
Highlights

• We propose a divide-and-conquer idea to geometric AL sampling.

• We provide the geometric insights for cooperating cluster boundary points in AL.

• An AL algorithm termed GAL is developed in this paper.

• We break the theoretical curse of uncertainty evaluation sampling by GAL algorithm.

• Experiments verify that GAL can be applied in multi-class settings of AL.
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Abstract

Active learning (AL) improves the current training model of the classifier, by querying the labels from the unla-

beled data pool. The querying process is typically supervised by an uncertainty evaluation function. However,

the uncertainty evaluation always suffers from performance degeneration when the initial labeled set has insuf-

ficient labels. To completely eliminate the dependence on the uncertainty evaluation sampling in AL, this paper

proposes a divide-and-conquer idea that directly transfers the AL sampling as the geometric sampling over the

clusters. By dividing the points of the clusters into cluster boundary and core points, we theoretically discuss

their margin distance and hypothesis relationship. With the advantages of cluster boundary points in the above

two properties, we propose a Geometric Active Learning (GAL) algorithm by knight’s tour. Experimental studies

of the two reported experimental tasks including cluster boundary detection and AL classification show that the

proposed GAL method significantly outperforms the state-of-the-art baselines.

Keywords: Active learning, uncertainty evaluation, geometric sampling, cluster boundary.

1. Introduction1

Active learning (Cohn et al., 1994) is explored to improve the prediction ability of the current classifica-2

tion model in supervised learning problems without sufficient labels. This study has been widely applied in3

various of learning scenarios where the unannotated data are abundant but annotating them is expensive and4

time-consuming, such as semi-supervised text classification (Hu et al., 2016), image annotation (Li et al., 2012),5

transfer learning (Guo et al., 2016), etc. Existing AL strategies focus on the construction of an uncertainty eval-6

uation function which guides the subsequent sampling such as (Lewis & Gale, 1994), (Roy & McCallum, 2001),7

etc. However, this progress heavily depends on the label diversity and distribution features of the initial labeled8

IFully documented templates are available in the elsarticle package on CTAN.
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(c) Cluster boundary points

Figure 1: Motivation of our active learning work. In each sub-figure, the black line denotes the generated SVM classification model based

on the data points in the figure. (a) Training the original data space. (b) Training the cluster core points. (c) Training the cluster boundary

points. We observe that the generated classification lines of (c) are similar to the models of (a) and (b).

set. When the initial labeled set only has a few data, performance degeneration of the subsequent sampling would9

be inevitable.10

Geometric sampling shows its power in various of domains such as fast SVM training (Tsang et al., 2005),11

Bayesian adversarial spheres algorithm (Bekasov & Murray, 2018), geometric deep learning (Fey et al., 2018),12

etc. Especially in large scale classification issue, Core Vector Machine (CVM) (Tsang et al., 2006) changed13

the SVM to a problem of minimum enclosing ball (MEB), which is popular in hard-margin support vector data14

description (SVDD) (Tax & Duin, 2004), and then iteratively calculated the ball center and radius in a (1+ε)15

approximation. In this process, the cluster boundary points located on the surface of each MEB are added into16

a special data collection called core sets. Trained by the detected core sets, the proposed CVM performed faster17

than the SVM and needed less support vectors. Especially in the Gaussian kernel, a fixed radius was used to18

simplify the MEB problem to the EB (Enclosing Ball), and accelerated the calculation process of the Ball Vector19

Machine (BVM) (Tsang et al., 2007). Without sophisticated heuristic searches in the kernel space, the training20

model, using points of high dimensional ball surface, can still be approximated to the optimal solution.21

In this paper, we are motivated by the advantages of boundary points of CVM and propose a divide-and-22

conquer approach to geometric sampling for AL (see Figure 1). Underlying MEB model, we divide the data of23

each class into two types: cluster boundary and core points. In geometric description, cluster boundary points24

are located at the surface of one cluster and core points are distributed inside the cluster. To study the properties25

of the two types of points, we compare them from two-fold: margin distance (w.r.t. Lemma 1) and hypothesis26

relationship (w.r.t. Lemma 2). The conclusion shows that cluster boundary points play more important role in27

the construction of the classification hyperplane compared to core points in a geometrical perspective.28
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Our conquer step is to obtain the cluster boundary points. By setting a knight in the geometric space, the29

path disagreement of the tour helps us to differ from cluster boundary and core points. We assume the tour path30

is decided by the update process of traversing 1 to k nearest neighbors (kNN) of the current tour position (data31

point). Their geometric disagreement in path length become the key of our detection method, i.e., the average32

tour path of boundary points are longer than that of the core points. With the above divide-and conquer analysis,33

we finally propose a Geometric Active Learning (GAL) algorithm by training the geometric cluster boundary34

points. The contributions of this paper are described as follows.35

• We propose a divide-and-conquer idea to geometric AL sampling. It transfers the uncertain sampling space36

of AL into a set of the cluster boundary points.37

• We provide the geometric insights for cooperating cluster boundary points in AL under the assumption of38

geometric classification.39

• An AL algorithm termed GAL is developed in this paper. It samples independently without iteration and40

help from the labeled data.41

• We break the theoretical curse of uncertainty evaluation sampling by GAL algorithm since it is neither a42

model-based nor label-based strategy with the fixed time and space complexities ofO(NlogN) andO(N)43

respectively.44

• A lot of experiments are conducted to verify that GAL can be applied in multi-class settings to overcome45

the binary classification limitation of many existing AL approaches.46

The remainder of this paper is structured as follows. The related work is reported in Section 2. The pre-47

liminaries are described in Section 3 and the geometric insights on cluster boundary points in AL are presented48

in Section 4. The divide-and-conquer approach of knight’s tour is presented in Section 5. The experiments and49

results are reported in Sections 6. The discussion is presented in Section 7. Finally, we conclude this paper in50

Section 8.51

2. Related Work52

In this section, we present the related work on active learning and cluster boundary research.53

2.1. Active learning54

The learning goal of AL is to obtain a descried error rate by annotating as fewer queries as possible. To55

improve the performance of the current classification model, the AL learner (human expert) is allowed to pick56
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up a subset from an unlabeled data pool. Those data, which may largely affect the subsequent update of the57

learning model, are the primary goals of the learner. As a policy, accessing the unlabeled data pool to sample and58

querying their true labels with a given budge are approved. However, all the learners would face an awkward and59

difficult situation: how to fast select the descried data from the massive unlabeled data in the pool.60

To resolve the above challenges, uncertainty evaluation (Lewis & Gale, 1994) was proposed to guide AL by61

selecting the most informative or representative instances in a given sampling scheme or distribution assumption,62

such as margin (Tong & Koller, 2001), uncertainty probability (Roy & McCallum, 2001), maximum entropy63

(Melville & Mooney, 2004), confused votes by committee (Seung et al., 1992), etc. For example, (Tong & Koller,64

2001) proposes to select the data which is nearest to the current classification hyperplane, (Roy & McCallum,65

2001) selects the data which can maximize the error rate change, (Melville & Mooney, 2004) selects the data66

with the maximum entropy of prediction probability, etc. Basically, these uncertainty-based AL algorithms aim67

to reduce the number of queries or converge the classifier quickly. Accompanied by multiple iterations, querying68

stops when the defined sampling number is met or a satisfactory model is found. It is thus these algorithms still69

need to traverse the whole data set repeatedly in this framework, although this technique performs well. However,70

they always suffer from one main limitation, that is, heuristically searching the whole data space to obtain the71

optimal sampling subset is impossible because of the unpredictable scale of the candidate set.72

