maximum values 

of the IRI in the initial year are 2.24 m/km and 5.68 m/km in the order mentioned. 

The pavement treatment strategies are classified into five groups, including do nothing (first 

strategy), preventive maintenance (second strategy), light rehabilitation (third strategy), medium 

rehabilitation (fourth strategy), and reconstruction (fifth strategy). Do nothing implies that no 

maintenance is implemented, and pavement condition does not improve. The preventive 

maintenance signifies chip seal, micro-surfacing, and slurry seal. Light rehabilitation includes 

surface milling and a thin hot asphalt overlay. Medium rehabilitation contains surface milling 
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and more than one overlay by hot mix asphalt and cold recycling. Reconstruction implies the 

replacement of the entire existing pavement structure with new pavement. 

The unit cost of pavement treatment is one of the vital model parameters extracted from Iran’s 

Road Maintenance and Transportation Organization (RMTO) (Iran’s Road Maintenance and 

Transportation Organization, 2018). The unit implementation cost of the first to the fifth 

treatments are zero Toman/m2, 5000 Toman/m2, 15000 Toman/m2, 32000 Toman/m2, and 65000 

Toman/m2 in the order given. The improvement reached by the implementation of the first to the 

fourth treatment strategies is equal to zero m/km, 0.3 m/km, 1.2 m/km, and 2 m/km, respectively. 

For instance, the third treatment implementation leads to a 1.2-m/km reduction in the IRI. As 

previously mentioned, the improvement of the fifth treatment (reconstruction) is not related to 

the section condition before treatment implementation, and after reconstruction, the IRI changes 

to a new pavement condition (𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛 = 1.5). The mentioned improvements are extracted from 

Paterson (1990) and Lu and Tolliver (2012). 

The RMTO allocates 66 billion Tomans for preservation, maintenance, and rehabilitation of the 

mentioned network, and the annual budget of the case study of this investigation is thus 66 

billion Tomans (Iran’s Road Maintenance and Transportation Organization, 2018). The budget 

reduction percentage is reckoned at 20% in order to consider uncertainty scenarios. The 

mentioned budget reduction is selected based on historical budget data and expert opinion. 

Therefore, the budget uncertainty is taken into account by considering two allocated budgets: 66 

billion Tomans and a 20% budget reduction (52.8 billion Tomans). 

Deterioration rate is generally determined by checking historical data. At network-level studies, a 

constant rate is usually assigned to the deterioration rate of all pavement sections. The 

deterioration rate (β) in the trend curve model (Eq. (1)) has been analyzed in several studies, and 

0.05 is considered a precise and ideal deterioration rate (Li and Madanat, 2002; Ouyang and 

Madanat, 2004; Seyedshohadaie et al., 2010). In this investigation, the deterioration rate is 

detected based on the aforementioned studies and RMTO experts. In this regard, two 

deterioration rates, including logical rate (0.05) and pessimistic rate (0.06), are taken into 

consideration to address uncertainty. The pessimistic deterioration rate is considered due to the 

variation of pavement characteristics in the current study and the investigations, which 
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considered a deterioration rate of 0.05. The pessimistic deterioration rate is 20% higher than the 

logical deterioration rate, and this incremental value is proposed by RMTO. 

The minimum and maximum allowable value of IRI for each section in all years of analysis 

period is zero and four in the order given (Iran’s Road Maintenance and Transportation 

Organization, 2018). Moreover, 2.2 m/km is the ideal level of IRI in the last year of the planning 

horizon for the noted network according to RMTO (Iran’s Road Maintenance and Transportation 

Organization, 2018). The analysis period is considered four years, and for each year only one 

treatment is applied for each section.  

 

6.2. Results of stochastic programming model 

In this section, the results of the problem solved by the multi-stage stochastic programming are 

described, and they are compared with the outcomes presented in the deterministic model. The 

CPLEX solver in GAMS software is applied to solve the deterministic problems and the sub-

problems of PHA.  

