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Abstract

In this work, we propose a generally applicable transfor-
mation unit for visual recognition with deep convolutional
neural networks. This transformation explicitly models
channel relationships with explainable control variables.
These variables determine the neuron behaviors of compe-
tition or cooperation, and they are jointly optimized with
the convolutional weight towards more accurate recogni-
tion. In Squeeze-and-Excitation (SE) Networks, the chan-
nel relationships are implicitly learned by fully connected
layers, and the SE block is integrated at the block-level.
We instead introduce a channel normalization layer to re-
duce the number of parameters and computational com-
plexity. This lightweight layer incorporates a simple `2 nor-
malization, enabling our transformation unit applicable to
operator-level without much increase of additional parame-
ters. Extensive experiments demonstrate the effectiveness of
our unit with clear margins on many vision tasks, i.e., image
classification on ImageNet, object detection and instance
segmentation on COCO, video classification on Kinetics.

1. Introduction
Convolutional Neural Networks (CNNs) have proven to

be critical and robust in visual recognition tasks, such as
image classification [18], detection [32], and segmenta-
tion [32]. Notably, a single convolutional layer operates
only on a neighboring local context of each spatial position
of a feature map, which could possibly lead to local ambi-
guities [35]. To relieve this problem, VGGNets [31] were
proposed to construct deep CNNs, using a series of convolu-
tional layers with non-linear activation functions and down-
sampling operators to cover a large extent of context. More-
over, [13] introduced a residual connection to help CNNs
benefit from deeper architectures further.

Apart from improving the depth of CNNs, another
branch of methods focuses on augmenting the convolu-
tional layer with modules that directly operate on context
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Figure 1: An illustration of the behavior of GCT. Combin-
ing normalization methods and gating mechanisms, GCT
can create the channel relations of both competition (in-
creasing the variance of channel activation) and cooperation
(decreasing the variance of channel activation).

across large neighborhoods. Squeeze-and-Excitation Net-
works (SE-Nets) [17] leveraged globally embedding infor-
mation to model channel relationships and modulate feature
maps on the channel-wise level. Moreover, its following
method, GE-Nets [16], used largely neighboring embed-
ding instead. These modules can be conveniently assem-
bled into modern networks, such as ResNets [13] and In-
ception [33] networks, to improve the representational abil-
ity of networks.

However, the SE module uses two fully connected (FC)
layers to process channel-wise embeddings, which leads to
two problems. First, the number of SE modules to be ap-
plied in CNNs is limited. In [17], SE module was applied
at the block-level, i.e., a single SE module is utilized per
Res-block [13] or Inception-block [34]. The dimension of
the FC layer is decreased to save the computational cost
further. However, the designed FC layers still hinder the
wide deployment of SE modules across all layers. Second,
due to the complexity of the parameters in FC (or convo-
lutional layer in GE), it is difficult to analyze the interac-
tions among the channels at different layers. The channel
relationships learned by convolution and FC operations are
inherently implicit [17], resulting in agnostic behaviors of
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the neuron outputs.
In this paper, we propose a Gated Channel Transforma-

tion (GCT) for efficient and accurate contextual information
modeling. First, we use a normalization component, instead
of FC, to model channel relations. Normalization methods,
e.g., Local Response Normalization (LRN) [23], can create
competitions among different neurons (or channels) in neu-
ral networks. Batch normalization [19] and its variants can
smooth gradient and have been widely used in accelerating
CNNs training process. We leverage a simple `2 normal-
ization for modeling channel relationship, which is more
stable and computationally efficient comparing to FC lay-
ers. Second, we carefully design the trainable architecture
of GCT based on the normalization component and intro-
duce a few channel-wise parameters to control the behavior
of the gated adaptation of feature channels. Compared to
the large number of parameters in FC, our designed param-
eters are much more lightweight. Moreover, the channel-
wise gating weight parameter is convenient for channel re-
lationship analysis and helps understand the effect of GCT
modules across a whole CNN network.