In practice, incorporating the unsupervised learning in the sampling process shows powerful advantages such73

as (Nguyen & Smeulders, 2004) (Kang et al., 2004) (Urner et al., 2013). It makes the learner solve the previous74

limitation be possible. One classical method (Dasgupta & Hsu, 2008) is performing the hierarchical clustering75

before sampling to improve th lower bound of the subsequent training performance. By setting up a probability76

condition, the learner is allowed to confidently annotate a number of subtrees with the label of the root note.77

When the clustering structure is perfect, it wold be positive for the sampling. However, an improper clustering78

results will mislead the annotation process. Then, performance degeneration of the subsequent sampling is79

inevitable.80

2.2. Cluster boundary81

Cluster boundary points are a set of special objects distributed in the margin regions of each cluster. Their82

labels are given by the cluster structure and guide the clustering partition. However, those label assignations are83

uncertain. Nowadays, the practical advantage of the cluster boundary has been widely used in the latent virus84

carrier detection (Li et al., 2015), abnormal gene segment diagnosis (Qiu & Cao, 2016), etc.85

With the prior experience in clustering algorithms, researchers firstly study the cluster boundary detection86

issue in the low dimensional space and propose a series of approaches, such as (Xia et al., 2006) (Qiu et al.,87
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2007) (Li et al., 2015) etc. In those proposed algorithms, BORDER firstly defines the cluster boundary points88

by measuring the density of their nearest neighbors, and uses the reverse kNN to obtain the complete boundary89

points, but with all the noises. To smooth the influence of noises, (Qiu et al., 2007) propose a detection algorithm90

termed BRIM via analyzing the balance property of the data distributed inside and outside the cluster. Because91

the extracted features are in low dimensional space, this algorithm could only be applied in two-dimension space.92

Moreover, the task of detecting the cluster boundary objects in high dimensional clusters is firstly studied in (Qiu93

& Cao, 2016) via utilizing the particle space inversion and Hopkins statistic. However, the devised Euclidean94

Gaussian filter function can not work well in very high-dimensional space because of the uncertainty of noises95

in the sparse distribution.96

97

Table 1: A summary of notations

Notation Definition
hw, h

+
w , h

β
w, h

ζ
w classifiers

error(hw) prediction error rate of X when training hw
X data set
N data number of X

Nl, Nu, Nq number of labeled, unlabeled, queried data
Y label set
xi, p a data point in X
Xl labeled data points in X
Xq queried data points in X
Xt training set after querying
L distance function
ζ core points
β cluster boundary points
η noises
χ training set of [β ζ]
ζ+ core points located inside the positive class
ζ− core points located inside the negative class
β∗ cluster boundary points located near h
η noises

ζ1, ζ2 core points
β1, β2 boundary points
η1, η2, η3 noises
→ approximation statement
← assignment statement in algorithm

98

3. Preliminary99

In this section, we first define the AL sampling by a fam-100

ily of linear functions. Then, we define the cluster boundary101

and core points by a group of density functions. Related102

definitions, main notations and variables are briefly summa-103

rized in Table I.104

Given X represents data space {x1, x2, x3, ..., xn} ∈

Rn×m, where xi = (xi1, xi2, xi3, ..., xim) and the label

space Y = (y1, y2, y3, ..., yn), considering the classification

hypothesis:

hw := wTx+ b, (1)

where w is the parameter vector and b is the constant vector,105

here gives:106

107

Definition 1. Active learning. Optimizing w to get the minimum RSS (residual sum of squares)(Yu et al., 2006)

(Zhang et al., 2011):

w∗ = argmin
w
{
n∑
i=1

(wTxi − yi)2} (2)
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i.e.,

w∗ =(X Tt Xt)−1X Tt Y

s.t. Xt = [Xl Xq],
(3)

where Xl is the labeled data, Xq is the queried data, and Xt is the updated training set.108

109

Definition 2. Cluster boundary point (Xia et al., 2006).110

A boundary point p is an object that satisfies the following conditions:111

1. It is within a dense region IR.112

2. ∃ region IR′ near p, Density(IR′)� Density(IR) or Density(IR′)� Density(IR).113

114

Definition 3. Core point. A core point p is an object that satisfies the following conditions:115

1. It is within a dense region IR.116

2. ∃ an expanded region IR′ based on IR, Density(IR′)−Density(IR)→ 0.117

118

4. Geometric Insights119

In clustering-based AL work, core points provide a little help for the parameter training of classifiers. Consid-120

ering that cluster boundary points may provide decisive factors for the support vectors, CVM and BVM iteratively121

use the points distributed on the hyperplane of an enclosing ball to train fast core support vectors in large-scale122

data sets. Their significant success motivate the work of this paper.123

To further show the importance of cluster boundary points, we (1) clarify the performance of training cluster124

boundary points in Section 4.1, (2) discuss the margin distance to the classification line or hyperplane of boundary125

and core points in Section 4.2, and (3) analyze the hypothesis relationship when training boundary and core points126

in Section 4.3, where the discussion cases of (2) and (3) are binary, and multi-class classifications of low and127

high-dimensional space.128

4.1. Performance of cluster boundary129

In this section, we propose a geometrical perspective that the performance of the classification model is130

determined by the cluster boundary points. Our main theoretical result is summarized as follows.131

132
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Proposition 1. Suppose that ζ, β respectively be a set of core points and cluster boundary points draw from a

fixed geometrical cluster, Ξ be their union of set that satisfies Ξ=[β ζ]. Let hΞ be the classification hypothesis

with respect to the training set Ξ, hβ be another classification hypothesis with respect to the training set β. The

following hods for the generalized error disagreement ∆
′
:

∆
′

= err(hΞ)− err(hβ)→ 0. (4)

where→ denotes the approximation symbol.133

Our main theoretical results in Proposition 1 claim that the core points, distributed inside the center regions134

of any cluster, present little influences on training a descried hypothesis h. To demonstrate our insights, Lemma135

1 and Lemma 2 provide theoretical supports in different geometrical views, where Lemma 1 proves that cluster136

boundary points have shorter margin distance to the geometric classification line or hyperplane compared with137

core points, and Lemma 2 proves the trained models generated from core points are a subset of the models138

generated from the boundary points. In next subsection, we respectively present the detailed proofs of the two139

lemmas in settings of binary, multi-class settings of low and high dimension space.140

4.2. Margin distance141

Margin distance measures the distance to the classification line or hyperplane of one data point and we use142

L(., .) to denote. The margin distance relations of boundary points and core points are described in the following143

lemma.144

Lemma 1. Suppose that ζ, β respectively be a set of core points and cluster boundary points draw from a fixed

geometrical cluster. Let L(., .) be the margin distance function. The margin distance of boundary points are

shorter than the core points distributed in their local geometrical space, i.e.,

L(β, h) < L(ζ, h). (5)

Lemma 1 is supported by Corollary 1 to 3 from different cases:145

• Corollary 1: L(β, h) < L(ζ, h) holds in binary classification of low dimensional space, where Corollaries146

1.1 and 1.2 prove Proposition 1 in adjacent classes and well-separated classes, respectively.147

• Corollary 2: L(β, h) < L(ζ, h) holds in multi-class classification issue of low dimensional space.148

• Corollary 3: L(β, h) < L(ζ, h) holds in high-dimensional space.149

We now present detailed proofs for the above corollaries.150
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Figure 2: (a) An example of adjacent classes in two-dimensional space. h denotes a linear classification hypothesis. The red diamonds

denote samples of Class 1, the blue squares denote samples Class 2. ζ1, ζ2 are two core points and β1, β2 are two cluster boundary points.

This figure illustrates Eq. (7) and the conclusion of it are L(β1, hw) < L(ζ1, hw) and L(β2, hw) < L(ζ2, hw). (b) An example of β∗ in

the binary classification problem. This figure illustrates Eq. (11). (c)An example of well-separated classesin two-dimensional space. This

figure illustrates Eq. (10). (d) An example of segmenting β in the multi-class classification problem with k = 6.

