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ABSTRACT Recently, an efficient multistep direct model predictive control (MPC) scheme for power
converters has been proposed. It relies on the Sphere Decoding Algorithm (SDA) to solve the associated
long-horizon optimal control problem. Since the SDA evaluates only a small number of candidate solutions to
find the optimal one, a significant reduction in the average computational burden can be achieved compared
to the basic exhaustive search approach. However, this is only true during steady-state operation. In fact,
the SDA still requires a large execution time during transients. This paper shows that if not properly
addressed, the dynamic performance of the system may be degraded, which clearly limits its practical
application. To mitigate this issue, which particularly arises during transients, an efficient preconditioning
approach for the SDA is proposed. This approach ensures that only a small number of candidate solutions
are evaluated during both steady-state, and transients. This allows the multistep direct MPC to become a
viable control alternative for power converters operating at low semiconductor switching frequencies, e.g.,
below 450 Hz. The proposal is validated using a grid-connected three-level converter as a case study. Both
processor-in-the-loop simulations, and experimental results on a scaled-down 2.24 kVA laboratory setup are
presented.

INDEX TERMS Convex hull, integer least squares problem, model predictive control, power converters,
quadratic programming solver, sphere decoding algorithm.

I. INTRODUCTION
Direct model predictive control (MPC) takes advantage of the
power converter switching nature by directly considering the
combinations of power switch states or output voltage levels
as the manipulable system input. An optimal control problem
is formulated to determine the input to be applied to the
system. This considers a cost function and a prediction model
that forecast the future system behavior over a finite prediction
horizon. Finally, the optimal control input is usually found
by evaluating all the possible input combinations in the cost
function. The input that provides the minimum cost is, thus,
the optimal one. This basic optimization process is referred

to as the exhaustive search algorithm (ESA) [1]. However,
using the basic ESA to solve the associated optimal control
problem over a prediction horizon of more than one step
(commonly known as multistep MPC) leads to a high compu-
tational burden since the total number of input combinations
increases exponentially. To address this issue, it was recently
shown that the sphere decoding algorithm (SDA), as in [2],
can be adopted to efficiently solve the optimal control problem
associated with multistep direct MPC schemes [3]. In that
case, an improved steady-state performance is observed [4]–
[7]. Compared to the basic single-step predictive approaches,
the multistep MPC offers reduced voltage and current
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distortions and/or very low switching frequencies. Further-
more, as demonstrated in [4], the total harmonic distortion
of the current is significantly reduced when compared with
a space vector modulation for long prediction horizons and a
low switching frequency. For that reason, the practical poten-
tiality of multistep MPC has an increasing value in medium/
high power converter applications at low switching frequen-
cies.

In essence, the SDA is a branch-and-bound search tech-
nique that solves an integer least-squares (ILS) problem,
which is indeed a reformulation of the associated optimization
problem [2], [8]. To do this, an initial sphere in the input space
is defined considering the, so-called, unconstrained optimal
input as center. The size of this initial sphere is determined
by the radius formed between this center and an initial input
candidate. If properly chosen, a large number of candidate
(input) solutions are discarded in the subsequent search pro-
cess. Therefore, a significant reduction in the computational
burden can be achieved compared to the basic ESA. Recently,
to further reduce the computational burden, a modification in
the ILS-problem using a lattice reduction algorithm [9] and
refinement in the SDA has been proposed in [10]. These re-
finements in the branching and reverse-tracking procedures of
the SDA lead to a reduction in the computational complexity
of more than 55% compared to the one in [4]. Additionally,
in [11], a shorter time to execute the SDA by limiting the
number of computations to be performed has been achieved.
This method guarantees the termination of the computation
process within the defined sampling interval, but at the oc-
casional expense of yielding a sub-optimal solution. In an
industrial automotive application [6], a multistep MPC offers
40% reduction in the computational complexity for a predic-
tion horizon length of four. This is achieved by reversing the
temporal arrangement of the control input vector. Therefore,
the ILS-problem can be solved in a backwards manner, which
requires less algebraic manipulations in a real-time implemen-
tation.

Despite all the efforts put into reducing the computational
burden of SDA, there is still a key problem that may affect the
real-time implementation with long prediction horizons: the
operation of multistep direct MPC during transients. When
a change in the power converter reference is introduced, the
initial radius of the SDA can become extremely large, yielding
a high computational burden. This is a crucial issue since
power converters often operate in transient conditions due
to reference changes (current, voltage, power, torque, speed,
etc.) or simply to compensate external disturbances (voltage
sags, voltage swells, etc.). Due to the high computational
burden during transients, a real-time implementation can be
restricted to short prediction horizon such as one to three
only. This clearly limits the applicability of multistep direct
MPC to power electronics applications for higher prediction
horizons. To address this problem, this work proposes an ef-
ficient preconditioning approach for the SDA. This approach
consists of optimally obtaining a new initial center and a fea-
sible initial candidate solution close to it. Thus, a small initial

radius is always obtained, ensuring that only a small number
of candidate solutions is evaluated during both steady-state
and transients. Hence, the execution time will remain within
the sampling interval limit for a selected prediction horizon,
enabling the real-time implementation of direct MPC with
long prediction horizons. This allows multistep direct MPC
to become a viable control alternative for power converters.

The previously discussed idea of obtaining a new initial
sphere center to address the computational burden of SDA
during transients was originally proposed in the preliminary
work [12]. Afterwards, this idea has been adopted in [13] for a
multistep MPC formulated as in [10], with simulations results
on a variable speed drive system. Subsequently, a determin-
istic use of multistep MPC under several drive system con-
ditions has been evaluated in a three-level induction machine
drive switching at 350 Hz [14]. The paper at hand extends
the work in [12] by considering a generic control formula-
tion for a power converter system (modeled as a linear sys-
tem with quantized inputs), a detailed computational analysis,
and a geometric optimality interpretation. Moreover, a grid-
connected three-phase three-level H-Bridge (HB) converter
as a case study is presented with the processor-in-the-loop
(PIL) simulations for performance evaluation with different
prediction horizons, and an optimality analysis with exper-
imental verifications. The impact of transient operation on
the computational burden is compared with the standard SDA
initialization [3] and also with the approach in which a limited
number of computations in the SDA is allowed [11].

