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Abstract. In a non-stationary data stream, concept drift occurs when different
chunks of incoming data have different distributions. Hence, over time, the global
optimization point of a learning model might permanently drift to the point where
the model no longer adequately performs the task it was designed for. This phe-
nomenon needs to be addressed to maintain the integrity and effectiveness of
a model over the long term. In this paper, we propose a simple but effective
drift learning algorithm called elastic Gradient Boosting Decision Tree (eGBDT).
Since the prediction of a GBDT model is the sum output of a list of trees, we
can easily append new trees to perform incremental learning or delete the last
few trees to roll back to a previously known optimization point. The proposed
eGBDT incrementally fits new data and detect drift by searching for the tree with
the lowest residual. If the rollback deletions required would exceed the initial
number of trees, a retraining process is triggered. Comparisons of eGBDT with
five state-of-the-art methods on eight data sets show the efficacy of eGBDT.

Keywords: Concept drift · Data stream · Incremental learning · Gradient boost-
ing.

1 Introduction

Concept drift describes changes in the data distribution of data streams that means the
current model is no longer sufficiently accurate in performing the task it was designed
for. It is important for a machine learning model to be able to mine the characteristics
of the data stream and adapt to changes in the data distribution [20,19,23,22]. There are
two main types of concept drift: real drift and virtual drift [14]. Real drift occurs when
there are changes in the class boundaries that make the current model obsolete. This
type of drift is illustrated in Fig. 1, the global optimization point of a learning model
might permanently drift to the point where the model no longer adequately performs
the task it was designed for. By contrast, virtual drift means changes in the marginal
distribution, while the class boundaries are not affected. Concept drift will make the
machine learning model unable to adapt to changeable data, leading to poor prediction
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Fig. 1. (a) The loss of the model before and after concept drift occurs. When a real drift occurs,
the loss may not decrease quickly. (b) A demonstration of the GBDT model before and after a
real drift, more base trees are needed for model learning to help loss get to the minimum point
(global optimization point).

and decision outcomes [20]. Our focus in this paper is real drift detection and adaptation
for supervised learning.

Algorithms for handling concept drift can be divided into active and passive ap-
proaches [8]. Also called drift trigger techniques, active approaches actively detect con-
cept drift in every time step and react after confirming a drift [7]. However, there is no
solid strategy for ascertaining the point at which the current model should be retrained
for best performance versus fine-tuning the model to account for the drift. For passive
methods, the target is to learn data streams based on self-adjustment rather than rely
on drift detection results. However, passive methods can perform well on non-drifting
or slowly-drifting streams, but they may not suitable for adapting to sudden drifts or
streams where concept drifts are frequent [18]. Moreover, combine with the latest ma-
chine learning methods, incremental learning methods [25] and ensemble methods [17],
are popular in data stream mining. Bagging and boosting are two representative tech-
niques of ensemble learning methods [24], and they also have been extended for online
version. However, unlike bagging, which generated base learners in parallel, boosting
sequentially constructs a series of base learners. Gradient boosting machine (GBM) [12]
is one of the popular boosting models, but it is still an open problem for it to dealing
with streaming data since the base learners could not adapt to the changing environment
[10]. So, how to measure the impact of concept drift on GBM? Furthermore, how to
choose the best model adjustment strategy to maintain model performance, incremental
learning, or retraining?

Our aim is to develop an active drift handling algorithm that can choose the opti-
mal moment to switch from fine-tuning to retraining via proposing an elastic Gradient
Boosted Decision Tree (eGBDT) algorithm. GBDT iteratively constructs a group of
weak learners then linearly combines them into a strong learner. Hence, it is easy to add
or delete trees from the tree list, which keeps the model flexible. For example, consider
a continuous series of data chunks. A GBDT model can be initially constructed 100
trees on data chunk 0 and then tested on data chunk 1, where the cumulative result of
base trees is the prediction result of the entire model. The model can then be incre-
mentally fine-tuned by incrementally learning a further 50 trees. If the best prediction
result occurs at the 150th tree, the model could still be underfitting. However, if the best
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prediction result occurs at the 110th tree, the model might be overfitting, and trees after
the 110th can be deleted. Another case is that the best prediction result occurs at the
80th tree, while the initial training only has 100 trees. This means the GBDT model
can not adapt to the data. We consider this as a significant drift, and the model is then
retrained. As a bonus, this pruning strategy can help to reduce memory consumption
and the complexity of calculations without sacrificing performance.