Corollary 1. L(β, h) < L(ζ, h) holds in binary classification of low dimensional space.151

Given two facts in the classification: (1) the data points far from h usually have clear assigned labels with a152

high prediction class probability; (2) h is always surrounded by noises and a part of the boundary points. Based153

on these facts, the proof is as follows.154

Corollary 1.1: L(β, h) < L(ζ, h) holds in adjacent classes of low dimensional space.155

Proof. Given any adjacent classes scenarios with binary labels (Y ∈ {-1,+1}) such as Figure 2(a). Let ζ+ denote

the core points located inside the positive class, ζ− denote the core points located inside the negative class, β∗
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denotes the cluster boundary points near h, and η denote the noises near h. The RSS analysis in such classification

scenarios satisfy: 

RSS(ζ+) =
∑Nζ+
i=1 (wTx− 1)2 → 0,Xt = ζ+

RSS(ζ−) =
∑Nζ−
i=1 (wTx+ 1)2 → 0,Xt = ζ−

RSS(β∗) =
∑Nβ∗
i=1 (wTx− 0)2 → 0,Xt = β∗

RSS(η) =
∑Nη
i=1(wTx− 0)2 → 0,Xt = η

(6)

where Nζ+ , Nζ− , Nβ∗ , and Nη denote their numbers of the four types of points. In most of classification issues,

noises always have wrong guidance on model training. We therefore only focus on the differences between the

core and boundary points, that is to say,

|hw(β∗)|2 − |hw(ζ)|2 = (wxTβ∗)
2 − (wxTζ )2 =w2(x2

β∗ − x2
ζ)→ ε1 < 0. (7)

where ε1 denotes a constant. In R space, the margin distance function between xi and h could generalized as

L(xi, hw) =
|wi1xi1 + wi2xi2 + b|√

w2
i1 + w2

i2

. (8)

Considering that the classifier function is hw(xi) = wi1xi1 + wi2xi2 + b, we conclude L(β∗, hw) < L(ζ, hw).156

Then, Lemma 1 is as stated when β = β∗ (see Figure 2(b)).157

Corollary 1.2: L(β, h) < L(ζ, h) holds in well-separated classes of low dimensional space.158

Proof. In the well-separated classes issue (see Figure 2(c)), the trained model based on any data points will lead

to a strong classification result, that is to say, all AL approaches will perform well in this setting since:hw(xζ+)− hw(xβ+) = wxTζ+ − wx
T
β+ = w(xζ+ − xβ+)→ ε2 > 0.

hw(xζ−)− hw(xβ−) = wxTζ− − wx
T
β− = w(xζ− − xβ−)→ ε3 < 0.

(9)

where β+ denote a set of the cluster boundary points near h in the positive class, β− denote a set of the cluster159

boundary points near h in the negative class, xβ+ ∈ β+, and xβ− ∈ β−. Let β∗ = β+ ∪ β−, ζ = ζ+ ∪ ζ−, the160

results of Eq. (8) and (9) still hold.161

Corollary 2. L(β, h) < L(ζ, h) holds in multi-class classification in low dimensional space162

Proof. In this setting, Y ∈ {0, 1, 2, ..., k}, the classifier set H = {h1
w, h

2
w, h

3
w, ..., h

k
w}, and cluster boundary

points are segmented into k parts {β1, β2, β3, ..., βk}, where βi denotes the data points close to hiw, i ∈ (1, k)
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Figure 3: (a) An example of hβw ⊂ hζw in one-dimensional space. hβw, h
ζ
w are two point classifiers. (b) An example of hβw ⊂ hζw in

two-dimensional space.

(see Figure 2(d))). Based on the result of Case 1, dividing the multi-class classification problem into k binary

classification problems, we can obtain:

|hw(βi)| < |hw(ζi)|,∀i, (10)

and

L(βi, hw) < L(ζi),∀i, (11)

where ζi represents the core points near hiw. Then, the following holds:

L(β, h) < L(ζ, h). (12)

163

Corollary 3. L(β, h) < L(ζ, h) holds in high-dimensional space.164

Proof. In a high-dimensional space, the distance function between xi and hyperplane hw could be extended as

L(xi, hw) = |wxi + C|(wwT )−1/2, (13)

where hw(xi) = wxi + C, and C is a m-dimension vector. Because the above equation is the m-dimension165

extension of Eq. (9), the proof relating to low dimensional space is still valid in high-dimensional space.166

4.3. Hypotheses relationship167

Lemma 2 describes this relationship of the hypotheses generated from the boundary and core points.168
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Lemma 2. Suppose that ζ, β respectively be a set of core points and cluster boundary points draw from a fixed

geometrical cluster. Let hζ be the hypothesis with respect to the training set ζ, hβ be another hypothesis with

respect to the training set β. The following holds for

hβ ⊆ hζ . (14)

It shows training models based on β can predict ζ well, but the model based on ζ may sometimes not predict169

β well. To prove this relation, we discuss it in three different cases:170

• Corollary 4: hβ ⊆ hζ holds in binary classification of low dimensional space, where Corollary 4.1 and171

Corollary 4.2 prove Lemma 2 in one-dimension space and two-dimension space, respectively.172

• Corollary 5: hβ ⊆ hζ holds in binary classification in high-dimensional space.173

• Corollary 6: hβ ⊆ hζ holds in multi-class classification.174

Corollary 4. hβ ⊆ hζ holds in binary classification of low dimensional space.175

This corollary is supported by two different views in Corollary 4.1 and Corollary 4.2.176

Corollary 4.1: hβ ⊆ hζ holds in linear one-dimension space.177

Proof. Given point classifier hζw, h
β
w in the linear one-dimension space as described in Figure 3(a),

hζw = γ, γ ∈ (ζ1, ζ2) or hβw = γ, γ ∈ (β1, β2) (15)

where ζ1, ζ2 are core points. In comparison, the boundary points of β1, β2 have smaller distances to the optimal178

classification model h∗w, i.e., ζ1 < β1, ζ2 < β2. Therefore, it is easy to conclude: (β1, β2) ⊆ (ζ1, ζ2). Then,179

classifying ζ1 and ζ2 by hβw is successful, but we cannot classify β1 and β2 by hζw = γ ∈ (ζ1, β1), or hζw = γ ∈180

(β2, ζ2), respectively.181

Corollary 4.2: hβ ⊆ hζ holds in two-dimensional space.182

Proof. Given two core points ζ1 = {ζ11, ζ12}, ζ2 = {ζ21, ζ22} in the two-dimensional space, the line segment

Lζs between them is described as follows:

y − ζ12

ζ22 − ζ12
=

x− ζ12

ζ21 − ζ11
, x ∈ (ζ11, ζ21) (16)

Training ζ1 and ζ2 obtain the following classification hypotheses:

hζw(xi) = wζ1xi1 + wζ2xi2 + b, {wζ1 , w
ζ
2 , b} ∈ (−∞,+∞)

s.t. hζw ∩ Lζs, tanθζ =

∣∣∣∣∣∣∣
ζ12−ζ22
ζ11−ζ21 +

wζ1
wζ2

1− ζ12−ζ22
ζ11−ζ21

wζ1
wζ2

∣∣∣∣∣∣∣ 6= 0
(17)
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where θζ is the angle between hζw (see Figure 3(b)).183

Similarly, the classifier hβw trained by β1 = {β11, β12}, β2 = {β21, β22} is subject to:

hβw ∩ Lβs ,
y − β12

β22 − β12
=

x− β12

β21 − β11
, x ∈ (β11, β21), (18)

where Lβs is the line segment between β1 and β2. Intuitively, the difference of hβw and hζw is their constraint

equation. Because (β11, β21) ⊂ (ζ11, ζ21), we can conclude:

hβw ⊂ hζw. (19)

