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Energy-efficient dual-hop IoT communications
network with delay-outage constraints

Abstract—This work considers a dual-hop Internet of Thing
(IoT) communications network where sensor nodes transmit data
to a gateway either directly or via other nodes using dual-
hop communications. Each node employs separate transmission
buffers to store its own sensing data generated with constant
rates, and data received from other nodes. We impose end-to-
end delay constraints in terms of the maximum acceptable delay-
outage probabilities. We investigate energy-efficient adaptive
resource allocation problems (i.e., joint link scheduling, rate, and
power allocation) to support minimum data rates of the nodes. A
novel approach is proposed exploiting asymptotic delay analysis
to first determine the achieved delay exponents (exponential
decay rates) of the queue length tail distributions to satisfy the
delay-outage constraints. Next, the relation between the delay
exponents and resource allocation variables are derived. Last, the
solutions to the resulting constrained optimization problems are
obtained using Lagrangian approach and convex optimization.
Online resource allocation algorithms are developed when the
fading statistics are a-priori unknown. Illustrative examples are
presented to demonstrate the effects of the rate requirements
and delay constraint stringency on the power consumption and
routing configuration.

Index Terms—Resource allocation, dual-hop communications,
delay-outage constraints, wireless sensor network, IoT.

I. INTRODUCTION

The Internet of Things (IoT) allows billions of smart devices

to be connected. The devices can be sensors/actuators, able

to operate and transmit/receive data to/from other systems

without or with minimal human intervention [1]. The rapid

IoT development has lead to numerous applications being

implemented such as smart factories and manufacturing, smart

energy grids, and smart transportation systems, (i.e., the

new Industrial Internet of Things (IIoT) paradigm [2]– [4]).

IIoT benefits include improved productivity, analytics, and

the transformation of the workplace having the potential to

generate $15 trillion of global GDP by 2030 [5]. Nevertheless,

many research issues still remain open in IIoT [2]– [4]. In par-

ticular, as the number of connected devices/sensors is growing

exponentially, the ever-increasing energy consumption is one

key concern and limitation for the widespread IoT deployment.

Hence, reducing energy consumption and improving energy

efficiency have become important design challenges in IIoT

[6], [7].

Focusing on developing novel energy-efficient radio re-

source management and transmissions for IIoT applications,1

the current work considers a wireless sensor network (WSN)

of a number of low-cost low-power nodes distributed across

a large area for data sensing, simple information processing,

1While the main sources of energy consumption in sensor nodes are data
collection and calculation, and data transmission, the latter is much greater
than the former two. Hence, this current work focuses on energy consumption
in data transmission in IoT communications networks.

and communication over short distances. In a WSN, nodes

locating farther from the gateway can be assisted by nearer

nodes for data delivery. Such multi-hop communications can

provide significant robustness against the adverse effects of

wireless shadowing and fading, allowing for broader sensing

coverage, enhanced throughput and reliability compared to

direct transmissions. There has been rapid adoption of WSN

for demanding industrial environments thanks to recent devel-

opments in wireless communication, power efficiency, extreme

miniaturization and embedded computing technologies [4],

[7]– [10]. In such a WSN, the sensory data at the nodes

is commonly required to be delivered to the gateway(s) or

data centers by certain deadlines to provide useful and/or

meaningful information. For example, in smart healthcare and

smart grid applications, monitoring information has to be

updated at the data center in a timely fashion to promptly

evaluate or assess the health conditions of patients, or potential

malfunctions and security threats to the electricity grids. Sup-

porting delay quality-of-service (QoS) guarantees is crucial to

ensure satisfactory operation of IIoT applications [11], [12].