Based on the descriptions, as mentioned earlier, there are four possible combinations of the 

budget and the deterioration rate in each year. Therefore, the case study of this investigation 

comprises 44=256 different scenarios for the four-year analysis period. It is assumed that the 

possibility of all scenarios’ occurrence is equal, and each scenario happens with the possibility of 

3/9 × 10−3. The master problem contains 1285120 variables. However, the sub-problems 

include 5020 variables, and the decomposition technique significantly reduces the size of the 

problem. Thus, it can be postulated that large-scale M&R problems face high complexity and 

cannot be solved by conventional techniques. Nonetheless, powerful decomposition techniques 

such as PHA are highly qualified to address these problems.  

Eq. (22) is selected as the termination criterion based on the details provided by Zehtabian and 

Bastin’s (2016) study. Eq. (22) is the normalized version of the termination criterion suggested 

by Rockafeller and Wets (1991) (Eq. (21)). 
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𝑆𝑆𝑡𝑡𝑆𝑆𝑝𝑝𝑝𝑝𝑀𝑀𝑀𝑀𝑆𝑆 𝐶𝐶𝐶𝐶𝑀𝑀𝑡𝑡𝑀𝑀𝐶𝐶𝑀𝑀𝑆𝑆𝑀𝑀 = �
∑ 𝑝𝑝𝑠𝑠�𝑚𝑚𝑖𝑖𝑖𝑖

𝑠𝑠,𝑤𝑤+1−𝑚𝑚�𝑖𝑖𝑖𝑖
𝑠𝑠,𝑤𝑤�

2
𝑠𝑠∈𝑆𝑆

𝑚𝑚𝑚𝑚𝑚𝑚�1,∑ 𝑝𝑝𝑠𝑠�𝑚𝑚�𝑖𝑖𝑖𝑖
𝑠𝑠,𝑤𝑤�2𝑠𝑠∈𝑆𝑆 �

≤ 𝜀𝜀                                                                                                 

(22) 

In Eq. (22), the value of 𝜀𝜀 is considered 10-5 based on Zehtabian and Bastin’s (2016) 

investigation. The problem is solved for the case study, and the algorithm achieves the optimal 

solution after 173 iterations. The values of the stopping criterion among various iterations and 

their trend are illustrated in Figure 3.  

 

 

Figure 3. The values of stopping criterion over the iterations 

As can be seen from the results of Figure 3, the highest amount of the stopping criterion is 

related to the first iteration. Furthermore, the stopping criterion value rarely increased over 

iterations, and it steadily reduced. Ultimately, the algorithm reaches the optimal solution in the 

173rd iteration. 

The objective function value obtained by the stochastic model is 126.4. The percentage of 

treatments selected over all scenarios in each year is presented in Table 2. That is, the values 

presented in Table 2 are the average value of treatment selected in 256 uncertainty scenarios. For 
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instance, the average percentage of do nothing, preventive maintenance, light rehabilitation, 

medium rehabilitation, and reconstruction for all uncertainty scenarios is 68.7%, 13.2%, 12%, 

5.1%, and 1%, respectively. As can be seen in the results of Table 2, the reconstruction strategy 

is not chosen in the second, third, or fourth years by the stochastic model. Additionally, 

reconstruction is applied for only one percent of sections in the firth year. The do nothing 

strategy is assigned to most of the sections in all years of the analysis period. Additionally, the 

second most-chosen strategy is preventive maintenance, and on average, it is applied for 13.2%, 

22.4%, 27.5, and 26.9% of pavement sections from the first year to the fourth year, respectively. 

Light rehabilitation is selected more than medium rehabilitation in all of the years. Hence, it can 

be postulated that the stochastic model tries to enhance the condition of the network by 

application of preventive maintenance and light rehabilitation, which may be due to the 

likelihood of budget reductions in the analysis period. 