It aims to show hζw cannot classify β1 and β2 when x ∈ (ζ11, β11) or x ∈ (β11, ζ11) in the constraint equation.184

But for any hβw, it can classify ζ1, ζ2 correctly.185

Corollary 5. hβ ⊆ hζ holds in in high-dimensional space.186

Proof. Given two core points ζ1 = {ζ11, ζ12, ζ13,..., ζ1m}, ζ2 = {ζ21, ζ22, ζ23, ..., ζ2m}, a bounded Hyperplane

S between them is:

S := {xi : xi1 ∈ (ζ11, ζ21), xi2 ∈ (ζ12, ζ22), ..., xim ∈ (ζ1m, ζ2m)}. (20)

Training the two data points can get the following classifier:

hζw(xi) =

m∑
d=1

wζdxid + C, {wζd, C} ∈ (−∞,+∞)

s.t. hζw ∩ S, cosθζ = wv[(wwT )1/2 + (vvT )]−1/2

(21)

where θζ is the angle between hζw and S, v is the normal vector of S. Given point p, which is located on187

hζw, if p1 ∈ (β11, ζ11), p2 ∈ (β12, ζ22), ..., pm ∈ (β1m, ζ2m), in the positive class or p1 ∈ (ζ11, β11), p2 ∈188

(ζ12, β22), ..., pm ∈ (ζ1m, β2m) in the negative class, hζw cannot predict β1 and β2 correctly. It can also be189

described as follows: if hζw segments the bounded hyperplane between ζ1 and β1, or ζ2 and β2, the trained hζw190

can not classify β1 and β2. Then Lemma 2 is as stated191

Corollary 6. hβ ⊆ hζ holds in multi-class classification issue.192

Proof. Follows the multi-class classification proof in Lemma 1, the multi-class problem could be segmented into193

k parts of binary classification problems.194
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5. Geometric Active Learning by Knight’s Tour195

In our geometrical analysis, we divide the AL into a geometrical sampling process over a fixed cluster. The196

cluster boundary points, distributed in the margin regions of any class, have been demonstrated to provide more197

powerful support than core points, in terms of margin distance and hypothesis relationship. With this novel198

insight, in this section, we develop a conquer method to find this special set of points. However, the cluster199

boundary points always have multiple potential positions because of the uncertain locations of the classification200

hypotheses. As the diversity of the candidate positions of the cluster boundary points, recognizing all the potential201

positions can capture all the possible cluster boundary points against any multi-class scenarios.202

Knight’s tour is a classical path planning problem that requires the knight returns to the original starting point203

after traveling 64 chess lattices. Nowadays, this problem has became the path optimization in graph theory, and204

also been developed to a Markov chain problem in discrete state space. Setting the knight in data space X with205

n samples, and its k-step transfer matrix T is:206

T =


0 rx1→x2

t×k rx1→x3

t×k · · · rx1→xn
t×k

rx2→x1

t×k 0 rx2→x3

t×k · · · rx2→xn
t×k

...
...

...
...

...

rxn→x1

t×k rxn→x2

t×k rxn→x3

t×k · · · 0

 (22)

where rxi→xjt×k denotes that xi moves to xj in k steps with a speed of t steps once. When t = 1, T is the one-step207

transfer matrix of the knight’s tour. Suppose that the knight begins the tour with a speed of t = 1 and a step208

length of rxi→xj1×1 = ||xi − xj ||2, where ||xi − xj ||2 denotes the path length between xi and xj . If the policy of209

the tour is to save the path cost, the knight needs to estimate each potential paths and takes a given probabilistic210

to select the subsequent position. Therefore, we propose the 1× 1 transfer probabilistic matrix P:211

P =


0 px1→x2

1×1 px1→x3
1×1 · · · px1→xn

1×1

px2→x1
1×1 0 px2→x3

1×1 · · · px2→xn
1×1

...
...

...
...

...

pxn→x1
1×1 pxn→x2

1×1 pxn→x3
1×1 · · · 0

 (23)

where pxi→xj1×1 denotes the probability of moving into xj from xi. We here define it by the ratio of the path length

between xj from xi and all other possible paths, i.e., pxi→xj1×1 =
r
xi→xj
1×1∑n

v=1 r
xi→xv
1×1

, where xv ∈ X . Let M be the

probabilistic transfer matrix produced by:

M = T ◦ PItr, (24)
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where ◦ denotes the Hadamard product of two matrices, and I = [1, 1, 1, ..., 1]1×n. Withe this operation, M212

denotes the length of the probabilistic transfer path when the current position of the tour is set from xi,... , to xn.213

Meanwhile, for any xi, we have214

Mi =

n∑
j=1

||rxi→xj1×1 ||22∑n
v=1 r

xi→xv
1×1

. (25)

M is a matrix with the size of 1 × n andMi is the probabilistic transfer path length of the tour when the215

knight is located at the position of xi. This matrix characterizes the distribution features of the current location of216

the knight’s tour. When the initial position of the tour is set in the central regions of the cluster, the knight would217

spend expensively to leave the cluster because the knight has multiple directions where can move into. However,218

if the knight is set in the boundary region of the cluster, the cost would decrease dramatically. Therefore, the219

tour path within a limited steps could intuitively reflect where the tour is, i.e., the boundary or the central regions220

of the cluster. With this policy, we further characterize the k steps transfer path of each position by probability221

evaluation:222

Mi =

k∑
j=1

||rxi→M
j
i

1×1 |22∑k
v=1 r

xi→Mv
i

1×1

(26)

where M j
i is the jnd neighbor of xi and we callM as the probabilistic tour matrix. The different between Eq.223

(25) and Eq. (26) is the tour space of the knight. In Eq. (25),Mi calculates the tour cost of leaving the cluster224

and the knight needs to visit n positions. However, the tour cost in the local space characterizes the distribution225

features of cluster boundary and core points. Therefore, we limit the position numbers of the tour by a local226

variable k in Eq. (26), which updates xj into M j
i .227

Based on the above definitions and analysis, we propose a Geometric Active Learning (GAL) algorithm. Its228

pseudo-code has been summarized in Algorithm 1. In its steps, Step 4 to Step 8 use the R-tree to calculate the229

M matrix that denotes the kNN of each data in X . The time complexity of this searching process approximates230

nlog(n). Then, we calculate the probabilistic tour path of each data point using Eq. (26) and store these values231

in matrix M. Step 9 sorts the values of matrix M by ascending. From a geometrical perspective, we divide232

the cluster into two regions: outer cluster collection Couter and inner cluster collection Cinner, where the outer233

cluster collection removes all noises from X , the inner cluster collection covers all feasible core points from X .234

Therefore, the cluster boundary collection of X includes the data belongs to Couter but are not in Cinner. To235

implement this process, we set two parameters named inner cluster ratio ε1 and outer cluster ratio ε2 to splitM.236

LetM′ be a colon matrix via sorting matrixM by ascending, Step 8 to Step 14 describe this splitting process237

with the following policies: 1) for any data xi, if its probabilistic transfer path length is shorter thanM′ε1 , it is a238
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Algorithm 1: Geometric Active Learning

1 Input: data set X , number of queries Nq , nearest neighbor number k, inner cluster ratio ε1 ∈ [0, 1] , outer

cluster ratio ε2 ∈ [0, 1], and ε1 < ε2.