While design and optimization of the general multi-hop

WSN with delay QoS guarantees are challenging, this work

considers a dual-hop network, where each node communicates

the sensory information to a common gateway either directly

or via another node using the dual-hop relaying mode. Nodes

communicating directly with the gateway are referred to as

single-hop nodes (or relays), and those indirectly dual-hop

nodes (or sources). Such multi-source multi-relay networks

have been extensively studied under different settings and

assumptions (see, e.g., [13]- [18] and references therein). Our

current work distinguishes itself from the existing works in

the following important aspects. First, the relays transmit their

own data in addition to the data received from other sources,

which is applicable for scenarios where all nodes are sensing

the environment to generate their own data. Hence, each relay

has to share the capacity of the link between itself and the

gateway to transmit both its own data and the data of the

assisted sources. Such capacity sharing needs to take into

account the QoS such as delay and rates requirements of the

relay and sources, creating additional challenges in resource

provisionings. Second, more importantly, this work imposes

delay constraint on each source and relay sensory data in

terms of a maximum acceptable delay-outage probability (i.e.,

the end-to-end delay of each source and relay data flow is

allowed to exceed a delay bound within an acceptable outage

probability) [19]. For many IIoT applications such as manu-

facturing monitoring, intelligent transport systems (ITS), smart

grids, and health care, continually sensed data from sensors

needs to be delivered to the gateway within a certain delay

bound to be useful. However, guaranteeing a deterministic
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delay bound over fading channels requires prohibitively large

power due to the possible deep fades. Consequently, this

work considers delay-outage constraints, which are applicable

because: 1) the mentioned applications can indeed tolerate a

(small) delay bound violation probability; and 2) the need

for high power consumption can be relaxed. Depending on

a particular application, the delay bound and maximum al-

lowable outage probability can be determined accordingly for

satisfactory functioning. It should be emphasized that there

are works on stochastic optimization of wireless networks to

guarantee a maximum average delay bound [20]. However,

guaranteeing an average delay bound does not guarantee a

maximum deterministic delay bound, the latter of which is

required in most IIoT applications.

This work develops energy-efficient resource allocation

and transmission schemes for a dual-hop IoT network under

delay-outage constraints. In the proposed model, each node

maintains a transmission buffer to store its own sensory data

generated at a constant rate. In addition, each relay employs

a separate buffer to store the data received from each of the

sources that it relays. In each transmission frame, we assume

that at most one link (or node) is active to avoid strong

interference. Also, when a relay–gateway link is active, the

relay has to allocate different transmission rates for its own

data and that of its assisted sources such that the total rates

do not exceed the link capacity. For the proposed network

model, the joint adaptive link scheduling, rate, and power

allocation solution in each frame is determined depending on

the instantaneous channel conditions, aiming to minimize the

total power consumption to support minimum sensory data

rate requirements and delay-outage constraints of the sources

and relays.

To solve the optimization problems, the steady-state distri-

butions of the source and relay queue (buffer) lengths need

to be known to handle the delay-outage constraints. However,

deriving the distributions is highly intractable. Moreover, if

the large delay regime is considered (i.e., the delay bound

is orders of magnitude larger than the transmission frame

duration, which is typically true for practical IoT applications),

we can employ the asymptotic delay analysis to compute the

achieved delay exponents (or the exponential decay rates) of

queue length tail distributions as such to satisfy the delay-

outage constraints [21], [22]. Then, we derive an explicit

relationship between the delay exponents and the resource

allocation variables. The solutions to the resulting constrained

optimization problems are derived using Lagrangian approach

and convex optimization. Such solutions take into account the

delay constraints, rate requirements, as well as the channel

fading statistics through the use of the Lagrange multipliers.

Moreover, we develop online transmission algorithms when

the fading statistics are unknown, a typical scenario in real-life

IoT networks. Numerical results are performed to demonstrate

the impacts of the data rate requirements and delay constraints

on the power consumption. The performance gains due to the

adaptive power allocation over the fixed power allocation are

also illustrated. Our results can help to design optimal routing

and the corresponding resource allocation for dual-hop IoT

networks to support the given rate requirements and delay-

R1

S1

S2

S3

R2

D

Fig. 1. A dual-hop WSN with K = 3 sources and N = 2 relays: Relay R1

assists source S1 and relay R2 assists sources S2, and S3. Both sources and
relays have own data to transmit to the destination.

outage constraints of the nodes.