The main contributions of this paper are as follows:

– Based on the characteristics of GBDT framework, we propose a naı̈ve incremental
GBDT (iGBDT) algorithm for incremental learning with dynamic data streams.

– We propose a rollback process to find out the poor performance trees in GBDT
model. This is also a signal to find out concept drift.

– We propose an elastic Gradient Boosting Descent Tree (eGBDT) algorithm, which
can delete redundant trees without increasing the runtime complexity. This eGBDT
handles the uncertain of concept drift well.

This paper is organized as follows: related work and preliminaries are discussed in
Section 2, our proposed methods are presented in Section 3, Section 4 illustrated our
experiment, conclusion and future work are in Section 5.

2 Related Works and Preliminaries

2.1 Concept Drift Detection and Adaptation

For a time step t, a data chunk with chunk instances Dt = {(xti, yti)}chunki=1 is generated
by a distribution Pt(x, y), where x is the attribute vector and y is the label. Concept
drift is defined as Pt(x, y) 6= Pt−1(x, y), the data distribution changed from time t− 1
to time t [27]. The goal of drift learning is to ensure that the loss `(f(x), y) of a learning
model is continuously optimized when a concept drift occurs, i.e.,

Ft = arg min
f∈H

E(x,y)∈Pt(x,y)[`(f(x), y)], (1)

where H is the hypothesis set, E(·) is the expectation of a random variable [27]. Con-
sider a sequence of Pt(x, y), the target of the incremental learning is given as

min
F1,F2,...,Ft,...

∑
t

E(x,y)∈Pt(x,y)[`(Ft(x), y)] (2)

i.e., a set of models created at different time step [27]. Since the real concept drift has
no established rules to follow and may include multiple types of drift, it is not only
necessary to perform preliminary detection, but also to fine-tune model in real time
based on the feedback, reducing the memory redundancy caused by passive learning to
improve the flexibility of the model.

The purpose of handling concept drift is to ensure the trained model can perform
well on the testing set. Like accurately map the knowledge of the source domain to
the target domain [21]. Ensemble approaches to deal with concept drift can be divided
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into two categories [17,8]: active drift detection with an adaptation ensemble, and pas-
sive ensemble with forgetting mechanism. The active method relies on a drift detection
mechanism, informing the model to update in time. Some popular drift detection meth-
ods are Drift Detection Method (DDM) [13], Heoffding’s inequality based Drift Detec-
tion Method (HDDM) [11], ADaptive WINdowing (ADWIN) [1]. The passive methods
do not have a drift detection. Instead, it learns the new data and fine-tunes the model
in time. Typical examples are Streaming Ensemble Algorithm (SEA) [26], the Learn++
algorithm in Nonstationary Environments (Learn++.NSE) [7], Dynamic Weighted Ma-
jority algorithm (DWM) [16], Accuracy Updated Ensemble (AUE1) [5] and Accuracy
Updated Ensemble (AUE2) [6]. These algorithms learn drift incrementally with newly
arriving data, eliminating old ensembles through a forgetting mechanism [27].

2.2 Gradient Boosting Decision Tree

At present, Boosting [4], which is a critical algorithm in ensemble learning, has been
widely used in data mining. GBDT [12] is a kind of classification algorithm based on
ensemble learning that turns a weak classifier into a strong classifier through training.
We input training set {(xi, yi)}chunki=1 , a differentiable loss function `(y, f(x)), number
of iterations M . For m = 1 to M , we calculate the pseudo-residuals

rim = −
[
∂`(yi, f(xi))

∂f(xi)

]
f(x)=fm−1(x)

, i = 1, . . . , chunk (3)

and fit a base learner hm(x) to pseudo-residuals, then train it use the training set
{(xi, rim)}ni=1 and calculate the multiplier γm as

γm = arg min
γ

n∑
i=1

L(yi, Fm−1(xi) + γhm(xi)), (4)

then update the model as

FM (x) = Fm−1(x) + γmhm(x). (5)

In the literature, GBDT has been used for handling stochastic data streams, such as the
Streaming Gradient Boosting algorithm (SGM) [15]. To adapt to the changes of data
stream, we propose an incremental method to improve model performances. At the
same time, considering the redundancy and complexity of the calculation process, we
add a pruning process to increase the flexibility of the model and enhance performances.