2 Initialize: ε1 ← dnε1e, ε2 ← dnε2e+Nq ,M′ ← ∅ .

3 Calculate the kNN matrix M of X using R-tree search.

4 for each data point xi ∈ X do

5 CalculateMi using Eq. (26).

6 end

7 UpdateM′ via sortingM by ascending.

8 while i ≤ n do

9 if Mi ≤M′ε1 then

10 Add xi into inner cluster collection Cinner.

11 end

12 if Mi ≤M′ε2 then

13 Add xi into outer cluster collection Couter.

14 end

15 Return the collection of the boundary data by Couter − Cinner.

16 end

data within the inner cluster, and 2) for any data xi, if its probabilistic transfer path length is shorter thanM′ε2 ,239

it is within the outer cluster. Finally, Step 15 returns the complement set of Couter with respect to Cinner.240

6. Experiments241

To demonstrate the effectiveness of our proposed GAL algorithm, we evaluate and compare the performance242

of the cluster boundary detection and AL classification with the existing algorithms in this section. The structure243

of this section is: Section 6.1 and 6.2 respectively describe the related baselines and tested data sets, Section244

6.3 describes the preprocessing and evaluation, Section 6.4 describes the experimental settings, and Section 6.5245

analyzes the results.246

6.1. Baselines247

For the cluster boundary detection task, some baselines have been collected:248
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• BORDER (Xia et al., 2006) uses the reversal kNN approach to detect the cluster boundary based on a249

assumption of the reverse kNN number of cluster boundary points are less than that of core points. But its250

detection results always include all feasible noises because noises always have smaller number of reverse251

kNN , compared to other data.252

• BERGE(Li et al., 2015) is the a iterative cluster boundary detection algorithm which uses evidence accu-253

mulation to start the detection, but the error rate always increases rapidly when labeling noises as cluster254

boundary points by mistake.255

• Spinver(Qiu & Cao, 2016) algorithm, whose inspiration comes from spatial inversion of particle physics,256

is a high dimensional cluster boundary algorithm. It uses the Hopkins statistics to capture the neighborhood257

characteristics after smoothing noises by an Euclidean distance-based on Gaussian filtering function. But258

the Hopkins statistics prefers a balance class scenario.259

For the classification task, several baselines also have been researched and will compare from GAL:260

• Random, which uses a random sampling strategy to query unlabeled data, and can be applied to any AL261

task but with an uncertainty result.262

• Margin (Tong & Koller, 2001), which selects the unlabeled data point with the shortest distance to the263

classification model, only can be supported by the SVM classification model.264

• Hierarchical (Dasgupta & Hsu, 2008) sampling is a very different idea, compared to many existing AL265

approaches. It labels the subtree with the root node’s label when the subtree meets the objective probability266

function. But incorrect labeling leads to a very bad classification result.267

• TED (Yu et al., 2006) favors data points that are on the one side hard to-predict and on the other side268

representative for the rest of the experiments.269

• Re-active(Lin et al., 2016) learning finds the data point which has the maximum influences on the future270

prediction result after annotating the selected data. This novel idea does not need to query the Oracle271

when relabeling, but needs a well-trained classification model at the beginning. Furthermore, its reported272

approach can’t be applied in multi-class classification problems.273

6.2. Data sets274

We synthesized and collected some emulated, benchmark data sets, respectively for the experiments described275

in this section, which are detailed as follows.276
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For the cluster boundary detection task, two clustering data sets named Aggregation and Flame, are used to277

show the concept of cluster boundary points. The other four classical clustering datasets Syn1- Syn4 are tested278

in the boundary detection experiment, where n× d denote the data set has n samples with d dimensions.279

• Syn1:5400×2. The clusters are surrounded by a lot of noises.280

• Syn2:4800×2.The circle cluster is embedded in the annulus cluster and a lot of noises connect them.281

• Syn3:7832×2. There are two connected diamond clusters with multi-density.282

• Syn4:5034×2. A lot of noises connect the different clusters.283

The following datasets are real-world medical data sets.284

• Biomed 1:209×4. Medical data set. It has 134 normal objects and 75 virus infected objects. 30 virus285

carriers in the normal objects are defined as the cluster boundary of normal people.286

• Cancer Qiu & Cao (2016):240×2. Medical data set. It has 241 malignant tumor objects and 75 benign287

tumor objects. 37 benign tumor objects which may become malignant tumor patients are cluster boundary288

objects of normal people.289

• Colon 2:240×2. Gene data set. 7 cluster boundary points.290

• Prostate:240×2 Qiu & Cao (2016). Gene data set. 18 cluster boundary objects.291

There are two image data sets in the target tracking field 3 and we sill use our GAL algorithm to capture the292

moving targets.293

• Waving Trees:287×160. This comes from the data on the continuous monitoring of one building, includ-294

ing 7 captured images when a volunteer passes by the monitored area.295

• Moved Object:1745×160. This comes from the data on the continuous monitoring of one office, including296

363 captured images when a volunteer enters the office and leaves after staying some time.297

There is also one sub-set of the Basel Face Model 4 in relation to the light test.298

1http://lib.stat.cmu.edu/datasets/
2http://genomics-pubs.princeton.edu/oncology/affydata/
3http://research.microsoft.com/en-us/um/people/jckrumm/wallflower/testimages.htm
4https://faces.dmi.unibas.ch/bfm/
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• Basel Face Model:This is a popular 3D face model data set about multi-gestures and color change. The299

light sub-set has 4488 images, and all are stored with 500×500 pixels. We use the GAL algorithm to detect300

images with strong or dark light since only normal light images are useful in most real-world cases.301

For the classification task of AL, we compare the bets classification results of different algorithms on some302

classical clustering data sets 5 and the letter recognition data set letter.303

• g2-2-30:2048×2. There are 2 adjacent classes in the data set.304

• Flame:240×2. It has 2 adjacent classes with similar densities.305

• Jain:373×2. It has two adjacent classes with different densities.306

• Pathbased:300×2. Two clusters are close and surround by a arc cluster.307

• Spiral:312×2. There are three spiral curve cluster which are linear inseparable.308

• Aggregation:788×2. There are 7 adjacent classes in the data set.309

• R15:600×2. There are 7 separate clusters and 8 adjacent classes.310

• D31:3100×2. It has 31 adjacent classes.311

• letter:20000×16. It is a classical letter recognition data set with 26 English letters. We select 5 pairs letters312

which are difficult to distinguish from each other to test the above AL algorithms in a two-class setting.313

They are DvsP, EvsF, IvsJ, MvsN, UvsV, respectively. For multi-class test, we select A-D, A-H, A-L, A-P,314

A-T, A-X, A-Z, respectively. Of these, A-D is the letter set A to D, and A-H is the letter set A to H, ... ,315

A-Z is the letter set A to Z. The seven multi-class sets have 4, 8, 12, 16, 20, 26 classes respectively.316

In addition to the introduction for the tested data sets, all two-dimensional data sets are shown in Figure. 4.317

6.3. Preprocessing and Evaluation318

The methods of preprocessing used in this paper are reported in this section. Application cases are: prepro-319

cessing methods (a) and (b) are used for the Colon and Prostate data sets, respectively since the compressed large320

domain will accelerate the calculation speed and reduce the memory consumption; pretreatment (c) is used to321

change the image type to number type and is used for Waving Trees, Moved Object and Basel Face Model. Here322

we detail the specific methods:323

324

5http://cs.joensuu.fi/sipu/datasets/
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Figure 5: The marked cluster boundary point

of Aggregation and Flame.