Table 2. The percentage of treatments selected by stochastic model over all scenarios 

Year Do 
nothing 

Preventive 
maintenance 

Light 
rehabilitation 

Medium 
rehabilitation 

Reconstruction 

1 68.7 13.2 12.0 5.1 1.0 
2 57.8 22.4 19.6 0.2 0.0 
3 52.1 27.5 18.0 2.5 0.0 
4 55.7 26.9 14.2 3.1 0.0 

 

The problem is solved by the deterministic expected value (EV) model to compare the results of 

the stochastic model with the determination model. To this end, all of the uncertainty and 

random parameters are considered to be their expected values, and consequently, the model is 

solved under the deterministic strategy known as the EV approach. For example, the budget is 

considered 66 52.859.4
2
+

= in each year because each budget scenario may occur with the 

possibility of 50%. Subsequently, the model is solved under the EV approach, and the EV 

reaches an objective function of 108.9. The objective function of the optimal solution introduced 

by EV is 13.8% lower than that of the stochastic model, which may be due to a single scenario 

consideration in the EV model compared with 256 scenarios in the stochastic model.  

Table 3 compares the percentage of treatment strategies introduced by the stochastic model and 

the expected value approach. As can be perceived, the percentage of reconstruction is exactly the 
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same in both stochastic and deterministic models. The medium rehabilitation percent in the 

stochastic model is 0.3% more than that of the deterministic model. The percentage of light 

rehabilitation in stochastic and expected value approach is 15.9% and 16.7% in the order given. 

The highest level of variation is related to the percentage of preventive maintenance. The 

percentage of preventive maintenance selected by stochastic programming is 3% more than that 

of the deterministic model. Accordingly, it can be theorized that the stochastic model allocates 

more budget to preventive maintenance. That is, the stochastic model may try to allocate budget 

to a higher number of sections in order to compensate for the negative impacts of likelihood of 

budget reduction and possible incremental deterioration rate. 

 

Table 3. The percentage of treatments assigned to network sections in the analysis period 

 Do 
nothing 

Preventive 
maintenance 

Light 
rehabilitation 

Medium 
rehabilitation 

Reconstruction 

Stochastic 58.6 22.5 15.9 2.7 0.3 
Deterministic 61.1 19.5 16.7 2.4 0.3 

 

Figure 4 illustrates the average IRI of network sections in the analysis period. A more detailed 

look at this figure reveals that the condition-based performances of the deterministic model and 

the stochastic model are approximately the same. However, the deterministic model performance 

is a bit better than the stochastic model performance. The slight performance-based advantage of 

the deterministic model over the stochastic model is due to the high number of scenarios 

considered by the stochastic model. 

In other words, the IRI of deterministic and stochastic optimal solutions in the last year is 2.61 

and 2.65, respectively. Meanwhile, the average IRI of network sections is gradually reduced, and 

it reaches its lowest level in the last year. The deterministic model reduces the average IRI of the 

network sections 9.3%, 8.8%, 8.3%, and 8.7% in the first, second, third, and fourth years of the 

analysis period, respectively. The network IRI is decreased 8%, 8.9%, 8.2%, and 8.6% in the 

first to the last year of the planning horizon, respectively. 
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Figure 4. The condition of the network in the planning horizon 

 

The application of stochastic models in some problems may not be valuable. Therefore, some 

conventional techniques are generally employed to evaluate the effectiveness of stochastic 

models. In the following sections, some robust yardsticks are applied to investigate the 

effectiveness of the stochastic model in the case study of this paper. 

In the expected value (EV) approach, the average value of each uncertainty parameter is replaced 

with their corresponding uncertainty parameter, and this process generates a more 

straightforward problem, which equals the deterministic model. Assume that 𝑥𝑥𝐸𝐸𝐸𝐸 represents the 

optimal solution to the expected value model. In order to assess the performance of the 𝑥𝑥𝐸𝐸𝐸𝐸 

solution under all scenarios, the first stage (first year) solutions of 𝑥𝑥𝐸𝐸𝐸𝐸 are considered the first 

stage decision variables in the stochastic model. In this mode, the stochastic problem is called the 

here and now problem, and the first stage decisions of this problem are fixed based on the 

optimal solution to the EV model. Consequently, the here and now problem is solved, and the 

average value of 𝑀𝑀(𝑥𝑥𝐸𝐸𝐸𝐸 , 𝑠𝑠) under all scenarios 𝑠𝑠 ∈ 𝑆𝑆 is called 𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸  and is calculated based on 

Eq. (23). 

𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸 = ∑ 𝑝𝑝𝑠𝑠𝑀𝑀(𝑥𝑥𝐸𝐸𝐸𝐸 , 𝑠𝑠)𝑠𝑠∈𝑆𝑆                                                                                                                            

(23) 
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Therefore, 𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸  evaluates the next stage’s variables based on 𝑥𝑥𝐸𝐸𝐸𝐸 and 𝑠𝑠. By virtue of Eq. (23), 

the 𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸  is assessed, and it equals 154.3 for the case study of this investigation. One of the vital 

parameters to evaluate the value of the stochastic model optimal solution is the value of the 

stochastic solution (VSS). The value of the stochastic solution (VSS) is calculated according to 

Eq. (24). 

𝑉𝑉𝑆𝑆𝑆𝑆 = 𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸 − 𝑀𝑀𝐻𝐻𝐻𝐻                                                                                                                                      

(24) 

The VSS scrutinizes the disastrous impacts of ignoring uncertainty in the model and evaluates 

the benefits gained by the stochastic model. The higher value of VSS represents the importance 

of uncertainty in the problem. The lower value of VSS signifies that the result of the expected 

value approach is an appropriate approximation of the optimal solution to the problem, and the 

application of the stochastic model is not beneficial. For the case study of this investigation, the 

VSS is equal to 27.9=154.3-126.4, and VSS is roughly 22% of 𝑀𝑀𝐻𝐻𝐻𝐻 , which proves that the 

stochastic model significantly prevails over the deterministic model. 

 

7. Conclusions 

This study focuses on pavement maintenance and rehabilitation scheduling in large-scale 

networks. Furthermore, uncertainty is taken into account in the aforementioned problem. To this 

end, the problem is formulated as a multi-stage stochastic mixed-integer programming problem. 

The annual budget and pavement deterioration rate are considered uncertain parameters, and two 

sensible states are assigned to each uncertain parameter each year. Hence, four states are 

generated for each stage (year) by a combination of budget uncertainty and deterioration rate 

uncertainty. By increasing the number of sections in the network and the number of analysis 

years, the complexity of the M&R problem is increased exponentially, and developing efficient 

optimization techniques for such a problem could be challenging. To overcome this issue, the 

PHA as a powerful algorithm is applied to solve the large-scale M&R problem. To this end, the 

master problem decomposes into scenario sub-problems. Afterward, each sub-problem is solved 

as a mathematical program. Consequently, scenario-dependent solutions are gradually 

aggregated to the ultimate optimal solution. 
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To analyze the performance of the introduced method, a case study including 251 primary 

asphalt pavement sections is taken into consideration, and the maintenance planning is 

investigated for a four-year period. The results indicate that the progressive hedging algorithm is 

highly qualified to tackle the high complexity of large-scale network M&R scheduling. The 

expected value approach is used to assess the effectiveness of the stochastic model. A more 

detailed look at the uncertainty and deterministic model’s comparison reveals that both models' 

average condition is approximately the same. Nonetheless, the average IRI of the network 

sections for the deterministic model is 1.5% lower than that of the stochastic model in the last 

year of the analysis period because the stochastic model considers 256 scenarios simultaneously, 

and the deterministic model tackles only one single scenario. Moreover, the stochastic model 

attempts to enhance the condition of more sections at each stage. Therefore, the stochastic model 

allocates more funds to preventive maintenance in order to compensate for the negative 

influences of possible budget reduction and likelihood of incremental deterioration rate. The 

percentage of preventive maintenance allocated to pavement sections is 22.5% in the stochastic 

model, while this value is 19.5% in the deterministic model. Ultimately, some uncertainty 

assessment yardsticks are utilized to gauge the effectiveness of the stochastic model. These 

criteria indicate that the application of uncertainty in the M&R problem is vital, and the value of 

the stochastic solution equals 22% of 𝑀𝑀𝐻𝐻𝐻𝐻 . 
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