3 Elastic Gradient Boosting Decision Tree Ensemble

3.1 Incremental Learning of GBDT——iGBDT

GBDT model is trained using a portion of the data instances as the training set, with the
remaining data instances divided into several data chunks for subsequent use in itera-
tively fine-tuning the model. Once initially trained, the model is tested on new chunks
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Algorithm 1 Incremental Learning of GBDT (iGBDT)
Input:

1) initial train chunk Dchunkini

2) new slide chunk Dchunkslide

Parameter:
1) Config of GBDT, GBDTparm =
(M = 250,Depth = 10,MinSamplesLeaf = 5, SampleRate = 0.8, λ = 0.01)
2) Num of incremental trees, L

Output:
1) incremental GBDT FM+L(x)

1: build GBDT FM (x) on Dtrain

2: for l = 1 to L do
3: compute the pseudo-residuals rli on Dtest

4: fit a new regression tree hl(X) on Dtest to pseudo-residuals, i.e. train it using (xi, λrli)
where xi ∈ Xtest

5: update the mode according to Eq. (6)
6: end for
7: return FM+L(x)

of incoming data to gauge and fine-tune the model’s accuracy. Although GBDT models
are high-performing ensemble decision tree models when handling classification tasks,
no one has applied it for concept drift learning. With data streams that contain con-
cept drift, it is vital to ensure that the model can adapt to the new patterns. Incremental
learning is an ideal method for updating the model.

We first train a GBDT model based on the given data sample, then we test the
model on the new incoming data chunk and calculate the residual. We use this data
chunk and residual as a new train set to fit a new decision regression tree and add this
tree to our original GBDT model to update a new model. For binary classification, we
initial training chunk and present new sliding chunk as Dchunkini = {(xi, yi)}chunkini

i=1 ,
Dchunkslide

= {(xi, yi)}chunkslide
i=1 , the term ”chunk” represents the chunk size, and x ∈

Rd that d is the dimensionality, y ∈ {0, 1}. We calculate the pseudo-residuals on testing
set as based on Eq. (3). Then, we set the learning rate as λ and set the number of
incremental trees as L, we fit L new regression tree on {(xi, λri(M+L))}chunkslide

i=1 , the
incremental learning model is

FM+L(x) = FM+L−1(x) + hM+L(x). (6)

This is more computational friendly than the conventional GBDT learning given in
Eq. (4, 5), because of the fixed learning rate. Repeating this procedure incrementally
tunes the GBDT model. The same process is used with newly arriving chunks so the
model incrementally adapts to concept drift if present. The pseudocode for GBDT’s
incremental learning process is presented in Algorithm 1.

3.2 A Residual-based GBDT Pruning Method——eGBDT

The prediction result of a GBDT model is the sum of the prediction of each tree
inside the model. Let’s denote the prediction value of the mth tree on a given feature
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Algorithm 2 Elastic GBDT (eGBDT)
Input:

1) trained GBDT, FM (x)
2) new slide chunk Dchunkslide

Parameter: N/A
Output:

1) pruned GBDT, FM
′ (x)

1: test GBDT model FM (x) on Dchunkslide

2: calculate the residual based on the output of each tree Rm

3: find the best tree index based on the mean absolute (MA) value of the residual m =
argmin MA(Rm)

4: if m < M then
5: retrain GBDT FM (x) on Dchunkslide

6: return FM (x) as FM
′ (x)