The rest of the manuscript is organized as follows. Section

II describes the system model and formulates the resource

allocation problem with the solution approach being presented

in Section III. Section IV considers the case of adaptive source

and relay power allocation. Illustrative results are presented in

Section V, followed by conclusions in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Dual-hop Network Model

Consider a general dual-hop WSN consisting of K + N
nodes, which continually sense the environment and communi-

cate the sensory data to a common IoT gateway (or destination)

over a single channel of bandwidth B (Hz). Of these K +N
nodes, there are K ≥ 1 sources Sk, k ∈ S =

{
1, . . . ,K

}
and N ≥ 1 relays Rn, n ∈ R =

{
1, . . . , N

}
. Each source

is assumed to be assisted by only one relay while one relay

can assist none, one, or several sources. See Figure 1 for an

example of such network. Denote by S(Rn) ⊆ S the set of

indices of the sources assisted by the relay Rn, and n(Sk) ∈ R
the index of the relay assisting the source Sk. Each Sk uses a

transmission buffer QSk
to store its sensory data generated

at a constant rate μSk
(b/s/Hz). Each relay Rn maintains

|S(Rn)|+1 buffers: one buffer QRn
to store its sensory data

generated at a constant rate μRn
(b/s/Hz), and |S(Rn)| buffers

QSk

Rn
, k ∈ S(Rn) to store the data received from the sources it

assists. QSk
[t], QRn

[t], QSk

Rn
[t] denote the queue lengths. and

The delay of the data of source Sk is the sum queuing delays

incurred at the two buffers QSk
and QSk

Rn(Sk)
. On the other

hand, the delay of the data of relay Rn is the delay incurred

at the buffer QRn
only. Table I summarizes the main notations

used in the paper.

B. Wireless Transmission and Resource Allocation Model

1) Block-fading wireless channels: We assume slow block-

fading channels in which channel gains remain unchanged dur-

ing the transmission frame T (seconds) but can vary indepen-

dently from one to another frame. Denote hk,n(Sk)[t], k ∈ S ,

and hn,D[t], n ∈ R as the channel power gains in frame

t = 1, 2, . . . of the Sk–Rn(Sk) and the Rn–D links, respec-

tively, which are assumed to be statistically independent with
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TABLE I
TABLE OF MAIN NOTATIONS

Notations Meanings

Sk, k ∈ S =
{
1, . . . ,K

}
K Sources

Rn, n ∈ R =
{
1, . . . , N

}
N Relays

S(Rn) ⊆ S Source indexes assisted by Rn

n(Sk) ∈ R Relay index assisting Sk

μSk
, μRn Constant rates of Sk and Rn

PSk
[t], PRn [t] Transmit powers of Sk and Rn

QSk
[t], QRn [t], Q

Sk
Rn

[t] Queue lengths (in frame t)

hk,n(Sk)
[t], hn,D[t] Channel power gains

rk,n(Sk)
[t], rn,D[t] Transmission rates

φk,n(Sk)
[t], φn,D[t] ∈ {0, 1} Link scheduling variables

r
Sk
n,D[t], rRn

n,D[t] Allocated rates at Rn

ζSk
, ζRn ∈ (0, 1] Delay-outage probabilities
θSk

, θRn Delay exponents

ΩSk
(θ),ΩRn (θ),Ω

Sk
Rn(Sk)

(θ) Log moment generating functions

means E[hk,n(Sk)] and E[hn,D], where E[.] denotes statistical

expectation operator.

Let PSk
, k ∈ S and PRn

, n ∈ R denote the power allocation

of the sources and the relays, respectively. Using Shannon’s

formula, the instantaneous transmission rates (b/s/Hz) of the

Sk–Rn(Sk) and the Rn–D links in frame t are, respectively:

rk,n(Sk)[t] = log2
(
1 + PSk

hk,n(Sk)[t]
)
, k ∈ S

rn,D[t] = log2
(
1 + PRnhn,D[t]

)
, n ∈ R.

(1)

2) Resource allocation model: We now describe the link

scheduling and rate allocation problem.

(a) Link scheduling. In frame t, let φk,n(Sk)[t], k ∈ S and

φn,D[t], n ∈ R denote the binary scheduling variables for the

Sk–Rn(Sk) and the Rn–D links, respectively. The scheduling

variable is set to 1 if the corresponding link is active, oth-

erwise, 0. We assume that at most one link is allowed to be

active in each frame t to avoid strong interference. Hence, we

have:

φk,n(Sk)[t], φn,D[t] ∈ {0, 1}, ∀t, k ∈ S, n ∈ R∑
k∈S

φk,n(Sk)[t] +
∑
n∈R

φn,D[t] ≤ 1, ∀t. (2)

Note that it is possible that no link is active in a frame in

order to save power due to unfavorable channel conditions.