II. MULTISTEP MPC FOR POWER CONVERTERS
This section introduces the optimal control problem of interest
in a multistep direct MPC formulation for power converters.
Firstly, it is assumed that the power converter and load can be
modeled in discrete-time via

x(k + 1) = Ax(k)+ Bu(k) (1a)

y(k) = Cx(k) (1b)

where x ∈ Rnx stands for the state vector with nx-system state
variables (e.g., currents, voltages, torques, etc.), and y ∈ Rny

the output vector with ny-system outputs to be controlled. A
distinguishing feature of direct MPC is that the control input
vector, u, with nu-control inputs (e.g., switch positions or
output voltage levels) belongs to a finite control set (FCS),
u ∈ Vnu , where

V = {umin, . . . , umax} ⊂ Z. (2)

Each element in u satisfies the constraint umin ≤ u j ≤ umax,
for all j ∈ {1, . . . , nu}. Generally, the main control target in
a predictive control formulation is to track the desired output
references, y� ∈ Rny , (i.e., y→ y�) [1]. Additional targets can
be included, such as switching effort minimization, capacitor
voltage balancing, common-mode voltage (CMV) reduction,
imposed load-current spectrum etc. [15]–[18]. Recently, a di-
rect MPC formulation that tracks a control input reference, u�,
(i.e., u→ u�), in addition to the output reference, has been
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proposed in [19]. This has the advantage of achieving almost-
symmetric output voltages, which helps to reduce the CMV
and evenly distribute the power losses in each phase. More-
over, this direct MPC formulation can also be used to guar-
antee stability of this MPC class in power electronics [20],
achieve inter-phase power balance [21], and formulate a selec-
tive harmonic elimination MPC strategy [22]. Based on this,
a quadratic cost function over a finite prediction horizon, N ,
can be written as

J (k) =
k+N−1∑

l=k

‖y(�+ 1)− y�(�+ 1)‖22 + σ‖u(l )− u�(l )‖22
(3)

where both tracking terms are presented as the quadratic Eu-
clidean norm, i.e., ‖m−m�‖22 = (m1 − m�

1)2 + · · · + (mn −
m�

n)2, for m = {y, u} and m� = {y�, u�}. In (3), the weighting
factor, σ , is designed to give relative importance to the input
over the output tracking error in order to obtain a desired
steady-state behavior [19], [21], [22]. To maintain the fast
dynamic nature of direct MPC, a smaller value for σ must
be chosen, see [19].

At every time-step k, the optimal control input sequence

Uopt(k) = [uopt
T (k) . . . uopt

T (k + N − 1)]T (4)

is obtained by solving the following original optimization
problem

Uopt(k) = arg min
U (k)
{J (k)} (5a)

subj. to: x(�+ 1) = Ax(�)+ Bu(�) (5b)

y(�) = Cx(�) (5c)

U (k) ∈ U = Vζ , with ζ = nuN (5d)

‖�u(�)‖∞ ≤ 1, ∀� = k, . . . , k + N − 1 (5e)

where �u(�) = u(�)− u(�− 1). Here, (5b) and (5c) refers
to the system model given in (1). Then, (5d) restricts the
control input sequence, U (k) = [uT (k) . . . uT (k + N − 1)]T ,
to the FCS, Furthermore, (5e) is the transition voltage level
constraint that in high-power multilevel converters, is usually
limited to one to avoid an excessive dv/dt [1]. Note that such
large transition voltage levels (more than one) tend to appear
during transients. Following the receding horizon policy, only
the first element of Uopt(k) in (4) is applied to the converter.
This process is repeated with fresh measurements at every
time-step k. It is worth emphasizing that despite the fact that
only its first element is applied, each pair of time-consecutive
vectors in (4) satisfies the constraint (5e).

III. SDA-BASED OPTIMIZATION PROCESS
To solve the optimization problem in (5), the SDA as pre-
sented in [3], [19] is adopted as a computationally efficient
alternative to the standard ESA.

A. OPTIMIZATION PROBLEM REFORMULATION
The SDA efficiently obtains Uopt(k) by transforming the orig-
inal optimization problem (5) into an equivalent ILS-problem.
Firstly, the cost function (3) is rewritten as a convex quadratic
function of U (k), i.e.,

J (k) = U (k)T WU (k)+ 2FT (k)U (k)+ ε(k) (6)

where

W = �T �+ σ Iζ×ζ (7a)

F(k) = �T �x(k)−�T Y �(k)− σU�(k). (7b)

Here, ε(k) is independent on U (k) and, thus, discarded from
the subsequent formulation. The vectors Y �(k) = [(y�(k +
1))T . . . (y�(k + N ))T ]T and U�(k) = [(u�(k))T . . . (u�(k +
N − 1))T ]T are the output and control input sequence refer-
ences, respectively. Furthermore, Iζ×ζ is the ζ -dimensional
identity matrix. The matrices � and � are given as

� =

⎡⎢⎢⎢⎢⎣
CB 0 . . . 0 0

CAB CB . . . 0 0
...

...
. . .

...
...

CAN−1B CAN−2B . . . CAB CB

⎤⎥⎥⎥⎥⎦

� =

⎡⎢⎢⎢⎢⎣
CA

CA2

...

CAN

⎤⎥⎥⎥⎥⎦ .

Secondly, considering the real valued control input sequence,
i.e., U (k) ∈ Rζ , the unconstrained solution Uuc(k) to the op-
timization problem (5) is given by

Uuc(k) = arg min
U (k)∈Rζ

{J (k)} = −W−1F(k). (9)

As shown in [3], a non-singular lower triangular matrix,
H ∈ Rζ×ζ , known as lattice generator matrix, can be ob-
tained from the symmetric and positive definite matrix W (for
σ > 0), by using the Cholesky decomposition [23], leading
to W = HT H . Finally, conducting some algebraic manipu-
lations, the original problem in (5) is transformed into the
following ILS-problem

Uopt(k) = arg min
U (k)
‖HU (k)− Ūuc(k)‖22 (10)

subject to (5d) and (5e), with Ūuc = HUuc. Importantly, a
new transformed space (contains all HU ) is formed by the
lattice generator matrix H , where the SDA will perform the
optimization to find Uopt as per (10). Once the ILS-problem in
(10) has been formed, the next step is to initialize the SDA.

B. STANDARD INITIALIZATION OF SDA
To start the SDA, it is required to define an initial sphere in
the new transformed space. This sphere is set by considering
�(k) = Ūuc(k) as a center and by choosing an initial control
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FIGURE 1. A tree-diagram of the control input sequence U ∈ U that
illustrates the evaluation process of nodes in the SDA. The evaluated
nodes that belong and do not belong to the incumbent sphere Sinc are
shown as ⊕ and �, respectively. Here, ⊗ represents the unevaluated
nodes. By visiting nodes from left to right (i.e., umin to umax), the evaluation
process advances from top to bottom (i.e., i = 1 to ζ) and also includes
reverse-tracking, as indicated by arrows.

input sequence candidate U ini(k) which determines its initial
radius, ρini(k), i.e.,

Sini =
{
Uini(k) : ρ2

ini(k) = ‖HU ini(k)−�(k)‖22
}
. (11)

This initial sphere Sini should be small enough containing as
few candidate solutions as possible, but should not be empty.
In [3], the initial control input sequence is chosen by con-
sidering an educated-guess, U ini(k) = Ueg(k), based on the
previous optimal input sequence, Uopt(k − 1), and extending
it by one time-step, i.e.,

Ueg(k) =

⎡⎢⎢⎢⎢⎢⎢⎣

0nu Inu 0nu . . . 0nu

0nu 0nu Inu . . . 0nu

...
. . .