(a) xij = xij/103, the value of each dimension of each data point is di-325

vided by 103 ;326

(b) xij = xij/104, the value of each dimension of each data point is di-327

vided by 104;328

(c) Gj =
∑n
i=1 gij/n, for each image, read the n×m grayscale matrix g329

and compress it into a single-column matrix G (i.e., with a size of 1×m)330

with the average grayscale values.331

For the cluster boundary detection problem, we use the F1 score to332

evaluate the detection result. This is a popular evaluation function in infor-333

mation retrieval which considers both precision p and the recall r. Because334

the cluster boundary detection task is also a retrieval problem, we use it to evaluate our results. For the classifi-335

cation problem, we use accuracy to evaluate it.336

6.4. Experimental setting337

We discuss the experimental setting of the compared algorithms over the synthetic and real data sets in this338

section.339
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• Figure 5 marks the cluster boundary points on Syn1 and Syn2. It is used to show the definition of cluster340

boundary points.341

• Table 2 reports the best cluster boundary detection result on different synthetic and real data sets. We have342

marked the highest F1 scores of each group of experiment.343

• Figure 6(a) shows the cluster boundary detection result on the light sub-data set of the Basel face. To344

compare the detected cluster boundary images, we also show the detection results for the core points using345

GAL in Figure 6(b).346

• Table 3 shows the classification results on some synthetic data sets. The specific experiment settings are as347

follows: (1) we use the MATLAB random function to implement the Random algorithm and calculate the348

mean and STD values after running it 100 times; (2) as the Margin, Hierarchical and Re-active algorithms349

all need the labeled data points to guide the training process, we select one data point from each class350

and query the Oracle, respectively. Similar, we test the algorithms 100 times and then calculate the mean351

and STD values in order to guarantee that the labeled set includes all the different label kinds of Oracle,352

or the algorithms will show poorer performance if we use random selection; (3) there are two important353

parameters for the TED algorithm: the kernel function parameter σ and the regularization parameter for the354

kernel ridge regression λ. We use a super parameter σ=1.8 to generate the kernel matrix and train λ from355

0.01:0.01:1. The reason for this is that this parameter will provide important guidance for the sampling356

selection. After we test it many times, we limit its correct and stable range; (4) for our GAL algorithm, we357

train the parameters k form 2:1:b5%Nc and boundary upper λ1=b70%Nc:1:N to record the classification358

result. Because λ1 segments the core points and boundary points, we use a super parameter λ1=b70%Nc359

to begin the training. The conclusion that there are at least 70% N data points as core points in the data set360

comes from our published papers (Qiu & Cao, 2016) and experience summary. The classifier trained in361

the classification experiment is LIBSVM (Chang & Lin, 2011).362

6.5. Results363

In Figure 5, we use the GAL algorithm to detect the cluster boundary points and mark them by the blue364

circles. Observing the marked data points, cluster boundary points not only can segment the different cluster365

structure but also can help to get the complete cluster/class structure after filling up the core points into the366

boundary internal area. An observation of the experimental results in Table 2 shows: (1) although the precision367

of BORDER is high, the recall rate also is high since it cannot smooth the noises and then the F1 scores are also368

low in the synthetic data sets: Syn1 to Syn4. But this situation is reversed in the real-world data sets with little369
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(a) Cluster boundary images

 
(b) Cluster core images

Figure 6: The cluster boundary and core images detection results using GAL algorithm on the light subset of Basel face model.

or no noise, such as the Colon, Prostate, and Waving Trees data sets. (2) The BERGE algorithm annotates some370

cluster boundary points to guide the following iterative detection where the error rate may rise rapidly when the371

annotation action is wrong. So, the noises increase the risk level and it is also sensitive to noises. (3) The Spinver372

algorithm uses a Gaussian filtering function to smooth noises and get a better detection result, compared to the373

above two approaches. (4) For GAL, we use the idea of object separation to detect the cluster boundary points,374

which is not sensitive to noises and dimensions since sorting is its main idea. The detection results also show375

our proposed algorithm outperforms Spinver. In Figure 6, the detected images of Figure 6(a) are the faces with376

normal light and the detected images of Figure 6(b) are the faces with strong or weak light. This is an interesting377

application for face recognition problems which will help to detect abnormal images in the resident information378

database, illegal document photos, etc.379

Table 3 reports the classification results of different AL approaches in the two-dimension data sets. We mark380

some specific results to analyze the algorithm characteristics. The observation shows: (a) Random provides a381

fast sampling strategy which is not sensitive to data number and dimensions or class number. But its performance382

is always bad for the first query as it cannot select valuable data points using a random strategy. (b) Margin is a383

popular AL approach that selects the data points which are closest to the current classification plane. The results384

in the published papers show it is a good AL approach. However, our paper is the first to use the challenging two-385

dimension clustering data sets in AL and the experiment results show a drawback of Margin. That is, it has well-386

separated class bias, as it always selects the data points between adjacent classes since the calculated distance is387

small. Therefore, an unfair and unreasonable sampling strategy always selects the data points distributed in the388

most adjacent area in Jain, then returns a bad classification result (refer to the boxed results for Margin in the389

Jain data set in Table 3); (c) Hierarchical is a special AL approach which uses pre-clustering to judge whether390

the subtree nodes could be labeled with the label of the root node. In the collected test results of Table 3, it could391
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(d) MvsN
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(e) UvsV
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100 150 200 250 300 350 400 450 500

Number of queries

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
cc

ur
ac

y

Random
Margin
Hiera
TED
GAL
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Figure 7: The SVM classification results of different AL approaches on the letter data set. (a)-(e) are the binary classification settings. (f)-(l)

are the multi-class settings. The class number respectively are 4, 8, 12, 16, 20, 24, and 26. In all sub figures, Hiera is the abbreviation of

Hierarchical, REAL is the abbreviation of Re-active.
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Table 2: The best cluster boundary detection results of the four algorithms on the synthetic and real data sets.

Datasets Dimension Algorithm Real.boun Num.det Num.C Precision Recall F1

Syn1 2 BORDER 1077 1252 831 0.6637 0.7716 0.7136
BERGE 1250 940 0.7520 0.8728 0.8079
Spinver 1049 993 0.9466 0.9220 0.9341

GAL 1043 996 0.9549 0.9248 0.9396
Syn2 2 BORDER 1204 1802 1089 0.6043 0.9045 0.7246

BERGE 1456 1098 0.7541 0.9120 0.8256
Spinver 1264 1111 0.8790 0.9228 0.9003

GAL 1163 1040 0.8942 0.9302 0.9118
Syn3 2 BORDER 640 723 540 0.7469 0.8438 0.7924

BERGE 662 532 0.8036 0.8313 0.8172
Spinver 611 542 0.8871 0.8469 0.8665

GAL 632 580 0.9177 0.9063 0.9120
Syn4 2 BORDER 538 669 445 0.6366 0.8271 0.7195

BERGE 553 472 0.8535 0.8773 0.8652
Spinver 540 482 0.8926 0.8959 0.8942

GAL 540 496 0.9185 0.9219 0.9202
Biomed 4 BORDER 30 26 23 0.8846 0.7667 0.8214

BERGE 27 24 0.8889 0.8000 0.8421
Spinver 29 27 0.9310 0.9000 0.9153

GAL 29 28 0.9655 0.9333 0.9491
Cancer 10 BORDER 37 37 28 0.7568 0.7568 0.7568

BERGE 37 30 0.8108 0.8108 0.8108
Spinver 35 34 0.9714 0.9789 0.9444

GAL 36 35 0.9722 0.9459 0.9589
Colon 2000 BORDER 7 7 1.0000 1.0000 1.0000

BERGE 6 5 0.8333 0.7143 0.7692
Spinver 7 7 1.0000 1.0000 1.0000

GAL 7 7 1.0000 1.0000 1.0000
Prostate 10,509 BORDE 19 18 0.9474 1.0000 0.9730

BERGE 17 16 0.9412 0.8889 0.9143
Spinver 18 18 1.0000 1.0000 1.0000

GAL 18 18 1.0000 1.0000 1.0000
Waving Trees 160 BORDE 17 17 1.0000 1.0000 1.0000

BERGE 17 15 0.8824 0.8824 0.8824
Spinver 17 17 1.0000 1.0000 1.0000

GAL 17 17 1.0000 1.0000 1.0000
Moved Object 160 BORDE 363 222 0.6116 0.6116 0.6116

BERGE 363 250 0.6887 0.6887 0.6887
Spinver 363 222 0.6116 0.6116 0.6116

GAL 363 352 0.9697 0.9697 0.9697

obtain good classification results when the data sets are well-structured classes. For example, it outperforms the392

other algorithms when labeling 1% data points in the data set R15; (d) Selecting the most uncertain data points393

to label also is applied in the TED approach, which also pays attention to representative data points. But in our394
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Table 3: The statistical results (mean±std) of different AL algorithms on classical cluster data sets.