The average total network power is computed as:

Pavg = E

[∑
k∈S

φk,n(Sk)[t]PSk
+

∑
n∈R

φn,D[t]PRn

]
. (3)

(b) Rate allocation: In frame t, if the Sk–Rn(Sk) link is

active, source Sk transmits its currently data in queue QSk
to

relay Rn(Sk) at a rate rk,n(Sk)[t] in (1). If the Rn–D link is

active, relay Rn has to solve the rate allocation problem by

determining the rates rSk

n,D[t] ≥ 0, k ∈ S(Rn) and rRn

n,D[t] ≥
0 to transmit respectively the data of its assisted sources in

queue QSk

Rn
[t] and that of its own data in queue QRn

[t] to the

destination so that the total allocated rates do not exceed the

link capacity rn,D[t]. The rate allocation constraint at the relay

Rn is then expressed as:

rSk

n,D[t], rRn

n,D[t] ≥ 0, ∀t, k ∈ S(Rn),∑
k∈S(Rn)

rSk

n,D[t] + rRn

n,D[t] ≤ φn,D[t]rn,D[t], ∀t. (4)

3) Queue dynamics: The dynamics of the queue lengths (of

all queues) at all nodes (including sources and relays) from

frame t to frame t+ 1 are given as:

QSk
[t+ 1] = QSk

[t]−min
{
QSk

[t], φk,n(Sk)[t]TB

rk,n(Sk)[t]
}
+ μSk

TB, k ∈ S
QRn

[t+ 1] = QRn
[t]−min

{
QRn

[t], φn,D[t]TB

rRn

n,D[t]
}
+ μRn

TB, n ∈ R
QSk

Rn(Sk)
[t+ 1] = QSk

Rn(Sk)
[t]−min

{
QSk

Rn(Sk)
[t], φn(Sk),D[t]

TBrSk

n(Sk),D
[t]
}
+min

{
QSk

[t], φk,n(Sk)[t]

TBrk,n(Sk)[t]
}
, k ∈ S. (5)

In the right hand side of each expression, the second and third

terms are the data amounts removed from, and arriving to the

buffer in frame t, respectively. The data amount removed from

a queue is limited by the current data amount buffered [21].

It can be seen that the dynamics and the steady states of the

queue lengths, and hence the delay of buffered data are gov-

erned by the underlying resource allocation solutions/schemes.

C. Delay-outage Constraints

We assume stable queues. As t → ∞, the random queue

length processes in (5) converge to steady-state queue length

random variables also denoted as QSk
, QSk

Rn(Sk)
, and QRn

for

simplicity. The delay-outage constraints for the sources and

relays are expressed as:

Pr
(
QSk

+QSk

Rn(Sk)
> Qmax

) ≤ ζSk
, k ∈ S

Pr
(
QRn > Qmax

) ≤ ζRn , n ∈ R
(6)

where Pr(x > y) denotes the probability of the event x > y;

Qmax denotes the queue length bound, which is assumed to be

the same for all sources and relays without loss of generality;

ζSk
, ζRn

∈ (0, 1] are the maximum acceptable outage prob-

abilities. For a given bound Qmax, the smaller the maximum

outage probability, the more stringent the delay constraint

is. In addition, as the outage probability approaches 1, we

allow unconstrained queue length (or delay). On the other

hand, as the outage probability approaches 0, the delay outage

is not allowed to happen (i.e., a bounded delay constraint).

Such delay-outage constraint model can be used to model a

vast number of delay-sensitive applications with diverse delay

requirements.
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D. Resource Allocation Problem
The resource allocation problem is formulated as:

min Pavg

s.t.: Constraints (2), (4), (5), (6)

μSk
≥ μmin

Sk
, k ∈ S

μRn ≥ μmin
Rn

, n ∈ R

(7)

with the optimization variables φk,n(Sk)[t], φn,D[t], rSk

n,D[t],

and rRn

n,D[t]; μmin
Sk

and μmin
Rn

are the minimum data rate

requirements for the sources and relays, respectively.
Remark 1: At optimality of (7), we must have:
i) the inequality rate constraints are met with equalities.

Otherwise, more power is required to support unnecessarily

higher rates.
ii) the delay-outage constraints (6) are met with equalities.