7: else
8: remove redundant trees FM

′ (x) = F0,m(x)
9: return F0,m(x) as FM

′ (x)
10: end if

vector x as ŷm = hm(x). Then the predictions of all GBDT trees on x is {ŷm}Mm=1.
According to the Eq. (6), the final prediction value on the mth tree is the sum of the
prediction values from the first tree to the mth tree, i.e.,

Fm(x) =

m∑
i=1

hi(x) + ȳ, (7)

where the ȳ is the mean of the label, namely the initial prediction of the GBDT. The
first regression tree h0 is trained on Dchunkini

, with the mean of the label ȳ as the initial
target variable, and the residual is calculated by R0 = y − ȳ. The residuals of the
previous tree are used to train next tree from h1 to hm, where m ∈ Z+

m≤M , M is the
max number of iterations. We have the residual vector of the mth tree on a sliding data
chunk as:

Rm = y − Fm(x) = y − ȳ −
m∑
i=1

hi(x), (8)

that Rm = {rim}chunkslide
i=1 . With the residual of each tree, we can evaluate the perfor-

mance of the GBDT with any length, which is the reason we call it elastic GBDT. For
runtime efficiency, the residuals are stored in a chunkslide by M size matrix. Then we
can find the best performance sub list of trees by finding the minimum mean absolute
(MA) residual.

Ielastic = argmin
m∈Z+

m≤M

MA(Rm) (9)

where the Ielastic is the elastic GBDT tree index, i.e., the sub tree list of GBDT that
eGBDT = {h0(x), . . . , hIelastic(x)} will be used for later prediction. And the redun-
dant sub tree list rGBDT = {hIelastic+1(x), . . . , hM (x)} will discard. If Ielastic is
smaller than a predefined threshold, then we say there is a significant concept drift, and
a new GBDT will be retrained on the new data.
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For eGBDT, the GBDT pruning process is always associated with the incremen-
tal learning process. At the beginning of the stream, we build a GBDT with M trees
on Dchunkini . Then for each new data chunk, we make the prediction, perform prun-
ing and drift detection, and incrementally fit the pruned GBDT with L new trees on
Dchunkslide

. In this setting, we use the initial number of trees M as the drift threshold,
i.e., if Ielastic < M , a retraining process will be triggered.

4 Experiments

4.1 Experiment Settings

Three GDBT-based methods and the five state-of-the-art concept drift handling methods
were compared as follows. The parameters of GBDT were same, M = 250, Depth
= 10, Min Samples Leaf = 5, Sample Rate= 0.8, λ = 0.01. For the iGBDT, we set
the number of incremental trees as L = 25. The five state-of-the-art algorithms were
implemented based on MOA prequential evaluation [2], and parameters were set as the
default values as suggested by the authors.

Baseline, train a GBDT model on the training chunk and test it on the reset of the
streams.

iGBDT, incremental GBDT that train on initial chunk and incremental fit on new
data. For example, train on chunk 0 and test on chunk 1, then incremental fit on chunk
1 and test on chunk 2. In our experiment, we set the same number of base learners for
each incremental learning.

Learn++.NSE [9], is an ensemble of classifiers for incremental learning to handle
the changeable data distribution. It trains one new classifier for each batch of data.
It can receive and combine these classifiers by using dynamically weighted majority
voting [9].

OnlineAUE [6], maintains a weighted ensemble of base learners and uses a weighted
voting rule for its final prediction. It combines accuracy-based weighting mechanisms
known from block-based ensembles with the incremental nature of Hoeffding Trees [6].

LeverageBag [3], focuses on randomizing the input and output of the classifier,
while increasing accuracy and diversity, construct an ensemble of classifiers. This method
combines the simplicity of bagging by adding more randomization to the input and out-
put of the classifiers.

HDDM-W-Test, HDDM-A-Test [11], is an error-based online drift detection method
based on McDiarmid’s bounds. HDDM-A-Test is based on Hoeffding’s bounds. HDDM-
W-Test is based on McDiarmid’s bounds and uses the EWMA statistic as an estimator.