Data sets Num C Algorithms
Number of queries (percentage of the data set)

1% 5% 10% 15% 20% 30% 40% 50% 60%
Biomed 2 Random .516±.026 .546±.012 .603±.028 .652±.029 .693±.031 .767±.026 .815±.026 .849±.021 .881±.022

Margin .500±.000 .509±.015 .551±.047 .590±.076 .644±.103 .709±.153 .822±.139 .882±.161 .927±.188
Hierarchical .504±.000 .550±.000 .585±.000 .615±.000 .668±.000 .774±.014 .847±.000 .920±.011 .974±.000

TED .610±.000 .619±.009 .651±.003 .759±.006 .848±.007 .875±.005 .901±.005 .964±.005 .972±.000
Re-active - - - - - - - - -

GAL .724±.163 .725±.022 .790±.021 .825±.018 .886±.012 .909±.013 .927±.011 .994±.008 1.00±.000
Cancer 2 Random .516±.026 .546±.012 .603±.028 .652±.029 .693±.031 .767±.026 .815±.026 .849±.021 .881±.022

Margin .500±.000 .509±.015 .551±.047 .590±.076 .644±.103 .709±.153 .822±.139 .882±.161 .927±.188
Hierarchical .504±.000 .550±.000 .585±.000 .615±.000 .668±.000 .774±.014 .847±.000 .920±.011 .974±.000

TED .610±.000 .619±.009 .651±.003 .759±.006 .848±.007 .875±.005 .901±.005 .964±.005 .972±.000
Re-active - - - - - - - - -

GAL .724±.163 .725±.022 .790±.021 .825±.018 .886±.012 .909±.013 .927±.011 .994±.008 1.00±.000
g2-2-30 2 Random .516±.026 .546±.012 .603±.028 .652±.029 .693±.031 .767±.026 .815±.026 .849±.021 .881±.022

Margin .500±.000 .509±.015 .551±.047 .590±.076 .644±.103 .709±.153 .822±.139 .882±.161 .927±.188
Hierarchical .504±.000 .550±.000 .585±.000 .615±.000 .668±.000 .774±.014 .847±.000 .920±.011 .974±.000

TED .610±.000 .619±.009 .651±.003 .759±.006 .848±.007 .875±.005 .901±.005 .964±.005 .972±.000
Re-active .506±.008 .531±.029 .554±.052 .593±.065 .634±.058 .744±.060 .715±.047 .811±.000 .816±.000

GAL .724±.163 .725±.022 .790±.021 .825±.018 .886±.012 .909±.013 .927±.011 .994±.008 1.00±.000
Flame 2 Random .670±.142 .794±.106 .904±.059 .944±.036 .958±.025 .976±.014 .984±.008 .987±.005 .990±.006

Margin .499±.137 .596±.102 .740±.162 .872±.158 .930±.159 .935±.145 .961±.120 .963±.109 .944±.165
Hierarchical .720±.041 .607±.042 .855±.062 .972±.010 .999±.000 1.00±.000 1.00±.000 1.00±.000 1.00±.000

TED .829±.000 .950±.006 .974±.006 .988±.006 .991±.000 .995±.001 .996±.002 .996±.002 .998±.000
Re-active .553±.154 .804±.120 .917±.090 .966±.045 .974±.045 .993±.006 .993±.027 .996±.004 .997±.004

GAL .887±.004 .976±.008 .983±.005 .988±.004 .991±.002 .995±.002 1.00±.000 1.00±.000 1.00±.000
Jain 2 Random .659±.180 .773±.042 .816±.041 .848±.041 .881±.040 .928±.028 .958±.024 .974±.015 .981±.015

Margin .258±.003 .270±.074 .382±.211 .545±.306 .572±.310 .627±.347 .623±.340 .721±.347 .736±.352
Hierarchical .325±.013 .295±.008 .297±.010 .636±.022 .873±.024 1.00±.000 1.00±.000 1.00±.000 1.00±.000

TED .739±.000 .764±.006 .837±.018 .932±.019 .978±.018 .998±.002 1.00±.000 1.00±.000 1.00±.000
Re-active .666±.163 .748±.036 .791±.027 .836±.041 .899±.045 .994±.022 .998±.008 1.00±.000 1.00±.000

GAL .768±.007 .915±.026 .963±.018 .977±.013 .989±.009 1.00±.000 1.00±.000 1.00±.000 1.00±.000
Pathbased 3 Random .447±.157 .533±.089 .719±.096 .833±.063 .891±.046 .940±.046 .958±.016 .969±.014 .976±.010

Margin .366±.000 .368±.016 .407±.087 .481±.151 .686±.230 .875±.209 .960±.151 .962±.148 .988±.081
Hierarchical .488±.027 .500±.017 .547±.024 .717±.028 .749±.023 .861±.022 .949±.015 .970±.013 1.00±.000

TED .356±.000 .582±.023 .875±.032 .933±.008 .941±.005 .987±.009 .997±.002 1.00±.000 1.00±.000
Re-active - - - - - - - - -

GAL .748±.004 .811±.048 .920±.038 .950±.019 .959±.012 1.00±.000 1.00±.000 1.00±.000 1.00±.000
Spiral 3 Random .352±.023 .493±.049 .634±.061 .757±.059 .830±.051 .918±.034 .955±.024 .977±.017 .988±.011

Margin .337±.005 .344±.015 .408±.062 .513±.101 .630±.144 .893±.180 .964±.119 .965±.126 .990±.034
Hierarchical .380±.024 .486±.044 .498±.046 .525±.062 .627±.044 .653±.048 .770±.055 .774±.062 .865±.039

TED .355±.000 .678±.011 .751±.039 .828±.039 .896±.003 .920±.002 .960±.000 .990±.003 .998±.000
Re-active - - - - - - - - -

GAL .427±.017 .685±.090 .830±.097 .872±.082 .919±.063 .963±.038 .990±.021 .998±.006 1.00±.000
Aggregation 7 Random .339±.101 .583±.062 .775±.047 .868±.031 .923±.023 .972±.013 .987±.006 .993±.003 .996±.000

Margin .215±.000 .355±.092 .707±.153 .964±.098 .995±.044 1.00±.000 1.00±.000 1.00±.000 1.00±.000
Hierarchical .471±.038 .578±.016 .651±.009 .695±.010 .961±.009 .987±.005 .990±.005 .992±.003 .997±.000

TED .379±.002 .646±.019 .948±.009 .968±.001 .999±.001 1.00±.000 1.00±.000 1.00±.000 1.00±.000
Re-active - - - - - - - - -

GAL .808±.081 .926±.016 .964±.017 .970±.022 1.00±.000 1.00±.000 1.00±.000 1.00±.000 1.00±.000
R15 15 Random .337±.053 .826±.067 .955±.045 .986±.015 .992±.000 .993±.000 .993±.000 .994±.000 .994±.000

Margin .073±.020 .393±.057 .989±.003 .997±.000 .998±.000 .998±.000 .998±.000 .998±.000 .998±.000
Hierarchical .929±.010 .990±.000 .991±.000 .995±.000 .995±.000 .996±.000 .996±.000 .996±.000 .996±.000

TED .397±.002 .984±.004 .991±.002 .994±.001 .998±.000 .998±.000 .998±.000 .998±.000 .998±.000
Re-active - - - - - - - - -