Otherwise, more power is required to support unnecessarily

more stringent delay constraints [21].
iii) when one or more of the outage probabilities approaches

0, (7) becomes infeasible because it requires infinitely large

power to support a given positive rate with a deterministic

delay bound constraint under fading channels [21].
Remark 2: To implement the resource allocation schemes

under consideration, it is implicitly assumed that a centralized

coordinator knows the channel conditions in each frame. It

then determines the allocation solution and informs the source

or the relay to be transmitting only. Such a computer can be

embedded into the IoT gateway.
The following section will present the solution approach to

(7) using asymptotic delay analysis.

III. RESOURCE ALLOCATION SOLUTION

To solve (7), one usually needs to know the tail distributions

of steady-state queue length random variables in (5), which

is very difficult in general. To circumvent this problem, we

employ the asymptotic delay analysis results to characterize

the tail distributions of the queue lengths with the assumption

of large queue length (or delay) regime, i.e., the bound Qmax

is sufficiently large but finite as compared with the average

frame arrival rates (i.e., μSk
TB or μRn

TB).

A. Asymptotic Delay Analysis
1) Background: Consider a stable queue with an infinite

buffer size, a stationary ergodic arrival process a[t], and

a service process c[t], t = 1, 2, . . . satisfying the Gartner-

Ellis limit (i.e., for all θ ≥ 0, their differential asymptotic

logarithmic moment generating functions (LMGFs) Ωa(θ) and

Ωc(θ) exist). If there exists a unique achieved delay exponent

θ̄ > 0 satisfying:

Ωa(θ̄) + Ωc(−θ̄) = 0 (8)

then for a sufficiently large x, the following result for the tail

distribution of the steady-state queue length Qa,c holds [22]:

Pr
(
Qa,c > x

)
= e−θ̄x. (9)

Note that for independent and identically distributed (i.i.d.)

processes, the LMGFs are computed as:

Ωa(θ) = logE
[
eθa[t]

]
, Ωc(θ) = logE

[
eθc[t]

]
. (10)

2) Application: We now show how to apply the above

results to determine the achieved delay exponents of the source

and relay queues so that the constraints (6) are satisfied.

Case 1. Consider the queue QRn
for relay Rn with achieved

delay exponent θ̄Rn
. To satisfy (6) for Rn, it is required that:

θ̄Rn
≥ θtarRn

� − log(ζRn
)/Qmax (11)

as from (9), we would have:

Pr
(
QRn

> Qmax
)
= e−θ̄RnQmax ≤ e−θtar

Rn
Qmax

= ζRn .

Case 2. Consider two tandem queues QSk
and QSk

Rn(Sk)
for

source Sk with achieved delay exponents θ̄Sk
and θ̄Sk

Rn(Sk)

respectively.

In [21], it has been shown that an optimal resource alloca-

tion must guarantee similar queue length distributions at both

queues, implying θ̄Sk
= θ̄Sk

Rn(Sk)
. Moreover, to satisfy (6) for

Sk, we must have:

θ̄Sk
= θ̄Sk

Rn(Sk)
≥ θtarSk

� − 1

Qmax

(
1 +W−1

(
−ζSk

e

))
(12)

where W−1(.) is the Lambert W function’s real brunch for the

range (−∞,−1], and the Lambert W function is the inverse

function of Z(W ) = WeW .

In Remark 1, we mentioned that in order to achieve the

smallest power, the constraints (6) must be met with equalities,

and hence, the achieved delay exponents must be equal to the

target delay exponents in (11) and (12).

B. Problem Reformulation

Previously, we have computed the achieved delay exponents

of the queues of the sources and relays to satisfy (6). We now

apply the relation (8) with corresponding arrival and service

processes for all queues.

Consider the source Sk with a constant arrival rate μSk
into

its queue QSk
. By applying the relation (8) to the (tandem)

queues QSk
and QSk

Rn(Sk)
with θ̄Sk

= θ̄Sk

Rn(Sk)
= θtarSk

, we have:

μSk
TBθ̄Sk

+ΩSk
(−θ̄Sk

) = 0

ΩSk,arv
Rn(Sk)

(θ̄Sk

Rn(Sk)
) + ΩSk

Rn(Sk)
(−θ̄Sk

Rn(Sk)
) = 0.