Following SE, our GCT employs gating mechanisms to
adapt the channel relationships. However, the Sigmoid ac-
tivation of SE is easy to cause vanishing gradient in training,
when the Sigmoid value is close to either 0 or 1. Hence,
we introduce the residual connection [13] into the gating
adaptation by using a 1 + tanh(x) gate activation, which
gives GCT an ability to model identity mapping and makes
the training process more stable. Combining normalization
methods and gating mechanisms, GCT can create the chan-
nel relations of both competition and cooperation, as shown
in Fig. 1. According to our visualization analysis (Sec. 4.4),
GCT prefers to encourage cooperation in shallower layers,
but competition is enhanced in deeper layers. Generally, the
shallow layers learn low-level attributes to capture general
characteristics like textures. In deeper layers, the high-level
features are more discriminative and task-related.

Our experiments show that GCT is a simple and effective
architecture for modeling relationships among channels. It
significantly improves the generalization capability of deep
convolutional networks across visual recognition tasks and
datasets.

2. Related Work
Gating and attention mechanisms. Gating mechanisms
have been successfully deployed in some recurrent neu-
ral network architectures. Long Short-Term Memory
(LSTM) [15] introduced an input gate, output gate and for-
get gate, which are used to regulate the flow of informa-
tion into and out of the module. Based on gating mecha-
nisms, some attention methods focus on forcing computa-
tional resources towards the most informative components
of features [24, 27]. The attention mechanism has achieved

promising improvements across many tasks including se-
quence learning [4], lip reading [7], image captioning [42],
localization and understanding in images [20, 5].

Recent works introduce the attention mechanism into
convolutional networks (e.g., [10, 9]). A non-recurrent ap-
proach to combine gating mechanisms with convolutional
networks achieves promising performance in the language
task, which was always studied based on recurrent net-
works before [9]. Following these studies, SE-Nets [17] and
its following work GE-Nets [16] introduced a lightweight
gating mechanism that focuses on enhancing the represen-
tational power of the convolutional network by modeling
channel-wise relationship. Compared to the SE module, our
GCT also pays attention to the cross-channel relationship
but can achieve better performance gains with less compu-
tation and parameters.
Normalization layers. In recent years, normalization lay-
ers have been widely used in deep networks to create com-
petition between neurons [23] and produce smoother op-
timization surfaces [19]. Local Response Normalization
(LRN) [23] computes the statistics in a small neighbor-
hood among channels for each pixel. Batch Normalization
(BN) [19] utilizes global spatial information along the batch
dimension and suggests to be deployed for all layers. Layer
Normalization (LN) [3] computes along the channel dimen-
sion instead of the batch dimension. Group Normalization
(GN) [40] differently divides the channels into groups and
computes within each group the mean and variance for nor-
malization. Similar to LRN, GN and LN, our GCT also uti-
lizes channel-related information with normalization struc-
ture.
Deep architectures. VGGNets [31] and Inception net-
works [33] demonstrated that it was significant to improve
the quality of representation by increasing the depth of
a network. ResNets [13] utilized shortcut connections to
identity-based skip connections, and proved that it was
highly effective to build considerably deeper and stronger
networks with them. Some other researchers focused on
improving the representation ability of the computational
elements contained within a network [34]. The more di-
verse composition of operators within a computational ele-
ment can be constructed with multi-branch convolutions or
pooling layers. Other than this, grouped convolutions have
proven to be a practical method to increase the cardinality
of learned transformations [41].

Based on the success of CNNs for image tasks, 3D con-
volutions [21, 36] (C3D) are introduced for video classi-
fication task. In addition to C3D, Non-local neural net-
works [39] (NL-Nets) design a non-local operation for
capturing long-range, non-local dependency, which signifi-
cantly improves the accuracy of video classification.

We build our GCT on some of these deep architectures.
All the networks with GCT achieve promising performance
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Figure 2: An overview of the structure of Gated Channel Transformation (GCT). The embedding weight, α, is responsible
for controlling the weight of each channel before the channel normalization. And the gating weight and bias, γ and β, are
responsible for adjusting the scale of the input feature x channel-wisely.

improvements, but the growth of computational complexity
is negligible.