The proposed GBDT-based methods were implemented by Python. The base de-
cision tree learners of GBDT framework are learned by using the Sklearn Decision
Tree Regression package. The parameter setting on each data set was the same. The
chunkini = 365 and chunkslide = 365, the chunk size is established according to the
periodicity of the data, and this will be explained in the data sets description. To be fair,
we uniformly use the decision tree model as the base learner in other algorithms. Using
the Hoeffding trees as the base learners in Learn++.NSE, LeverageBag, OnlineAUE,
HDDM-W-Test, HDDM-A-Test algorithms. During the experiment, all algorithm pa-
rameters are set uniformly.
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Table 1. Real-world data sets statistics (Due to missing data in some years and months, the
number of data samples in the same duration are different.)

Number Data sets Location Time Duration Samples Features Class Ratio

042700 Narsarsuaq Greenland/Europe 1942-2020 27,592 8 2 0.84:1
100370 Schleswig Germany/Europe 1942-2020 27,238 8 2 0.44:1
265090 Klajpeda Lithuania/Europe 1942-2020 25,591 8 2 0.77:1
424750 Allahabad India/Asia 1942-2018 18,087 8 2 0.32:1
567780 Kunming China/Asia 1942-2020 25,631 8 2 0.75:1
606560 Tindouf Algeria/Africa 1943-2020 16,660 8 2 0.04:1
702220 Galena Illinois/North America 1942-2020 27,197 8 2 0.85:1
802220 Bogota Colombia/South America 1942-2020 24,604 8 2 0.56:1

4.2 The Data Sets

Each approach was tested on eight real-world data sets. Information about these data
sets was summarized in Table 1. A brief description of each follows. The real-world
data sets were the WMO world weather data for different region area. Since the data
set records the daily weather changes of each region, we define a year as a cycle and
set the experimental chunk size as 365. We selected eight data sets from five regions,
including Europe, Asia, Africa, North America, South America. The missing values in
the data have been filled with the mean value. And we retained eight attributes: tem-
perature (we convert Fahrenheit to Celsius), dew point, sea level pressure, visibility,
average wind speed, maximum sustained wind speed, maximum temperature, and min-
imum temperature. Third, in order to simplify the calculation, the labels of the data
sets have been converted into two classes. There are six kinds of weather changes in
the original, they are fog, rain, snow, hail, thunder, tornado. We define the first class
as the weather without these changes, and the second class as the weather including
these changes. In addition, due to the imbalance of the sample categories, we will also
calculate the accuracy, F1-score, MCC score, and Friedman test in the experiment and
make a comprehensive evaluation of the initial experimental results. The data sets and
the source code of this research are available online3.

4.3 Finding and Discussion

Comparing eGBDT with GBDT-based concept drift handling methods The de-
tailed experiment results of Baseline, iGBDT, eGBDT are shown in Table 2, 3, 4.
We calculate the average macro F1-score and accuracy score of Baseline, iGBDT and
eGBDT. The average F1-score of each algorithm is 57.33% (Baseline), 76.67% (iGBDT),
76.76% (eGBDT). The average accuracy score of each algorithm is 67.14% (Base-
line), 81.78% (iGBDT), 82.05% (eGBDT). The average runtime of each algorithm is
1s (Baseline), 59s (iGBDT), 56s (eGBDT). Moreover, the MCC score of eGBDT is
generally higher than Baseline and iGBDT.

Besides, we also summarized the number of trees pruned from the GBDT model
in accordance with the accuracy, as shown in Fig. 2. The number of trees of the model

3 https://github.com/kunkun111/AJCAI-eGBDT
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Table 2. Average macro F1-score of eight real-world data sets (%)