(13)

ΩSk
(θ) and ΩSk

Rn(Sk)
(θ) are the LMGFs of the service pro-

cesses of the queues QSk
and QSk

Rn(Sk)
, which can be computed

using (10) as follows:

ΩSk
(θ) = logE

[
eθφk,n(Sk)[t]TBrk,n(Sk)[t]

]
ΩSk

Rn(Sk)
(θ) = logE

[
e
θφn(Sk),D[t]TBr

Sk
n(Sk),D

[t]] (14)

using the resource allocation variables described in Section II.

Note that the LMGF of the constant arrival process with rate

μSk
to QSk

is μSk
TBθ (see (10)). Also, ΩSk,arv

Rn(Sk)
(θ) is the

LMGF of the arrival process at the queue QSk

Rn(Sk)
, which is

the same as the LMGF of the departure process of QSk
and

is given by [21]:

ΩSk,arv
Rn(Sk)

(θ) =

{
μSk

TBθ, 0 ≤ θ ≤ θ̄Sk
,

μSk
TBθ̄Sk

+ΩSk
(θ − θ̄Sk

), θ > θ̄Sk
.

(15)

Page 4 of 22

http://www.ieee-ies.org/

Industrial Electronics Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



5

We then have:

ΩSk,arv
Rn(Sk)

(θ̄Sk

Rn(Sk)
) = μSk

TBθ̄Sk

Rn(Sk)
.

Now consider the relay Rn with a constant arrival rate μRn

into its queue QRn with θ̄Rn = θtarRn
. Again, by applying the

relation (8) to QRn , we have:

μRn
TBθ̄Rn

+ΩRn
(−θ̄Rn

) = 0 (16)

ΩRn
(θ) is the LMGF of the service process of QRn

, which is

computed using (10) as:

ΩRn
(θ) = logE

[
eθφn,D [t]TBrRn

n,D [t]
]
. (17)

The LMGF of the constant arrival process to QRn
is μRn

TBθ
(see (10)).

We have argued that μSk
= μmin

Sk
, k ∈ S , and μRn

=
μmin
Rn

, n ∈ R. Using (13), (16), the problem (7) can now be

reformulated as:

min Pavg

s.t.: Constraints (2), (4),

μmin
Sk

TBθtarSk
+ΩSk

(−θtarSk
) = 0, k ∈ S,

μmin
Sk

TBθtarSk
+ΩSk

Rn(Sk)
(−θtarSk

) = 0, k ∈ S,
μmin
Rn

TBθtarRn
+ΩRn

(−θtarRn
) = 0, n ∈ R.

(18)

Using (14), (17), and the monotonicity of log function, after

some manipulations, we can re-write (18) in terms of the

resource allocation variables as:

min E

[∑
k∈S

φk,n(Sk)[t]PSk
+

∑
n∈R

φn,D[t]PRn

]
s.t.: Constraints (2), (4),

E
[
e
−θSk

φn(Sk),D [t]r
Sk
n(Sk),D

[t]]
=

E
[
e−θSk

φk,n(Sk)[t]rk,n(Sk)[t]
]
, k ∈ S,

E
[
e−θSk

φk,n(Sk)[t]rk,n(Sk)[t]
]
= e−μmin

Sk
θSk , k ∈ S,

E
[
e−θRnφn,D[t]rRn

n,D[t]
]
= e−μmin

Rn
θRn , n ∈ R

(19)

where for notational convenience, we have defined the follow-

ing normalized delay exponents:

θSk
� θtarSk

TB, k ∈ S, θRn
� θtarRn

TB, n ∈ R.

The equality constraints in (19) can be equivalently replaced

by inequality ≤ constraints without loosing optimality. The

remaining task is to solve (19), which is described below.

C. Resource Allocation Solution via Lagrangian Approach
We employ the Lagrangian approach to solve (19). We form

the partial Lagrangian of (19) as:

L = E
[L[t]] (20)

with

L[t] =
∑
k∈S

φk,n(Sk)[t]PSk
+

∑
n∈R

φn,D[t]PRn

+
∑
k∈S

(
(ωk − λk)e

−θSk
φk,n(Sk)[t]rk,n(Sk)[t] (21)

+λke
−θSk

φn(Sk),D [t]r
Sk
n(Sk),D

[t]
)
+

∑
n∈R

ξne
−θRnφn,D [t]rRn

n,D [t]

where λk, ωk ≥ 0, k ∈ S and ξn ≥ 0, n ∈ R are the Lagrange

multipliers corresponding to the inequality constraints in (19).