3. Gated Channel Transformation

We propose a Gated Channel Transformation for highly
efficient, channel-wise, contextual information modeling.
GCT employs a normalization method to create compe-
tition or cooperation relationships among channels. No-
tably, the normalization operation is parameter-free. To
make GCT learnable, we design a global context embed-
ding operator, which embeds the global context and controls
the weight fo each channel before the normalization and a
gating adaptation operator, which adjusts the input feature
channel-wisely based on the output of the normalization.
The channel-wise trainable parameters are light-weight yet
effective and make GCT convenient to be extensively de-
ployed while occupying a small number of parameters. Be-
sides, the parameters of the gating adaptation operator are
easy and intuitive to be visualized for explaining the be-
havior of GCT. In summary, we carefully design the highly
light-weight, explainable, but effective architecture of GCT
based on the normalization operation for modeling channel
relationships.

Let x ∈ RC×H×W be an activation feature in a convolu-
tional network, where H and W are the spatial height and
width, and C is the number of channels. In general, GCT
performs the following transformation:

x̂ = F (x|α,γ,β),α,γ,β ∈ RC . (1)

Here α, γ and β are trainable parameters. Embedding
weightα is responsible for adapting the embedding outputs.
The gating weight γ and bias β control the activation of the
gate. They determine the behavior of GCT in each chan-
nel. Notably, the parameter complexity of GCT is O(C),
which is smaller than the SE module (O(C2)) [17]. In SE-

Net, two FC layers are leveraged, which have the parameter
complexity of O(C2).

An illustration of the structure of GCT is shown in Fig. 2.
Let x = [x1, x2, ..., xC ], xc = [xi,jc ]H×W ∈ RH×W , c ∈
{1, 2, ..., C}, where xc is corresponding to each channel of
x. The detailed transformation consists of following parts.

3.1. Global Context Embedding

The information with a large receptive field is useful to
avoid local ambiguities [35, 16] caused by the information
with a small receptive field (e.g., a convolutional layer).
Hence, we firstly design a global context embedding mod-
ule to aggregate global context information in each chan-
nel. The module can exploit global contextual information
outside the small receptive fields of convolutional layers.
Given the embedding weight α = [α1, ..., αC ], the module
is defined as:

sc = αc||xc||2 = αc{[
H∑
i=1

W∑
j=1

(xi,jc )2] + ε} 1
2 , (2)

where ε is a small constant to avoid the problem of deriva-
tion at the zero point. Different from SE, GCT does not use
global average pooling (GAP) to aggregate channel context.
GAP might fail in some extreme cases. For example, if
SE is deployed after the Instance Normalization [37] layer
that is popular in style transfer task, the output of GAP will
be constant for any inputs since IN fixes the mean of each
channel of features. To avoid this problem, we choose `p-
norm instead. It is worth noting that GCT is robust with
different `p-norms. In Sec. 4.5, we compare the perfor-
mance of some popular `p-norms and choose the best one,
`2-norm, to be our default setting. Notably, the performance
of `1-norm is very close to `2-norm, but `1-norm can be
equivalently replaced by GAP when the input of GCT is
consistently non-negative (for example, after ReLU activa-



tion in our default setting). In this case, `1-norm is more
computationally efficient as shown in Table 3.

Besides, we use trainable parameters, αc, to control the
weight of each channel because different channels should
have different significance. Especially if αc is close to 0, the
channel c will not be involved in the channel normalization.
In other words, the gating weight, α, make GCT capable of
learning the situation that one channel is individual to other
channels.

3.2. Channel Normalization

Normalization methods can create competition relation-
ship between neurons (or channels) [23] with lightweight
computing resource and a stable training performance (e.g.,
[19]). Similar to LRN, we use a `2 normalization to op-
erate across channels, namely channel normalization. Let
s = [s1, ..., sC ], the formula of channel normalization is:

ŝc =

√
Csc
||s||2

=

√
Csc

[(
C∑

c=1
s2c) + ε]

1
2

, (3)

where ε is a small constant. The scalar
√
C is used to nor-

malize the scale of ŝc, avoiding a too small scale of ŝc when
C is large. Compared to the FC layers used by SE, our
channel normalization has less computational complexity
(O(C)) compared to the FC layers (O(C2)).