...
. . .

...

0nu . . . 0nu . . . Inu

0nu . . . 0nu . . . Inu

⎤⎥⎥⎥⎥⎥⎥⎦Uopt(k − 1) (12)

where Inu and 0nu are the identity and zero matrices of size nu

(number of control inputs), respectively. Thus, using Ueg and
Ūuc the initial sphere Sini in (11) becomes

Seg =
{
Ueg(k) : ρ2

eg(k) = ‖HUeg(k)− Ūuc(k)‖22
}

. (13)

This initialization method, i.e., ρini = ρeg, is particularly
suitable for steady-state operation, since it exploits the reced-
ing horizon policy in MPC, and Ueg satisfies the constraints in
(5d) and (5e).

C. FINDING THE OPTIMAL SOLUTION
The iterative optimization process in the SDA begins by
considering U ini as the initial incumbent1 solution, i.e.,
U inc = U ini, and also ρinc = ρini, thus, the incumbent ini-
tial sphere Sinc = Sini. Then, a tentative solution, Ũ =[
u1 . . . ui . . . uζ

]T ∈ U, is constructed (element by element)

1The term incumbent is used to denote the so far best feasible solution in
the iterative optimization process of the SDA.

Algorithm 1: SDA-Based Optimization.
1: Uinc ← Uini and ρinc ← ρini
2: function [Uopt] = SDA (H,�,Uinc, ρinc)
3: For each ui ∈ V, where i ∈ {1, 2, . . . , ζ }do
4: Ũ [1,i] ← ui

5: ρ2
i ← ‖H [i,1:i]Ũ [1:i] −�i‖22 + ρ2

i−1 � see (14)
6: if ρi � ρincthen � see (15)
7: if i < ζ then i = i + 1
8: SDA(H,�,Uinc, ρinc)
9: else � when i = ζ

10: if Ũ meets (5e)then
11: Uinc ← Ũ and ρinc ← ρζ

12: end if
13: end if
14: end if
15: end for
16: Uopt ← Uinc
17: end function

by performing element-wise computations2. This process is
illustrated with a tree-diagram of U in Fig. 1, where each
element ui ∈ V is called a node. Additionally, a pseudocode
in Algorithm 1 presents the iterative computational steps in-
volves in solving the ILS-problem of type (10). Starting from
i = 1 and considering (10), a tentative value for ui from V
is accepted (or discarded) by evaluating the following partial
radius

ρ2
i = ‖ [hi1 . . . hii]︸ ︷︷ ︸

H[i,1:i]

[u1 . . . ui]
T︸ ︷︷ ︸

Ũ [1:i]

−ūuc,i‖22 + ρ2
i−1 (14)

where ρ0 = 0. If the evaluated node ui satisfies

ρ2
i ≤ ρ2

inc (15)

then, it is denoted as ⊕, and the algorithm proceeds toward
the next node ui+1. Notice that as i increases, the size of the
partially formed tentative vector Ũ [1:i] is also increased. In
contrast, if a particular node ui does not satisfy (15), it is
then denoted as �. This violation implies that any U ∈ U
starts with Ũ [1:i] will lie outside Sinc, since it will generate
a radius larger than ρinc, and thus, there is no need to evaluate
it. Therefore, for each ui (�), the SDA discards all follow-
ing nodes (from ui+1 to uζ ) from being evaluated—whose
are symbolized with ⊗. Moreover, once the algorithm finds
a node ui of type �, it reverses the formation of tentative
vector Ũ , i.e, Ũ [i−1:1], by searching any unvisited nodes. This
process is called reverse-tracking. Proceeding in this manner,
whenever a tentative vector is fully formed, i.e., Ũ = Ũ [1:ζ ],
it is considered to be the new incumbent solution Uinc since
its radius is smaller than ρinc. Consequently, U inc and ρinc are
updated with Ũ and its corresponding radius ρζ , respectively.
Hence, a new smaller Sinc is found which further reduces

2Here, the index notation i denotes the position-number of an element in Ũ ,
and belongs to the set Z = {1, 2, . . . , ζ − 1, ζ } ⊂ Z+. Throughout the paper,
i is used as common notation for all other vectors.
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the computations [3]. This process is continued until Sinc is
reduced to a point that contains only one Uinc, which is indeed
the optimal solution Uopt in (10).

IV. COMPUTATIONAL BURDEN ANALYSIS
Based on the theoretical aspect in Section III, the computa-
tional burden of SDA during both steady-state and transient
operation of a power converter is analyzed in this section.

This analysis is focused on the initial radius ρini, and the to-
tal number of evaluated nodes, Nev, at each sampling instant,
which can be expressed by

Nev =
ζ∑

i=1

(ncp
i + ncm

i ). (16)

Here, ncp
i and ncm

i refer to the number of ⊕ and � at ith

dimension of U (i.e., Ui, where i ∈ Z). As one can understand
from Section III-C that the SDA runs through the calculation
(14) and the condition (15), each time a node ui (⊕ and/
or �) is visited. If properly selected, ρini will be relatively
small. Then, based on (14), the partial radius ρi formed by
Ũ [1,i] will be smaller than ρinc only for small values of i,
i.e., i ≈ 1. Hence, a larger number of nodes will be discarded
from calculations leading to a small Nev. Conversely, a larger
value of ρini may lead to a considerably high Nev. Hence, the
total number of calculations to be performed is also increased.
Notice that using (11), the initial radius size depends not
only on the initial control input sequence U ini but also on
the sphere’s center �. Since until now � has been chosen
based on the unconstrained optimal solution, i.e., � = Ūuc, it
is important to analyze its location in the input space during
both steady-state and transients. To this end, it is convenient
to bound the input space by the Convex-Hull CH of the FCS
U [24], [25], which can be defined as

CH = Conv(U) ⊂ Rζ . (17)

As per definition, CH is the smallest convex set in an ζ -
dimensional space, where U ⊂ CH. Since each entry of U
belongs to the set V in (2), CH is expected to satisfy the
following bound-constraint of linear inequalities

Umin � CH � Umax (18)

where the lower bound vector Umin = [umin, . . . , umin]T ⊂ Zζ

and the upper bound vector Umax = [umax, . . . , umax]T ⊂ Zζ .
The relational symbol � in (18) represents the element-wise
inequality.