Now, if we minimize the Lagrangian L under the constraints

(2), (4), and the multipliers are determined to satisfy the

inequality constraints in (19) with equalities, we would obtain

the solution of (19). Moreover, in order to minimize L, the

optimal link scheduling and rate allocation solution has to

minimize L[t] in each frame t = 1, 2, . . . as

min L[t] s.t.: Constraints (2), (4). (22)

The problem (22) is a mixed-integer optimization problem.

The solution can be obtained by considering the following

three cases:

Case 1. Consider φk,n(Sk)[t] = 1, k ∈ S . The objective

value of (22) (or the scheduling metric) is:

L[t]
∣∣∣
φk,n(Sk)[t]=1

= PSk
+ (ωk − λk)e

−θSk
rk,n(Sk)[t]

+λk +
∑
k′ �=k

ωk′ +
∑
n∈R

ξn. (23)

In this case, there is no rate allocation problem to address.

Case 2. Consider φn,D[t] = 1, n ∈ R. We have the

following rate allocation problem at relay Rn:

min
∑

k∈S(Rn)

λke
−θSk

r
Sk
n,D [t] + ξne

−θRnrRn
n,D [t]

s.t.:
∑

k∈S(Rn)

rSk

n,D[t] + rRn

n,D[t] ≤ rn,D[t] (24)

where recall that S(Rn) is the set of indices of the sources

assisted by Rn.

It can be verified that (24) is a convex optimization problem

due to its convex objective function and constraint. We can fur-

ther employ the Lagrangian approach to determine the optimal

rate allocation solution by solving the following optimization

problem:

min
∑

k∈S(Rn)

λke
−θSk

r
Sk
n,D[t] + ξne

−θRnrRn
n,D [t]

+χn,D[t]
( ∑
k∈S(Rn)

rSk

n,D[t] + rRn

n,D[t]
)

(25)

where χn,D[t] > 0 is some Lagrange multiplier such that

the rate inequality constraint in (24) is met with equality. By

differentiating the objective function, setting it to zero, and

accounting for the non-negativeness of the data rates, the rate

allocation solution is derived as:

rSk

n,D[t] =

[
− 1

θSk

log
(χn,D[t]

λkθSk

)]+

, k ∈ S(Rn),

rRn

n,D =

[
− 1

θRn

log
(χn,D[t]

ξnθRn

)]+ (26)

where [x]+ denotes max{x, 0}. Then, we can solve for χn,D[t]
to satisfy (24) with equality using numerical methods. We omit

Page 5 of 22

http://www.ieee-ies.org/

Industrial Electronics Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



6

the details for brevity. The objective function of (22) in the

case φn,D[t] = 1 is then

L[t]
∣∣∣
φn,D [t]=1

= PRn
+

∑
k∈S

(ωk − λk) +
∑

k/∈S(Rn)

λk

+
∑

k∈S(Rn)

λke
−θSk

r
Sk
n,D[t]+ξne

−θRnrRn
n,D[t] +

∑
n′ �=n

ξn′ . (27)

Case 3. Consider φk,n(Sk)[t] = φn,D[t] = 0, k ∈ S, n ∈ R.

In this case, no link is active. The objective function of (22)

becomes:

L[t]
∣∣∣
φk,n(Sk)[t]=φn,D[t]=0,k∈S,n∈R

=
∑
k∈S

ωk +
∑
n∈R

ξn. (28)

In summary, the optimal link scheduling and rate allocation in

each frame t is determined to provide the smallest scheduling

metric (23), (27), or (28). The scheduling complexity is linear

in the total number of sources and relays K +N .

D. Online Iterative Algorithm under Unknown Fading Statis-
tics

The resource allocation solution depends on the multipliers

λk, ωk, k ∈ S and ξn, n ∈ R, which satisfy the equality

constraints in (19). To compute these multipliers, we need to

know the fading statistics, which is often unavailable in reality.