3.3. Gating Adaptation

We employ a gating mechanism, namely gating adap-
tation, to adapt the original feature. By introducing the
gating mechanism, our GCT can facilitate both competi-
tion and cooperation during the training process. Let the
gating weight γ = [γ1, ..., γC ] and the gating biases β =
[β1, ..., βC ], we design the following gating function:

x̂c = xc[1 + tanh(γcŝc + βc)]. (4)

The scale of each original channel xc will be adapted by
its corresponding gate, i.e., 1 + tanh(γcŝc + βc). Due to
the channel normalization is parameter-free, we design the
trainable weight and bias, γ and β, for learning to con-
trol the activation of gate channel-wisely. LRN benefits
from only the competitions among the neurons [23]. How-
ever, GCT is able to model more types of relationship (i.e.,
competition and cooperation) among different channels by
combining normalization methods and gating mechanisms.
When the gating weight of one channel (γc) is activated
positively, GCT promotes this channel to compete with the
others as in LRN. When the gating weight is activated neg-
atively, GCT encourages this channel to cooperate with the
others. We analyze these adaptive channel relationships in
Sec.4.4.

def forward(self, x, epsilon=1e-5):
# x: input features with shape [N,C,H,W]
# alpha, gamma, beta: embedding weight, gating

weight, gating bias with shape [1,C,1,1]
embedding = (x.pow(2).sum((2,3), keepdim=True)

+ epsilon).pow(0.5) * self.alpha
norm = self.gamma /

(embedding.pow(2).mean(dim=1,
keepdim=True) + epsilon).pow(0.5)

gate = 1. + torch.tanh(embedding * norm +
self.beta)

return x * gate

Figure 3: An implementation of GCT (`2) based on PyTorch

Besides, this gate function allows original features to
pass to the next layer when the gating weight and biases
are zeros, which is

x̂ = F (x|α,0,0) = 1x = x. (5)

The ability to model identity mapping can effectively im-
prove the robustness of the degradation problem in deep
networks. ResNets also benefit from this idea. Therefore,
we propose to initialize γ and β to 0 in the initialization of
GCT layers. By doing this, the initial steps of the training
process will be more stable, and the final performance of
GCT will be better.

3.4. Learning

Similar to modern normalization layers (e.g., BN), we
propose to apply GCT for all convolutional layers in deep
networks. However, there are many different points nearby
one convolutional layer to employ GCT. In deep networks,
each convolutional layer always works together with a nor-
malization layer (e.g., BN) and an activation layer (e.g.,
ReLU [28]). For this reason, there are three possible points
to deploy the GCT layer, which are before the convolutional
layer, before the normalization layer, and after the normal-
ization layer. All these methods are effective, but we find it
to be better to employ GCT before the convolutional layer.
In Sec. 4.5, we compare the performance of these three ap-
plication methods.

We implement and evaluate our GCT module on some
popular deep learning frameworks, including PaddlePad-
dle [1], TensorFlow [2] and PyTorch [29], and we observe
similar improvement by introducing GCT. Fig. 3 shows a
simple implementation based on PyTorch.

In the training process, we propose to use 1 to initializeα
and use 0 to initialize all γ and β. By doing this, GCT will
be initialized as an identity mapping module, which will
make the training process more stable. Besides, to avoid the
bad influence of unstable gradient on the GCT gate in initial
training steps, we propose to use warmup method (to start
training with a small learning rate). In all the experiments
on ImageNet [30], we start training with a learning rate of
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Figure 4: Training curve comparisons for ResNets with different depth on ImageNet.

original GCT
Network top-1 top-5 top-1 top-5
VGG-16 [31] 26.2 8.3 25.1(1.1) 7.5(0.8)
Inception-v3 [34] 24.3 7.3 23.7(0.6) 7.1(0.2)
ResNeXt-50 [41] 22.4 6.3 21.7(0.7) 6.0(0.3)
ResNet-50 [13] 23.8 7.0 22.7(1.1) 6.3(0.7)
ResNet-101 [13] 22.2 6.2 21.4(0.8) 5.9(0.3)
ResNet-152 [13] 21.6 5.9 20.8(0.8) 5.5(0.4)
ResNet-200∗ [14] 20.7 5.2 19.7(1.0) 4.8(0.4)

Table 1: Improvement in error performance (%) on Im-
ageNet. The numbers in brackets denote the improvement
in performance over the baselines. ResNet-200∗ means we
follow the strategy in [14] to train this model on 224× 224
but evaluate on 320× 320.