An illustration of the optimization process during a tran-
sient operation is depicted in Fig. 2. This example is shown
for an FCS U of nine control input vectors (gray solid circles),
which are formed with V of three elements, nu = 2, N = 1,
and thus ζ = 2. Thus, the associated CH is depicted in Fig. 2
a. The ellipses centered in Uuc represent the level sets of
the original optimization problem (10), i.e., all input com-
binations that belong to the same ellipse generate the same
cost value. On the other hand, a bigger ellipse corresponds
to a larger cost value. The matrix H in (10) introduces a

FIGURE 2. Graphical representation of the direct MPC problem (an FCS U
of nine control input vectors) for transient operation, where both the
standard and the proposed initialization of the SDA in two-dimensional
space are considered. (a) Original space and (b) transformed space
generated by H .

linear transformation that generates a new transformed space
in Fig. 2 b. In this space, the original ellipses are transformed
into circles (spheres for larger dimensions) centered in Ūuc =
HUuc. In fact, it is in this space where the SDA operates.

During steady-state operation, the system output y is close
to its references, i.e., y ≈ y�. This leads to an unconstrained
solution Uuc that may be positioned near CH, which, in turn,
leads to an initial center � = Ūuc that may also be near
C̄H = HCH. This, along with Ueg, will result in a small initial
radius ρini = ρeg as per (13), during steady-state operation
and, thus a small number of evaluated Nev. On the other hand,
during transients, the system output is far from its reference,
i.e., |y| � |y�|. Therefore, a large actuation is required to
lead it back to its reference. Since Uuc does not consider the
converter limitations, it takes a large value that can place it far
away from CH, thus, Uuc /∈ CH; see Fig. 2 a. In this situation,
no matter what initial input U ini is chosen, a large initial radius
ρini will be always obtained since its center � = Ūuc will
be also far from C̄H; see Fig. 2 b. Moreover, using Ueg to
compute ρini is no longer a good guess during transients, since
in this condition the new optimal solution, in general, totally
differs from the previous one. As a result, a large number of
nodes will be evaluated, which leads to an intractable large
execution time Te.

To overcome this problem, a computationally efficient pre-
conditioning approach for the SDA is proposed next.

V. PROPOSED PRECONDITIONING APPROACH
The key idea of the proposed preconditioning approach is to
transform the original optimal control problem into a form that
is more suitable for the SDA during transients, see Remark 1
for generic detail. This approach consists of two parts: obtain-
ing a new center � and a new initial radius ρini.
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Algorithm 2: Box-Constrained QP Problem.
Input: Uuc in (9), when /∈ CH

Output: Ubc in (19), always ∈ CH

Preliminaries

Lagrangian function for U ∈ Rζ :
1: L(U , ξ, γ ) =

UT WU + 2FT U − ξ(U −Umin)− γ (Umax − U ).
Karush-Kuhn-Tucker (KKT) conditions at minimum
Ubc, ξbc, γbc:

2: ∇L =WUbc + F − ξbc + γbc = 0, and
3: ξbc,i ≥ 0, γbc,i ≥ 0, ∀i ∈ Z;
4: ξbc,i(Ubc,i −Umin,i ) = 0, ∀i ∈ Z;
5: γbc,i(Umax,i −Ubc,i ) = 0, ∀i ∈ Z;
6: Ubc,i ∈ [Umin,i,Umax,i], ∀i ∈ Z.
The desired solution Ubc is obtained by following steps.

Step 1. Structure the sets

7: Sl = {i : Ui < Umin,i, or Ui = Umin,i and ξi ≥ 0}.
8: Su = {i : Ui > Umax,i, or Ui = Umax,i and γi ≥ 0}.
9: Sb = {i : Umin,i < Ui < Umax,i, or Ui =

Umin,i and ξi < 0, or Ui = Umax,i and γi < 0}.
Note that Sl ∪ Su ∪ Sb = Z.

Step 2. Reset U , ξ, γ with boundary values

10: Ui = Umin,i, γi = 0, ∀i ∈ Sl .
11: Ui = Umax,i, ξi = 0, ∀i ∈ Su.
12: ξi = 0, γi = 0, ∀i ∈ Sb.

Step 3. Reformation of U , ξ, γ

13: Solve WU + F − ξ + γ = 0.
14: Find Ui∀i ∈ Sb, ξi∀i ∈ Sl , and γi∀i ∈ Su.

Step 4. Decision making

15: If U , ξ, γ meets the KKT conditionsthen
16: Set Ubc ← U and stop.
17: else
18: Go to step 1 with current U , ξ, γ .
19: end if

Firstly, it is convenient to always use a center � that be-
longs to C̄H. Therefore, whenever Uuc /∈ CH (particularly,
during transients), it is proposed to bring Uuc on the boundary
of CH. This can be achieved by solving the following box-
constrained quadratic programming (QP) problem, i.e.,

Ubc(k) = arg min
U (k)
‖HU (k)− Ūuc(k)‖22 (19a)

subj. to: U (k) ∈ CH ⊂ Rζ (19b)

where a new box-constrained solution Ubc ∈ CH is obtained
by projecting Uuc on the boundary of CH. This projection is
depicted in Fig. 2 a. Here, (19b) denotes the box-constraint
to the problem. Several algorithms, that may offer different
computational performance, are available to solve this box-
constrained QP problem [24], [25]. This work adopts an exte-
rior point active set strategy [26]–[28], based on a Lagrangian

function L and the Karush-Kuhn-Tucker (KKT) conditions
as presented in Algorithm 2. This strategy iterates on a face
of the feasible box (Convex-Hull CH in (18)) until either a
minimizer of the objective function on that face or a point
on the boundary of that face is reached. Considering the QP
problem in (19), the associated Lagrangian function L is con-
structed in line 1 of Algorithm 2, where the bound constraint
for U is defined as per (18), and ξ and γ are referred to as
Lagrange multipliers. Then, the necessary KKT conditions at
minimum Ubc, ξbc, γbc are stated in lines 2 to 6. A solution to
the aforementioned system can be obtained through the four
steps described in Algorithm 2. In step 1, three different sets
Sl , Su, and Sb are established as stated in line 7, 8, and 9,
respectively. Here, the sets contain the index information of
the arguments U , ξ, and γ of the Lagrangian while satisfying
the conditions.

Based on these sets, the associated elements of the ar-
guments are reset with boundary values Ui = Umin,i, Ui =
Umax,i, ξi = 0, and γi = 0, see step 2.

Afterwards, the arguments are reformed by solving the lin-
ear equation stated in step 3. To this end, the linear equation
can be written in a componentwise fashion as shown below∑

j∈Z
W i jU j + F i = ξi − γ i, ∀i ∈ Z (20)

As ∀i ∈ Sb we have that ξi = γ i = 0, we can compute U i, ∀i ∈
Sb by splitting the sum in (20) and considering step 2 of the
algorithm, i.e., ∀i ∈ Sb,∑

j∈Sb

W i jU j = −
∑
j∈Sl

W i jUmin, j −
∑
j∈Su

W i jUmax, j − F i.