Data sets Baseline iGBDT eGBDT Learn++ Leverage HDDM A HDDM W OnlineAUE

Narsarsuaq 32.69(8) 78.07(3) 79.15(2) 71.60(7) 77.73(4) 74.37(6) 75.15(5) 79.23(1)
Schleswig 63.67(8) 81.36(2) 81.38(1) 65.51(7) 69.99(4) 68.99(6) 69.24(5) 71.29(3)
Klajpeda 69.93(6) 76.03(2) 77.01(1) 68.01(8) 72.79(4) 70.14(5) 69.86(7) 73.47(3)
Allahabad 73.92(5) 82.56(2) 82.96(1) 65.09(8) 75.82(4) 71.38(7) 71.86(6) 78.45(3)
Kunming 64.96(8) 79.42(2) 80.14(1) 71.55(7) 76.44(4) 73.22(6) 73.69(5) 78.83(3)
Tindouf 50.31(8) 67.16(2) 67.95(1) 52.25(7) 55.90(6) 63.92(3) 58.49(5) 59.23(4)
Galena 48.36(8) 76.49(1) 74.65(3) 66.63(7) 73.99(4) 70.01(6) 71.55(5) 76.46(2)
Bogota 54.81(8) 72.30(1) 70.91(4) 68.22(7) 70.69(5) 70.60(6) 70.96(3) 71.99(2)

AvgRank 7.3 1.8 1.7 7.2 4.3 5.6 5.1 2.6

Table 3. Accuracy of eight real-world data sets (%)

Data sets Baseline iGBDT eGBDT Learn++ Leverage HDDM A HDDM W OnlineAUE

Narsarsuaq 46.10(8) 78.08(3) 79.16(2) 71.63(7) 77.81(4) 74.52(6) 75.49(5) 79.38(1)
Schleswig 72.74(7) 85.01(2) 85.11(1) 72.69(8) 76.72(4) 73.72(5) 73.62(6) 78.14(3)
Klajpeda 70.03(7) 76.36(2) 77.40(1) 68.13(8) 73.24(4) 70.22(5) 70.07(6) 73.92(3)
Allahabad 82.15(5) 87.38(2) 88.00(1) 76.35(8) 83.60(4) 78.08(7) 78.68(6) 85.12(3)
Kunming 65.21(8) 79.71(2) 80.43(1) 71.81(7) 76.87(4) 73.49(6) 74.06(5) 79.27(3)
Tindouf 72.96(8) 95.01(6) 95.86(2) 95.36(5) 95.83(3) 94.75(7) 95.44(4) 96.13(1)
Galena 58.89(8) 76.90(1) 75.30(3) 66.77(7) 74.22(4) 70.04(6) 71.60(5) 76.67(2)
Bogota 69.05(8) 75.83(2) 75.19(3) 72.22(7) 75.01(4) 73.08(6) 73.92(5) 75.85(1)

AvgRank 7.3 2.5 1.7 7.1 3.8 6 5.2 2.1

Table 4. Matthews correlation coefficient (MCC) of eight real-world data sets (%)

Data sets Baseline iGBDT eGBDT Learn++ Leverage HDDM A HDDM W OnlineAUE

Narsarsuaq 2.92(8) 56.81(3) 59.03(1) 43.21(7) 55.60(4) 48.86(6) 50.55(5) 57.61(2)
Schleswig 29.81(8) 63.42(2) 63.61(1) 31.42(7) 41.31(4) 37.89(6) 38.41(5) 43.48(3)
Klajpeda 40.48(6) 52.06(2) 54.03(1) 36.41(8) 45.50(4) 41.03(5) 40.00(7) 46.19(3)
Allahabad 48.67(5) 65.22(2) 66.34(1) 30.45(8) 52.59(4) 42.99(7) 43.87(6) 57.19(3)
Kunming 36.89(8) 58.93(2) 60.34(1) 42.75(7) 52.58(4) 46.54(6) 47.34(5) 56.91(3)
Tindouf 16.69(7) 34.46(2) 37.68(1) 8.14(8) 21.59(6) 29.40(3) 23.32(5) 29.09(4)
Galena 20.13(8) 53.43(1) 50.35(3) 32.84(7) 47.99(4) 40.42(6) 43.30(5) 51.95(2)
Bogota 26.33(8) 45.42(2) 43.45(4) 37.98(7) 43.75(3) 42.16(6) 42.72(5) 45.77(1)