0.01 for 1 epoch. After the warmup, we go back to the
original learning rate schedule. Finally, we propose NOT
to apply weight decay on β parameters, which is possible
to reduce the performance of GCT.

4. Experiments

We apply GCT for all the convolutional layers in deep
networks rather than block-level deployment in SE-Net. In
all GCT counterparts, we employ one GCT layer before
each convolutional layer. In the Kinetics experiments, we
apply GCT at the last two convolutional layers in each Res-
Block. More training details are shown in Sec. 3.4.

4.1. ImageNet

We experiment on the ImageNet 2012 dataset [30] with
1, 000 classes. We train all the models on the 1.28M train-
ing images and evaluate on the 50, 000 validation images.
Training details. In the training process of all the models,
the input image is 224 × 224 randomly cropped from a re-
sized image using the same augmentation in [33]. We use
SGD with a mini-batch size of 256. For ResNet-152 and
ResNeXt-50, we use half mini-batch size and double the

training steps). The weight decay is 0.0001, and the mo-
mentum is 0.9. The base learning rate is 0.1, and we divide
it by 10 every 30 epochs. All models are trained for 100
epochs from scratch, using the weight initialization strat-
egy described in [12]. Besides, we start the training process
with a learning rate of 0.01 for 1 epoch. After the warmup,
we go back to the original learning rate schedule. In all
comparisons, we evaluate the error on the single 224× 224
center crop from an image whose shorter side is 256. For
ResNet-200 [14], we evaluate on 320× 320 following [14].
Integration with deep modern architectures. We
study the effects of integrating GCT layers with some
state-of-the-art backbone architectures, e.g., ResNets and
ResNeXts [41], in which we apply GCT before all the con-
volutional layers. We report all these results in Table 1.
Compared to original architectures, we observe significant
performance improvements by introducing GCT into net-
works. Particularly, the top-1 error of GCT-ResNet-101 is
21.4%, which is even better than the ResNet-152 baseline
(21.6%) with a deeper network and much more parameters.
In addition, GCT is able to bring stable improvement in
ResNets with different depth (1.1% top-1 improvement in
ResNet-50, 0.8% in ResNet-152 and 1.0% in ResNet-200).
Besides, we observe a smooth improvement throughout the
training schedule, which is shown in Fig.4.

We also explore the improvement with GCT in non-
residual networks (e.g., VGG-16 [31] and Inception-
v3 [34]). To stabilize the training process, we employ
BN [19] layers after every convolutional layer. Similar to
the effectiveness in residual architectures, GCT layers bring
promising improvements in non-residual structures.
Compared to SE. Following [16], we conduct experiments
on ImageNet to compare SE with GCT. In addition, we
make comparison fairly in both residual and non-residual
networks and the results are reported in Table 2. We fol-
low the methods in [17] to integrate SE into VGG-16 [31],
Inception [34], ResNet-50 [13] and ResNeXt-50 [41] and
train these models in same training schedule. Compared to
SE, GCT always achieves better improvement.



original +SE [17] +GCT (ours)
Network top-1/5 G/P top-1/5 G/P top-1/5 G/P
ResNet-50 [13] 23.8/7.0 3.879/25.61 22.9/6.6 3.893∗/28.14 22.7/6.3 3.900/25.68
ResNeXt-50 [41] 22.4/6.3 3.795/25.10 22.0/6.1 3.809∗/27.63 21.7/6.0 3.821/25.19
Inception-v3 [34] 24.3/7.3 2.847/23.87 24.0/7.2 2.851∗/25.53 23.7/7.1 2.862/23.99
VGG-16 [31] 26.2/8.3 15.497/138.37 25.2/7.7 15.525/138.60 25.1/7.5 15.516/138.38

Table 2: Compared to SE on ImageNet. We evaluate the models of error performance (%), GFLOPs (G) and parameters
(M). G/P means GFLOPs/parameters. ∗: In the first three networks, SE is only employed in block-level (Res-Block or
Inception-Block) as proposed [17], but GCT is applied for all the convolutional layers. This difference makes that SE uses
comparable GFLOPs with GCT. In VGG-16, however, SE is employed for all the convolutional layers in the experiments,
which is the same as GCT. Under the same setting, GCT outperforms SE on both complexity and performance.

baseline +SE [17] +GCT (`1-norm) +GCT (`2-norm)
ResNet-50 [31] 603 525∗ 484 425
VGG-16 [13] 313 183 281 268

Table 3: Inference speed (FPS) comparison. We compare the speed on ImageNet by using one GTX 1080 Ti GPU. GCT
is always applied for all the convolutional layers. ∗: In ResNet-50, SE is applied for each Res-Block as proposed. But, in
VGG-16, SE is applied for all the convolutional layers, which leads to better fairness in the same setting with GCT.