(21)
Note that the submatrix W i j , with i, j ∈ Sb is positive definite
as can be readily verified, provided that the full matrix W is
positive definite. The elementary approach to find ξi, ∀i ∈ Sl
and γi, ∀i ∈ Su is given by

ξi =
∑
j∈Z

W i jU j + F i,∀i ∈ Sl (22a)

γi = −
∑
j∈Z

W i jU j − F i,∀i ∈ Su (22b)

In step 4, the current solution is examined based on which
the algorithm is either iterates or stops. The algorithm iterates
again from step 1 with the current arguments until they satisfy
the KKT conditions. Finally, the desired solution Ubc ← U
is obtained when the current arguments satisfy the KKT con-
ditions, and the algorithm is stopped. Typically, it takes 10
to 20 iterations on average to complete the algorithm, which
depends on the complexity of problem, e.g., length of the
prediction horizon, constraints, transients, steady-state errors,
etc.

Now, having Ubc, the new ILS-problem can be written as

Ũopt(k) = arg min
U (k)
‖HU (k)− Ūbc(k)‖22 (23)
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Algorithm 3: Modified Initialization & SDA-Based Opti-
mization.

1: function [�,Uini, ρini] = INITIALIZE(CH)
2: Compute Uuc as in (9)
3: if Uuc ∈ CHdo
4: �← Ūuc = HUuc and Uini ← Ueg as in (12)
5: else � when Uuc /∈ CH

6: Compute Ubc � as in Algorithm 2
7: �← Ūbc = HUbc and Uini ← Usq as in (25)
8: end if
9: ρ2

ini ← ‖HUini −�‖22 � as in (11)
10: end function
11: Call SDA-based Optimization as in Algorithm 1
Solution: Uopt in (10)/ Ũopt in (23) based on INITIALIZE

subject to (5d) and (5e). In (23), Ūbc = HUbc ∈ Rζ acts as
a new sphere center for the SDA, i.e., � = Ūbc; see Fig. 2 b
(green square). This leads to the following optimal solution
during transients

Ũopt(k) = [(ũopt(k))T . . . (ũopt(k + N − 1))T ]T . (24)

Secondly, to ensure that the initial sphere remains small
during transients, a new suitable initial control input sequence
U ini is obtained. This is calculated by quantizing each vector
ubc in Ubc to the nearest integer of Vnu while satisfying the
voltage level constraint (5e), i.e.,

usq(k) = qV(ubc(k)) (25a)

subj to: ‖�usq(�)‖∞ ≤ 1,∀� = k, . . . , k + N–1 (25b)

where �usq(�) = usq(�)− usq(�− 1) with usq(k − 1) =
uopt(k − 1). This quantization is performed in a sequential
manner starting with � = k. Thus, usq(k) will be the clos-
est vector in Vnu to ubc(k), which satisfies ‖qV(ubc(k))−
uopt(k − 1)‖∞ ≤ 1. Then, this process is sequentially re-
peated until � = k + N − 1, leading to the proposed initial
control input sequence

Uini(k) = Usq(k) = [(usq(k))T . . . (usq(k + N − 1))T ]T .

(26)
Here, Usq ∈ U is not the standard vector quantization

known as Babai estimate [29], [30] [i.e., Usq �= qU(Ubc)],
since Usq is generated considering the voltage level constraint
(25b). Notice that both Usq in (25) and Ueg in (12) satisfy
the constraints (5d) and (5e). Nevertheless, their squared Eu-
clidean distance to the optimal solution in the transformed
space formed by H can be a distinguishing feature during
transients, which can be expressed as

δsq(k) = ‖HU sq(k)−HŨopt(k)‖22 (27a)

δeg(k) = ‖HU eg(k)−HUopt(k)‖22. (27b)

As per definition in (19) and (25), Usq will be in general
very close to Ũopt, i.e., δsq ≈ 0. In some cases, such as in
Fig. 2, Usq = Ũopt and thus, δsq = 0. On the contrary, Ueg is
generally far from Uopt(k) in the transformed space during

transients, since it depends on the previous optimal solution
Uopt(k − 1) as per (12). Comparing these two control input
sequences during transients, it can be said that δsq � δeg.
Clearly, Usq ensures a significantly smaller initial sphere Sini
as per (11) than Ueg. Therefore, Usq is a better initial control
input sequence during transients. Now, Sini = Ssq is formed
using a new � = Ūbc and U ini = U sq,

Ssq =
{
Usq(k) : ρ2

sq(k) = ‖HUsq(k)− Ūbc(k)‖22
}

. (28)

Notice that, during transients, Ssq is considerably smaller
than Seg in (13). Moreover, Ssq is a non-empty set which
provides at least one feasible solution since HUsq ∈ Ssq. This
situation is depicted in Fig. 2 b (green circle), where the
proposed preconditioning approach provides a smaller initial
circle during transients, leading to a reduced computational
burden (small Nev) to obtain Ũopt as per (23). It is clear from
Fig. 2 that Ũopt is equivalent to U sq in (25) and most impor-
tantly, Uopt in (10) that means optimality is retained during
transients. However, this situation can not be always guaran-
teed. Further theoretical details are given in Remark 2. Includ-
ing the aforementioned preconditioning approach, a summa-
rized pseudocode is shown in Algorithm 3 that highlights the
initialization of SDA based on the Convex-Hull CH. Once the
initialization is completed, Algorithm 1 is called to find the
solution Uopt in (10) or Ũopt in (23).

Remark 1: It is important to emphasize that the key factor
in the proposed preconditioning approach, that greatly reduces
the computational complexity of the SDA during transients,
is the idea of projecting the infeasible unconstrained optimal
solution Uuc /∈ CH on the Convex-Hull CH of the original
FCS U. This can be achieved by solving (19) by any efficient
box-constrained QP algorithm (e.g., exterior point active set).
This key idea can be used in any multistep MPC strategy
for power converters that uses SDA to efficiently find the
optimal solution, including other multilevel topologies and
applications, e.g., electrical drives [13].