GAL .400±.000 .989±.007 .997±.001 .997±.000 .998±.000 .998±.000 .998±.000 .998±.000 .998±.000
D31 31 Random .401±.040 .899±.027 .955±.005 .964±.003 .968±.000 .971±.000 .973±.000 .974±.000 .975±.000

Margin .067±.015 .556±.064 .968±.003 .980±.000 .983±.000 .985±.000 .986±.000 .987±.000 .988±.000
Hierarchical .879±.009 .911±.006 .951±.003 .965±.000 .976±.000 .980±.000 .981±.000 .982±.000 .981±.000

TED .936±.000 .944±.001 .960±.000 .972±.000 .980±.000 .982±.000 .979±.000 .980±.000 .980±.000
Re-active - - - - - - - - -

GAL .954±.000 .969±.000 .974±.000 .981±.000 .982±.000 .989±.000 .989±.000 .989±.000 .989±.000
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experiment, it is very slow and sensitive to parameters ( see its std values in each result). (e) Re-active selects the395

data points which have the greatest error disagreement on the labeled data after assigning the queried data with396

different labels. However, noises may be their main sampling objects whatever label they will be assigned. (f)397

The experiments of GAL show that it can obtain very robust classification result with fast accuracy acceleration398

at the beginning.399

Figure 7 reports a group of optimal classification results for different algorithms on real data sets under400

unlimited parameters. In high-dimensional space, the performance of these AL algorithms is interesting: (a)401

Random is still stable as dis- cussed in the previous analysis. (b) Margin becomes stable in the high dimension402

space since the data points are distributed sparsely and no adjacent classes with high density attract the selection403

process. (c) Hierarchical performs poorly in the high-dimensional space in this group test. After rechecking404

the algorithm, we find the real reason which leads to this phenomenon is that there is no obvious hierarchical405

clustering results. Especially for some multi-class data sets, most of the data points are clustered into one class.406

Then, the algorithm will wrongly label the large class using its label. Wrong clustering results make the algorithm407

lose capability. (d) TED is still stable in this group test due to its good sampling strategy. (e) Re-active’s408

sensitivity to noises disappears since there are no noises in the letter data set. Then, strong classification results409

are generated. (f) For our GAL algorithm, its performance is still relatively good.410

7. Discussion411

In Section 7.1, we discuss the performance disagreement of different baselines in term of the above exper-412

imental results. In Section 7.2, we firstly present the time complexities for these baselines and then organize a413

group of tests to further analyze their time consumption.414

7.1. Performance disagreement415

Querying the labels from a group unlabeled instances can drastically improve the current training model.416

However, how to select the most informative or representative instances from massive unlabeled data is chal-417

lenging. Generally, random sampling presents a lower bound for the performance of AL sampling. It is a fast418

method with low time consumption. In the view of theoretical time complexity, its time price is lower than most419

statistical sampling approaches.420

As a typical AL method which use uncertainty evaluation, the adjacent class bias of Margin is firstly discov-421

ered by us in the multi-class classification problem and its sensitivity to noise also is amplified. In Hierarchical422

sampling, the decision whether or not to annotate a cluster subtree with a root node’s label is evaluated by a prob-423

ability function. Even though it returns more labeled data without the help of human expert. A series of problems424
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Figure 8: The relations between running time and data set number, dimension and class. Re-active is a slow algorithm and its time consump-

tion is longer than that of the other algorithms, so we use a horizontal line to represent it. Also, TED needs a long time to execute when the

data number is more than 2× 104, thus we only show a part of its real line.

inevitably occurs when the evaluation is misled by unstructured clusters (see the classification result in Jain) or425

insufficient annotated data, although the established probabilistic hypothesis may be helpful. The experimental426

optimization of TED reduces the redundant rate of sampling results. The cost is tunning more parameters in ker-427

nel space. It also leads to a low robust result in terms of parameters. Instead of the common focus on unlabeled428

data with informativeness or representativeness, Re-active changes the view into the labeled set. Assigning an429

unlabeled data with a negative or positive label, the error disagreement (difference) on the labeled set become430

a key property to reflect the perturbation to the current model. However, this method needs repeatedly visit the431

candidate data pool with a high cost. Meanwhile, it is suggested to apply in binary classification issue due to a432

unbearable time complexities if assume any unlabeled data with multi labels.433

7.2. Time complexities434

In the model-based approaches, the time complexity of training classifiers determines the time consumption435

of sampling process. Studying the time complexity of SVM is O(N2) to O(N3), we predict that Margin’s time436

cost will rise to O(NsN
2
L) to O(NsN

3
L) with a given queries number of Ns, where NL is the number of labeled437

data. For Hierarchical approach, hierarchical clustering is its main time consumption process that costs O(N2).438

Similarly, calculating the kernel matrix also costs the time price ofO(N2) in TED. Although Re-active is a novel439

idea, but it needs to visit whole unlabeled pool to select a data by approximatelyN times SVM training. It means440

that the time complexity of one selection will cost O(N3
L) to O(N4

L) and the time consumption of sampling Ns441

data points will be O(NsN
3
L) to O(NsN

4
L). Our GAL approach uses the R-tree to calculate the kNN matrix442

of X with A time complexity of O(Nlog(N)) at the beginning, then it only uses one parameters to select the443

sampling set under a certain number.444
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To analyze their time performance of the above approaches, here we show a group of experiments involved445

to the running time test on data size, dimension, class number in Figure 8. In this group of test, we synthesize446

a group Gaussian classes via varying its instance number, dimensions, and class number. Before running these447

baselines, the parameters settings are Ns = 100 , λ = 0.01 in TED, λ1 = 0.7 in GAL. In figure (a), we set448

Dimension= 2, Class= 2, and vary the Gaussian synthetic data set number from 1000 to 40000. In figure (b),449

we set Number= 1000, Class= 2 and vary the dimension from 2 to 700. In figure (c) we set Number= 1000,450

Dimension= 2 and vary the class number from 2 to 30. In the presented time curves, Re-active (REAL) costs451

very expensive even at the beginning of the sampling. Therefore, we use a horizontal straight line to denote its452

cost since its real cost already exceed the maximum value of y-axis. Besides it, TED also costs expensive in the453

first group of test due to the expensive cost in RBF kernel calculation.454

Observing the drawn curves in Figure 7(a) to (c), we further conclude: 1) REAL costs very expensive and455

its complexity scale is far above other algorithms; 2) The cost of TED is also involved with dimensions because456

the time complexity of SVM is proportional to the dimension of data set; 3) When we synthetic more Gaussian457

classes, we see the time complexities of TED, REAL, and GAL have slight change. Bu, the time cost of Mar-458

gin algorithm increases rapidly due SVM algorithm produces more support vectors between any two different459

classes; 4) Margin algorithm reduces its time cost after we synthetic more than 25 classes since there exists more460

adjacent classes or overlap classes. The number of the generated support vectors decrease. It is thus the distri-461

bution of the classes affect the time cost of Margin; 5) Overall, the time consumption of our proposed GAL is462

lower than other baselines in terms of our above experimental settings.463

8. Conclusion464

In this paper, we propose a divide-and-conquer idea that analyzes the uncertainty evaluation of AL sampling.465

Inspired by CVM, we divide the data within one cluster into cluster boundary and core points. Main theoretical466

contribution in geometric perspective shows 1) cluster boundary points have smaller margin distances to classi-467

fication hyperplane compared to core points, and 2) training hypotheses based on core points are the subset of468

hypotheses based on cluster boundary points.469

With the theoretical advantages of cluster boundary points, we completely eliminate the dependency on470

uncertainty evaluation functions by sampling in the cluster boundary points. By training those points, we develop471

a GAL algorithm based on a knight’s tour method. The experiment results demonstrate that the GAL algorithm,472

which trains the cluster boundary points, outperforms other existing cluster boundary and AL baselines.473
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