In order to compare computational complexity, we calcu-
late the GFLOPs and the number of parameters. In VGG-16
experiments, SE is employed for all the convolutional lay-
ers, which is the same as GCT. Under this fair condition,
GCT achieves better performance with less increase in both
GFLOPs (0.019G vs. 0.028G) and parameters (0.01M vs.
0.23M). Moreover, GCT is much more efficient than SE in
run-time as shown in Table 3 (281FPS vs. 183). In other
experiments, SE is employed in block-level (Res-Block or
Inception-Block) as proposed [17], which means the num-
ber of SE modules is only about 1/3 of GCT. However,
the increase in parameters of GCT is still much less than
SE, and the inference speed of GCT is comparable with SE
(GCT 484FPS vs. SE 525 in ResNet-50). Compared to SE,
GCT performs better and is capable of applying for all the
convolutional layers while keeping the network efficient.

4.2. COCO

Next we evaluate the generalizability on the COCO
dataset [26]. We train the models on the COCO train2017
set and evaluate on the COCO eval2017 set (a.k.a minival).
Training details. We experiment on the Mask R-CNN
baselines [11] and its GN counterparts [40]. All the back-
bone models are pre-trained on ImageNet using the scale
and aspect ratio augmentation in [33] and fine-tune on
COCO with a batch size of 16 (2 images/GPU). Besides,
all these experiments use the Feature Pyramid Network
(FPN) [25]. We also use the same hyperparameters and two
training schedules used in [40]. The short schedule includes
90K iterations, in which the learning rate is divided by 10
at 60K and 80K iterations. The long schedule increases the
iterations to 270K, in which the learning rate is divided by
10 at 210K and 250K. The base learning rate is 0.02 in both

Backbone box head box AP mask AP
ResNet-50 BN∗ - 37.8 34.2
ResNet-50 BN∗+SE [6] - 38.2(0.4) 34.7(0.5)
ResNet-50 BN∗+GCT - 39.8(2.0) 36.0(1.8)
ResNet-101 BN∗ - 40.1 36.1
ResNet-101 BN∗+GCT - 42.0(1.9) 37.7(1.6)
+ResNet-50 BN∗ - 38.6 34.5
+ResNet-50 GN GN 40.8(2.2) 36.1(1.6)
+ResNet-50 BN∗+GCT GN 41.6(3.0) 37.1(2.6)
+ResNet-50 BN∗+GCT GN+GCT 41.8(3.2) 37.3(2.8)
+ResNet-101 BN∗ - 40.9 36.4
+ResNet-101 GN GN 42.3(1.4) 37.2(0.8)
+ResNet-101 BN∗+GCT GN 43.1(2.2) 38.3(1.9)

Table 4: Improvement on COCO with Mask R-CNN
framework [11]. BN∗ means BN is frozen. + means in-
creasing the training iterations from 90K to 270K. When
using GN, we follow the original strategy in [40].

schedules.
Improvements on Mask R-CNN [11]. Table 4 shows the
comparison of BN∗ (frozen BN), GN and BN∗+GCT (using
GCT before all the convolutional layers of the backbones).
First, we use a short training schedule to compare base-
lines and GCT counterparts. GCT shows stable and signif-
icant improvement in both ResNet-50 and ResNet-101. In
ResNet-50, GCT improves box AP by 2.0 and mask AP by
1.8, which significantly outperforms SE (0.4 box AP / 0.5
mask AP). Moreover, in ResNet-101, GCT also improves
detection AP by 1.9 and segmentation AP by 1.6. Then,
we use the long schedule to compare GN and BN∗+GCT.
GN is more effective than BN when batch size is small as
in this case of detection and segmentation using Mask R-
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Figure 5: Analysis. The visulization of parameters of γ (Fig.(a), (b)), and the ratio of variance of GCT output and input
feature (Fig.(c)) in all the GCT layers in ResNet-50 on ImageNet.