Remark 2: For adopting the SDA in a multistep MPC prob-
lem, the original optimization problem (5) is transformed into
an ILS-problem (10). Note that both optimal problems are
equivalent, i.e., solving (10) will provide the same optimal
solution as minimizing (5). Nevertheless, when using the pro-
posed preconditioning approach during transient operations
(i.e., Uuc /∈ CH), the SDA solves an alternative optimization
problem in (23), which in general is not equivalent to solving
(10) or (5). Consequently, even though it can be ensured that
the SDA will find the optimal solution, Ũopt, for (23), it may be
only a sub-optimal solution for the original problem (5), i.e.,
Ũopt �= Uopt. Therefore, it is important to have a measure of
optimality to know the closeness of the sub-optimal solution
to the optimal one during transients. As analyzed in [13]
and [31], because of the geometry of the optimal control prob-
lem under transients and the box constrained QP problem with
Convex-Hull, multistep MPC may lead to only a minor loss of
optimality. This work explores the cost value for the obtained
solution which is indeed a standard metric of optimality (or
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FIGURE 3. Circuit schematic of three-level H-Bridge inverter and simplified
block diagram of the control scheme.

sub-optimality). Now, the cost values for the control input
sequence obtained by the SDA with standard and proposed
preconditioning approach can be expressed as per below

Jopt(k) = J (Uopt(k)) (29)

Jsopt(k) =
{

Jopt(k); when Uuc ∈ CH

J ( ˜Uopt(k)); when Uuc /∈ CH

. (30)

Here, Jopt is the convex quadratic form of Uopt as per def-
inition in (6) for J . Note that this cost function is an equiva-
lent form of the original one in (3). During the steady-state,
i.e., generally, Uuc ∈ CH, Jsopt = Jopt, since the optimization
problem (10) is in use at that time. Discrepancy in the cost
values such as Jsopt > Jopt may occur, when Uuc /∈ CH and a
sub-optimal solution3 (i.e., Ũopt �= Uopt) is obtained by solving

(23). Nevertheless, Jsopt = Jopt, when ˜Uopt is exactly equiva-
lent to Uopt. Based on the theoretical aspect stated above, an
optimality analysis will be carried out in Section VII-A3 for a
selected case study.

VI. CASE STUDY: GRID-CONNECTED HB-CONVERTER
In this work, a grid-connected three-phase three-level HB
converter is considered as a case study based on the available
laboratory resources, see Fig. 3. Thus, the selected converter
model can be represented by a linear model with quantized
control input (e.g., power switches, voltage levels) in order
to apply the multistep MPC with proposed preconditioning
approach. Note that the converter presents the same com-
plexity as a three-level neutral-point-clamped (NPC) con-
verter as in [3], when discarding the dc-link capacitor voltage
balancing.4 The discrete-time model and the optimal control

3The cost value for any sub-optimal solution is higher than the optimal
solution for the same state vector.

4In [32] the NPC converter represents nonlinearities for the dc-link capac-
itor voltage balancing, and the model is linearized at each sampling instant
around the operating point.

problem of the system are presented in this section, which is
the foundation to adopt the multistep MPC scheme using the
SDA with standard initialization and/ or proposed precondi-
tioning approach.

A. DISCRETE-TIME STATE-SPACE MODEL
A continuous-time dynamic model of the system for each
grid-current iga, igb and grid-voltage vga, vgb related to phase
a and b, is given by

diga(t )

dt
= − r f

L f
iga(t )+ 1

L f
(van(t )− vga(t )− v0n(t ))

(31a)

digb(t )

dt
= − r f

L f
igb(t )+ 1

L f
(vbn(t )− vgb(t )− v0n(t ))

(31b)

dvga(t )

dt
= − ωg√

3
vgb(t )+ ωg√

3
vgc(t ) (31c)

dvgb(t )

dt
= − ωg√

3
vgc(t )+ ωg√

3
vga(t ) (31d)

where igc = −iga − igb, and vgc = −vga − vgb. Here, L f is the
filter inductance while r f is its associated resistance. Here,
ωg = 2π fg with fg as the grid frequency. Additionally, for
each phase χ = {a, b, c}, the converter output voltage is rep-
resented by vχn(t ) = Vdcμχ (t ), where Vdc is the voltage of
its isolated DC-source, and μχ ∈ V = {−1, 0, 1} is the out-
put voltage level of phase χ . Furthermore, v0n denotes the
so-called CMV which is given by

v0n(t ) = 1

3
(van(t )+ vbn(t )+ vcn(t )). (32)

Now, the system states, control inputs, and outputs to be
controlled at any instant k are chosen as

x(k) = [iga(k) igb(k) vga(k) vgb(k)]T ∈ R4 (33a)

u(k) = [μa(k) μb(k) μc(k)]T ∈ V3 (33b)

y(k) = igab(k) = [iga(k) igb(k)]T ∈ R2. (33c)

Finally, by applying the forward Euler discretization to (31),
for a sampling time Ts, a discrete-time model of the grid-
connected power converter, in a form of (1), is obtained with

A =

⎡⎢⎢⎢⎢⎢⎣
1− r f Ts

L f
0 − Ts

L f
0

0 1− r f Ts

L f
0 − Ts

L f

0 0 1− Tsωg√
3
− 2Tsωg√

3

0 0 2Tsωg√
3

1+ Tsωg√
3

⎤⎥⎥⎥⎥⎥⎦

B = VdcTs

3L f

⎡⎢⎢⎢⎣
2 −1 −1

−1 2 −1

0 0 0

0 0 0

⎤⎥⎥⎥⎦ , C =
[

1 0 0 0

0 1 0 0

]
.

(34)
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B. OPTIMAL CONTROL PROBLEM
To implement the current control strategy, the main control
objective is to track the output current references while re-
ducing the resulting CMV. A simplified block diagram of the
control scheme is shown in Fig. 3. The references are gener-
ated with the phase angle ωgt and amplitude v̂g of vgχ from
a phase-locked loop (PLL). Furthermore, the active (p�

g) and
reactive power (q�

g) references are also provided. The typical
equation of grid voltage vgχ can be written as

vgχ (t ) = v̂g sin(ωgt + φχ ) (35)

Thus, the general expression for the output current references
i�gχ is given by

i�gχ (t ) = îg sin(ωgt + φχ + φ�) (36)

with the grid-current amplitude îg = 2s�
g

3v̂g
where s�

g =√
p�2

g + q�2
g is the apparent power reference and the phase

displacement angle is φ� = cos−1 p�
g

s�
g

, between vgχ and igχ .

Moreover, φa = 0, φb = − 2π
3 , and φc = + 2π

3 . Thus, y� =
igab

� = [i�ga i�gb]T is chosen for y in (33c). Then, as per [19],
the CMV can be minimized by tracking the control-input
references in u� = [v�

�a v�
�b v�

�c], for

v�
�χ (t ) = 1

Vdc

{
r f i�gχ (t )+ L f

di�gχ (t )

dt
+ vgχ (t )

}
. (37)

Finally, the optimal control input sequence Uopt is obtained by
solving the original optimization problem in (5). Then, based
on uopt (first element of Uopt), the states of power switches,
Sχ = [Sχ11, Sχ12, Sχ11, Sχ12], are found by applying a sorting
algorithm for equal utilization of power switches [21].