AvgRank 7.2 2 1.6 7.3 4.1 5.6 5.3 2.6

increased suddenly, with the accuracy reduced abruptly on the data set, which contains
sudden drift is obviously. It suggests that the data changes can be observed clearly ac-
cording to the fluctuating number of pruned trees and model performances. The number
of pruned trees depends on the drift severity. Drift with a relatively lower severity can
be handled by the incremental process until it reaches a significant accuracy drop. Fur-
thermore, because of the removal of some poorly-performing base trees, the model’s
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(a) Narsarsuaq (b) Schleswig (c) Klajpeda

(d) Allahabad (e) Kunming (f) Tindouf

(g) Galena (h) Bogota

Fig. 2. A plot of the chunk accuracy, the number of pruned trees, and the number of trees in
GBDT during drift learning. We can clearly see that the accuracy dropped, the number of pruned
trees increased, and the number of trees in eGBDT decreased.

Table 5. Friedman test of eGBDT with five state-of-the-art methods based on MCC

Methods Learn++ Leverage HDDM A HDDM W OnlineAUE

P -value 0.00468 0.03389 0.00468 0.00468 0.1573
Significance P < 0.05 P < 0.05 P < 0.05 P < 0.05 P > 0.05

overall performance is maintained, and the redundant base trees in the model are also
reduced.

Evaluate eGBDT with Five Concept Drift Handling Algorithms The stream clas-
sification results of eGBDT ensemble and five state-of-the-art concept drift handling
algorithms are summarized in Table 2, 3, 4, 5. The F1-score, accuracy, and MCC score
are measured by using the Sklearn package. The experiment shows that eGBDT has
competitive performance. For the average macro F1-score, eGBDT performs well on
Schleswig, Klajpeda, Allahabad, Kunming, Tindouf, and have the highest average rank.
For the accuracy, eGBDT performed well on Schleswig, Klajpeda, Allahabad, Kun-
ming, and also got the highest average rank. For the MCC score, eGBDT also achieved
better results with an average ranking 1.6, followed by iGBDT and OnlineAUE. In order
to compare the performance of eGBDT statistically, we also perform Friedman tests on
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eGBDT and five methods based on MCC score, as shown in Table 5. The results show
that at a significance level of 0.05, although the performance of eGBDT is not obvious
when compared with OnlineAUE method, the overall performance is better. Overall,
we find that eGBDT with both the incremental learning and self-adjusting tree prun-
ing process is beneficial for maintaining model stability and generally produces better
results.

Discussion Our eGBDT is a chunk-based drift learning algorithm, it still can outper-
form the prequential learning algorithms in some cases. However, there are two factors
that we need further evaluation. One is model optimization, although our method has
the highest average ranking, it is undeniable that it has not achieved better results on
some data sets. One reason is that our eGBDT is a linear combination of decision re-
gression trees, when face with remarkably sudden drift, the model adaptability may be
lacking. Another one is programming language (Our Baseline, iGBDT, and eGBDT are
implemented in Python, while MOA implements five state-of-the-art methods in Java).

5 Conclusion

In this paper, we proposed an elastic GBDT drift learning algorithm. The proposed
eGBDT integrates incremental learning and tree pruning to dynamically adjust the num-
ber of trees for different stream situations. The incremental learning of GBDT can help
the model to improve performance. The process of tree pruning is a simple but efficient
way to increase model stability and detect drift. Experiments on real-world data sets
have shown the potential of eGBDT. In future research, we will continue to improve
our eGBDT method for concept drift adaptation, we will mainly focus on enhancing
the adaptability, processing efficiency, and stability of our eGBDT method when deal-
ing with different types of concept drift.
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14. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift
adaptation. ACM Computing Surveys 46(4), 44 (2014)

15. Hu, H., Sun, W., Venkatraman, A., Hebert, M., Bagnell, A.: Gradient boosting on stochastic
data streams. In: AISTATS. pp. 595–603. PMLR (2017)

16. Kolter, J.Z., Maloof, M.A.: Dynamic weighted majority: An ensemble method for drifting
concepts. Journal of Machine Learning Research 8, 2755–2790 (2007)

17. Krawczyk, B., Minku, L.L., Gama, J., Stefanowski, J., Woźniak, M.: Ensemble learning for
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