Backbone NL-Net [39] +GCT
ResNet-50 74.6 75.1(0.5)
ResNet-101 75.7 76.2(0.5)

Table 5: Improvement in top-1 accuracy (%) over the
state-of-the-art method on Kinetics.

CNN. However, we deploy GCT together with BN into the
backbone, and these BN∗+GCT counterparts achieve much
better performance than GN backbones. Compared to GN
in ResNet-101, BN∗+GCT improves detection AP by 0.8
and segmentation AP by 1.1. In particular, ResNet-101
with BN∗+GCT trained in the short schedule achieves bet-
ter segmentation AP (37.7) than the GN counterpart (37.2)
trained with the long schedule. This GN counterpart also
uses GN in the backbone, the box heads, and the FPN. We
also explore to combine GCT with GN by introducing GCT
into GN box head. The results show GN+GCT achieves a
better performance. It demonstrates the benefits of integrat-
ing GCT with GN. We now have shown the effectiveness of
GCT in working with both BN and GN.

4.3. Kinetics

Our previous experiments demonstrate the effectiveness
of GCT on image-related tasks. We now evaluate the gen-
eralizability in video understanding task of action recogni-
tion on a large scale dataset, Kinetics-400 [22]. We employ
the ResNet-50 (3D) and ResNet-101 (3D) as the backbone
and apply GCT in the last two convolutional layers in each
Res-Block. The backbone networks are pre-trained on Ima-
geNet [30].

We compare with the state-of-the-art Non-Local Net-
works (NL-Net) [39]. The results show that GCT counter-
parts consistently improves the recognition accuracy over
both the ResNet-50 and ResNet-101 baselines, as shown in
Table 5. Because of our limited memory resource, we can
NOT apply GCT in all the convolutional layers, which we
believe can further improve the performance.

In summary, extensive experiments demonstrate that
GCT is effective across a wide range of modern architec-
tures, visual tasks, and datasets.

4.4. Analysis

To analyze the behavior of GCT in different layers, we
visualize the distribution of the gating weight (γ) of each
GCT layer in ResNet-50 on ImageNet. Further, we sort
these distributions according to their layer index in 3D
space (Fig. 5a). The bigger layer index means it is closer
to the network output. To make the visualization clearer,
we re-scale the vertical z axis with log(1 + z), which cor-
responds to the percentage density of γ. We also calculate
the mean and standard deviation (std) of γ in each layer and
show them in a bar chart (Fig. 5b). As shown in Fig. 5a
and 5b, the mean of γ tends to be less than 0 in the GCT
layers far from the network output. Oppositely, in the lay-
ers close to the output, the mean tends to be greater than
0.

According to Eq. 3 & 4, the adaptation of channel xc is
related to ŝc, which corresponds to the ratio of the weighted
`2-norm of xc (i.e., sc) and the average of all the sc. When
the gating weight γc is greater than 0, the adaptation is pos-
itively correlated to ŝc and increases the variance between
xc and others; When γc is lower than 0, the adaptation is
negatively correlated and reduces the variance.

Based on the analysis and the results we observe, we sup-
pose that GCT tends to reduce the difference among chan-
nels in layers far away from the output. This behavior is
helpful to encourage cooperation among channels and re-
lieve overfitting. Apart from this, GCT tends to increase the
difference among channels when close to the output. Here,
GCT acts like attention mechanisms that focus on creating
competition.

To further validate our hypothesis, we calculate the ra-
tio of the variance of output and input feature of each GCT
layer, which we show in Fig. 5c. Generally, the shallow con-
volutional layers learn low-level attributes to capture gen-



Norm top-1 top-5
`∞ 23.1 6.7
`1 22.8 6.3
`2 22.7 6.3

(a) Embedding operator.

Normalization top-1 top-5
M & V 23.7 7.1
`1 22.9 6.4
`2 22.7 6.3

(b) Normalization operator.

Adaptation top-1 top-5
Sigmoid 22.9 6.5
1 + ELU 22.7 6.4
1 + tanh 22.7 6.3

(c) Adaptation operator.