VII. RESULTS
This section evaluates the effectiveness and the computational
performance of the proposed SDA preconditioning approach
by using the PIL simulations and conducting experiments.
The analysis and results presented in this section are focused
on the computational improvements and practical benefits of
the preconditioning approach during transients. As a measure
of comparison, the maximum values of the computational
metrics ρini, Nev and Te are investigated for both the standard
SDA initialization and proposed preconditioning approach.
The system parameters are shown in Table 1. Throughout this
section, all results are obtained under a transient test condition
(TTC1), when a positive step change in s�

g is applied from 0.45
p.u. to 1 p.u., i.e.:

TTC1 : s�
g =

{
p�

g = 0.45 p.u. & q�
g = 0.00 p.u.

p�
g = 0.89 p.u. & q�

g = 0.45 p.u.
. (38)

A. PIL-SIMULATION RESULTS
A key parameter of the multistep MPC strategy is the pre-
diction horizon N . In a real implementation, this has to be
designed not only to improve the closed-loop performance

TABLE I Main System Parameters and Controller Settings for Simulation
and Experimental Tests

FIGURE 4. Block diagram of the PIL-simulation.

but also to keep the required computational burden within
a feasible limit, i.e., Te < Ts. In this work, the design of N
is performed with the aid of PIL-simulations. Here, the sys-
tem is simulated in a PC with MATLAB-Simulink, while the
controller is executed in real-time in a dSPACE DS1006, as
shown in Fig. 4. Note that the well-known time-delay com-
pensation [33] is included in the control formulation.

Instead of reading the actual measurements from the power
converter, the system states x(k) are obtained (not in real-
time) from the simulator. Then, based on these virtual mea-
surements, the dSPACE system computes the optimal control
input uopt in real-time. Finally, this optimal input is imple-
mented in the simulation to obtain, thus, a new system state
in the next sampling interval. At every stage, the execution
time Te required by the controller to obtain an optimal input is
recorded by the available function (‘turnaroundTime’) in the
control platform. This procedure allows one to safely evaluate
Te for different prediction horizons during both steady-state
and transients.

1) Selection of Prediction Horizon N
As a baseline, the PIL simulations are carried out for N ∈
[1, 10] and under the TTC1 in (38), when the converter is gov-
erned by a multistep direct MPC with the standard SDA ini-
tialization. Then, the maximum values of the metrics denoted
as ρ̂ini, N̂ev, and T̂e, are recorded for both steady-state (SS)
and transient-state (TS). The results are presented in semi-
logarithmic bar-plots in Fig. 5. It is possible to see that all the
metrics for TS are consistently higher than the ones for SS.
According to Fig. 5 c, T̂e exceeds the sampling interval limit,
Ts = 1/ fs = 200μs, for N > 3 during transients. Fig. 6 shows
the computational performance of the SDA working with the
proposed preconditioning approach, which is obtained for the
same test conditions. As one can see, all the metrics for TS
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FIGURE 5. PIL-simulation based computational performance of multistep
MPC considering the standard SDA initialization under TTC1. For
N ∈ [1, 10], the results in steady-state (SS) and transient-state (T S) are in
semi-logarithmic bar-plots. (a) maximum initial radius ρ̂ini, (b) maximum
number of evaluated nodes ̂Nev, and (c) maximum execution time ̂Te.

are significantly reduced in comparison with Fig. 5, while
the results for SS are unaffected. For the case of N = 6 and
TS, ρ̂ini is drastically reduced from 156.65 to 11.66. Further-
more, N̂ev and T̂e are also significantly reduced from 8464 and
826.7μs to 1667 and 159.73μs, respectively. Importantly, T̂e

in Fig. 6 c is within the sampling interval limit (T̂e < Ts) for
N ≤ 6. Hence, the proposed preconditioning approach allows
one, in this case, to carry out a real-time implementation of
multistep MPC with a prediction horizon that is twice as large
as in the standard implementation. It is important to highlight
that going from N = 3 to 6, the optimal solution has to be
found from a set of input combinations that increases from
273 ≈ 104.29 to 276 ≈ 108.59.

2) Performance Evaluation
Firstly, the multistep MPC closed-loop performance under
TTC1, tuned with the chosen N = 6 and considering the pro-
posed preconditioning approach, is presented in Fig. 7. The
close view of each computational metric is also presented in
Fig. 7(d)-(f) for the time span 25− 35 ms. Here, the compu-
tational metrics, i.e., initial radius ρini, number of evaluated
nodes Nev and execution time Te, are not increased drastically
during the transient compared to steady-state operation, see
Fig. 7(d)-(f), respectively. In particular, Te is less than the
sampling interval limit during the whole converter operation,
i.e., Te < Ts. This ensures that the control problem is solved to
optimality, see Fig. 7(f). In this case, an average value of the
semiconductor device switching frequency of f̃sw = 380 Hz
is observed, when the system is operating in steady-state
with its full power rating. Secondly, the same test scenario

FIGURE 6. PIL-simulation based computational performance of multistep
MPC considering the proposed SDA preconditioning approach under TTC1.
For N ∈ [1, 10], the results in steady-state (SS) and transient-state (TS) are
in semi-logarithmic bar-plots. (a) maximum initial radius ρ̂ini, (b) maximum
number of evaluated nodes ̂Nev, and (c) maximum execution time ̂Te.

is simulated considering the standard initialization approach
of the SDA. The results are displayed for 20-40 ms in the
left-hand column of Fig. 8. The system performance [pg,
qg, igabc and vabcn in the left-hand column of Fig. 8(a)-(c),
respectively] is similar to the one presented in Fig. 7. How-
ever, ρini and Nev experience an abrupt increase at 30 ms;
see left-hand column of Fig. 8(d)-(e). This leads to a large
execution time (Te = 826.7μs) that exceeds the sampling in-
terval limit during this transient, i.e., Te > Ts, as can be seen
from the left-hand column of Fig. 8(e). It is important to
emphasize that it is only possible to obtain this result with
a PIL-simulation. In a real implementation, the optimization
algorithm will be stopped when the execution time meets the
sampling interval, implementing the best available solution
obtained, but not necessarily the optimal one. In the right-
hand column of Fig. 8, a PIL-simulation is presented with
the computational complexity of the SDA bounded as in [11].
Here, limited number of computations in SDA are permit-
ted to satisfy the sampling interval limit, i.e., Te ≯ Ts, while
sub-optimal solutions may be obtained at times. To this end,
the limit Nlm

ev = 1750 is added to the SDA, which is equiv-
alent to an allowable situation Teunknown.Ts. Note that the
choice of the limit Nlm

ev = 1750 is obtained by trail-and-error
using PIL-simulations, and it may only be compatible for the
system under study and the computational power of dSPACE
DS1006. It can be observed that the closed-loop performance
during the transient is deteriorated, producing almost 90% un-
dershoots in the active and reactive power tracking. As a con-
sequence, the system dynamics become substandard with a
transient variation of almost 90%, and a settling time of 5 ms.
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FIGURE 7. PIL-simulation results for N = 6 using the proposed SDA
preconditioning approach, under TTC1. (a) active and reactive power pg,
qg, (b) grid currents igabc, (c) inverter voltages vabcn, (d) initial radius ρini, (e)
number of evaluated nodes Nev, and (f) execution time Te.

Generally, a transient variation of ±20% and settling time of
1.5 ms are recommended as per IEEE-standard 1662-2016 for
the design and application of power electronics in electrical
power systems [34]. Clearly, the transient performance in this
case violates this standard. The iterative optimization process
in the SDA is designed to stop whenever the limit Nlm

ev = 1750
is reached. In that case, the immediate incumbent solution
(sub-optimal) found is applied to the system, which may differ
from the optimal solution. Consequently, adding a calculation
limit Nlm

ev may lead the SDA to only find sub-optimal solutions
that can produce undesirable closed-loop performance.

3) Optimality Analysis
This section carries out an optimality analysis based on
the theoretical aspect described in Remark 2. Firstly, the
PIL-simulation of multistep MPC for prediction horizon
N = 6 is run with the proposed SDA preconditioning

FIGURE 8. PIL-simulation results for N = 6 using the standard SDA
initialization, under TTC1. (a) active and reactive power pg, qg, (b) grid
currents igabc, (c) inverter voltages vabcn, (d) initial radius ρini, (e) number of
evaluated nodes Nev, and (f) execution time Te. The figures in right-hand
column are obtained when computations are limited to Nlm

ev = 1750 to
ensure Te = Ts.

approach under TTC1, and the obtained solution is applied to
the system accordingly. Then, the cost value Jsopt is computed
using (30). At the same time, the SDA with standard
initialization approach stated in Section III-B is also run to
obtain Uopt by solving (10). This allows us to compute the
optimal cost value Jopt as per (29). Note that the computations
of Jopt and Jsopt use the same system information (state
variables and outputs) obtained for the proposed approach. In
this way, one can have a fair comparison between two cost
values. The comparative results of Jopt and Jsopt are shown in
Fig. 9 a. It can be observed that the cost values are equal for
the whole converter operation periods, i.e., Jsopt = Jopt. This
is generally expected for steady-state operation, since both
methods are solving the same optimization problem (10).
Most importantly, the proposed one is capable of ensuring
that the optimal solution is found during the transient at
30 ms, i.e., ˜Uopt = Uopt and Jsopt = Jopt, as can be seen
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FIGURE 9. The optimality analysis of the multistep MPC using standard
initialization and proposed preconditioning approach for N = 6, under two
different test conditions: (a) TTC1 and (b) TTC2.

from the close view. However, this optimality can not be
guaranteed always from a theoretical perspective. There may
exist different systems, transient test conditions, operation
points, for which optimality may be violated at certain times
with the proposed preconditioning approach.

To investigate this further, the optimality analysis men-
tioned above has been performed under a new transient test
condition TTC2 given below:

TTC2 : s�
g =

{
p�

g = 0.045 p.u. & q�
g = −0.45 p.u.

p�
g = 0.89 p.u. & q�

g = +0.45 p.u.
. (39)

The corresponding cost values Jopt and Jsopt are shown in
Fig. 9 b. It can be observed that both plots are identical for
the whole operation of the converter, i.e., Jsopt = Jopt, except
for the transient at 30 ms. From the close view, it is clear that
Jsopt > Jopt, which is an increment of 1.12% only. Thus, a sub-
optimal solution Ũopt �= Uopt is applied to the system only at
30 ms. In other words, the obtained sub-optimal solution is
98.88% close to the optimal one.

To conclude, even though the proposed preconditioning ap-
proach allows one to reduce the computational burden during
transients, optimality in the control input sequence can not be
always guaranteed. This occasional small loss in optimality
can be traded in for a considerable reduction in the computa-
tional burden during transients. Surely, theoretical optimality
analysis emerges as an open problem for subsequent research.

B. EXPERIMENTAL RESULTS
The experimental performance of the multistep MPC with the
proposed preconditioning strategy for N = 6 is presented in
Fig. 10 under the same test scenario TTC1 maintained for the
PIL-simulation. Here, the close view of each computational
metric is also presented for the time span 25− 35 ms, see
Fig. 10(d)-(f). The control algorithm was implemented in
the same dSPACE DS1006 while the switching states of the
power converter were generated in an FPGA module DS5203.
As expected, the closed-loop performance (Fig. 10(b)-(c)) and
the computational performance (Fig. 10(d)-(f)) are similar to

FIGURE 10. Experimental results for N = 6 using the proposed SDA
preconditioning approach, under TTC1. (a) active and reactive power pg,
qg, (b) grid currents igabc, (c) inverter voltages vabcn, (d) initial radius ρini, (e)
number of evaluated nodes Nev, and (f) execution time Te.

the PIL simulation results in Fig. 7. Importantly, it can be
observed from Fig. 10(f) that the condition Te < Ts is satis-
fied during both steady-state and transient operation, which
ensures the safe and optimal operation of the power converter.

VIII. CONCLUSION
A crucial computational burden problem that arises due to
the transient operation of power converters when using mul-
tistep MPC has been addressed in this work. This problem
has been solved by proposing a preconditioning approach,
which provides a suitable initial sphere for the sphere de-
coding algorithm in order to efficiently find the solution. A
case study with processor-in-the-loop simulations and experi-
mental results has been conducted to confirm the feasibility
and effectiveness of the proposal in practical applications
such as grid-connected converters operating at very low semi-
conductor switching frequencies, e.g., below 450 Hz. The
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computational performance showed that a small number of
candidate solutions is evaluated during transients, thus the
computational burden is drastically reduced in comparison
with the standard SDA initialization. Most importantly, the
proposed preconditioning approach allows one to achieve
real-time implementation up to a prediction horizon of six.
In contrast, the standard SDA is restricted to the prediction
horizon three with comparable technology. Nevertheless, op-
timality in the control input sequence cannot always be guar-
anteed, since an alternative optimization problem is solved
by the SDA during transients. For this case, a very small
degree of sub-optimality appears in some particular transients.
This occasional small loss in optimality can be traded for
a significant reduction in the computational burden during
transients. In general, the chance of obtaining sub-optimality
case depends on the aggressiveness of transients and also on
the system types. This topic itself demands an extensive in
depth analysis, and is the scope of future research. Further
results showed that if this computational burden problem is
not properly addressed, the system may have an undesirable
transient behavior, which clearly demonstrates the practical
benefit of the proposal. Consequently, the proposed precondi-
tioning approach enables multistep direct MPC based on the
SDA to work in the whole operational range of a power con-
verter becoming, thus, a viable control alternative. Moreover,
due to its generality, the proposed preconditioning approach
can be used in any multistep direct MPC strategy for medium/
high-power converters that use the SDA, including other mul-
tilevel topologies and applications, e.g., medium/ high-power
electrical drives.
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