Position top-1 top-5
after BN 23.1 6.6
before BN 23.1 6.5
before Conv 22.7 6.3

(d) Application position.

Table 6: Ablation experiments. We evaluate error performance in GCT-ResNet-50 on ImageNet (%). The ResNet-50
baseline achieves a top-1 of 23.8 and a top-5 of 7.0. M & V denotes the mean and variance normalization.

eral characteristics like textures, edges, and corners. Here,
GCTs reduce the feature variances to avoid missing some
attributes. Besides, the feature variances become larger in
deeper layers, where the high-level features are more dis-
criminative and task-related. As expected, in the layers
close to network output, GCT tends to magnify the variance
of input feature (the ratio is always greater than 1), but in the
layers far away from the output, GCT tends to reduce the
variance (the ratio is always less than 1). This phenomenon
is consistent with our previous hypothesis and shows that
GCT is effective in creating both competition and coopera-
tion among channels. Our observation validates that GCT
can adaptively learn the channel relationships at different
layers.

As shown, for the stages far away from the network out-
put, the proposed GCT layer tends to reduce the variance of
input feature, which encourages cooperation among chan-
nels and avoids excessive activation values or loss of useful
features. On the contrary, for those stages close to the out-
put, GCT tends to magnify the variance. These phenomena
are consistent with the observation in SE and its following
work [38], i.e., the attention weights are shared in shallower
layers, but more discriminative in deeper layers.

4.5. Ablation Studies

In this section, we conduct a serial of ablation experi-
ments to explain the relative importance of each operator in
the GCT. At last, we show how the performance changes
with regards to the GCT position in a network.
Embedding component. To explain the importance of `p-
norm in the embedding module, we compare embedding
operators with different `p norm. We report the results in
Table 6a, which shows all the `p-norms are effective, but the
`2-norm is slightly better than `1-norm. Besides, we make a
clock time comparison between SE and GCT with different
embedding components. As shown in Table 3, `2-norm is
computationally similar to `1-norm and GCT is much more
efficient than SE. The results demonstrate that `p-norms are
robust and perform better.
Normalization component. We also explore the signifi-
cance of `p-norm in the channel normalization by compar-
ing `p normalization with mean and variance normaliza-
tion. The mean and variance normalization will normal-
ize mean to 0 and variance to 1, which is widely used in

normalization layers (e.g., [19]). We show all these results
in Table 6b. Particularly, mean and variance normalization
achieves a top-1 error of 23.7%, which is only slightly bet-
ter than the ResNet-50 baseline (23.8%). Both `1 and `2
normalization make more promising improvements, and `2
performs slightly better.
`p normalization is better at representation learning in

channel normalization.
Adaptation component. We replace the activation func-
tion of the gating adaptation with a few different non-linear
activation functions and show the results in Table 6c. Com-
pare to the baseline (top-1 of 23.8%), all the non-linear
adaptation operator achieves promising performance, and
1 + tanh achieves a slightly better improvement. Both
1 + tanh and 1+ELU [8], which employ residual connec-
tion and can model identity mapping, achieve better results
than Sigmoid. These results show that the residual connec-
tion is important for the gating adaptation.
Application position. To find the best way to deploy GCT
layers, we conduct experiments in ResNet-50 architecture
on ImageNet by separately applying GCT after all the BN
layers, before all the BN layers, and before all the convo-
lutional layers. The results are reported in Table 6d. All
the placement methods are effective in using GCT to im-
prove the representational power of networks. However, it
is better to employ GCT before all the convolutional layers,
which is similar to the strategy in [23] (normalization after
ReLU).

5. Conclusion and Future Work
In this paper, we propose GCT, a novel layer that ef-

fectively improves the discriminability of deep CNNs by
leveraging the relationship among channels. Benefit from
the design of combining normalization and gating mecha-
nisms, GCT can facilitate two types of neuron relations, i.e.,
competition and cooperation, with negligible complexity of
parameters. We conduct extensive experiments to show the
effectiveness and robustness of GCT across a wide range
of modern CNNs and datasets. Except for CNNs, recur-
rent networks (e.g., LSTM [15]) are also a popular branch
in deep neural networks area. In future work, we will study
the feasibility of applying GCT into recurrent networks.
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