Even when the statistics is known, it is not easy to compute

the expectations in (19). To overcome these difficulties, we can

utilize the following stochastic iterations. Specifically, we first

initialize the multipliers with λk[1] > 0, ωk[1] > 0, k ∈ S , and

ξn[1] > 0, n ∈ R. Then, in transmission frame t = 1, 2, . . .,
we carry out the following updates:

λk[t+ 1] =
[
λk[t] + ε[t]

(
e
−θSk

φn(Sk),D [t]r
Sk
n(Sk),D

[t]

− e−θSk
φk,n(Sk)[t]rk,n(Sk)[t]

)]L
ε
, k ∈ S

ωk[t+ 1] =
[
ωk[t] + ε[t]

(
e−θSk

φk,n(Sk)[t]rk,n(Sk)[t]

− e−μmin
Sk

θSk

)]L
ε
, k ∈ S

ξn[t+ 1] =
[
ξn[t] + ε[t]

(
e−θRnφn,D [t]rRn

n,D [t]

− e−μmin
Rn

θRn

)]L
ε
, n ∈ R

for some small coefficient ε > 0. Here, [x]ba denotes the

projection of x on the interval [a, b] for b ≥ a ≥ 0 and L
is sufficiently large to ensure boundedness of the multiplier

updates. The decreasing positive sequence ε[t] which dictates

the convergence speed, must satisfy:

∞∑
t=1

ε[t] = ∞;
∞∑
t=1

(ε[t])2 < ∞.

The link scheduling and rate allocation solution in frame

t is computed using the current estimates of the Lagrange

multipliers. We can see that these updates do not require the

fading statistical knowledge. Moreover, the algorithm does

not assume any specification on the fading statistics, and

it converges for any independent link fading distributions.

The convergence and optimality of the stochastic iteration

based online algorithm can be established using the results in

stochastic approximation theory. The details of convergence

proof, though highly technical and lengthy, are routine and

hence, omitted due to lack of space. More interested readers

are referred to [23], [24] for the details of the convergence

proof for similar algorithms, albeit under different settings.

IV. RESOURCE ALLOCATION WITH ADAPTIVE POWER

ALLOCATION

In previous sections, we have assumed a fixed source and

relay power allocation PSk
, k ∈ S and PRn

, n ∈ R for

all frames. It is known that adaptive power adaption can be

employed to exploit the temporal fading diversity for power

savings. Denote PSk
[t], k ∈ S and PRn [t], n ∈ R as the

power allocation of the source Sk and relay Rn in frame t,
respectively. The average total network power is given by:

PAPA
avg = E

[∑
k∈S

φk,n(Sk)[t]PSk
[t]+

∑
n∈R

φn,D[t]PRn
[t]
]
. (29)

PSk
[t] (or PRn [t]) can only be positive when φk,n(Sk)[t] = 1

(or φn,D[t] = 1).

A. Problem Reformulation

After some manipulations, similar to (19), the resource

allocation problem with adaptive power allocation can be

expressed as:

min E

[∑
k∈S

φk,n(Sk)[t]PSk
[t] +

∑
n∈R

φn,D[t]PRn
[t]
]

s.t.: Constraints (2), (4)

E
[
e
−θSk

φn(Sk),D [t]r
Sk
n(Sk),D

[t]] ≤
E
[(
1 + hk,n(Sk)[t]PSk

[t]
)−θSk

φk,n(Sk)[t]/ log(2)]
, k ∈ S

E
[(
1 + hk,n(Sk)[t]PSk

[t]
)−θSk

φk,n(Sk)[t]/ log(2)]
≤ e−μmin

Sk
θSk , k ∈ S

E
[
e−θRnφn,D[t]rRn

n,D[t]
] ≤ e−μmin

Rn
θRn , n ∈ R.

(30)

The optimization variables are φk,n(Sk)[t], φn,D[t], rSk

n(Sk),D
[t],

rRn

n,D[t], PSk
[t], and PRn [t].

B. Optimal Solution

Similar to (20), (21), the Lagrangian of (30) can be formed:

L = E
[L[t]] (31)

where

L[t] =
∑
k∈S

φk,n(Sk)[t]PSk
[t] +

∑
k∈S

(
(ωk − λk)

(
1 + hk,n(Sk)[t]PSk

[t]
)−θSk

φk,n(Sk)[t]/ log(2)

+λke
−θSk

φn(Sk),D[t]r
Sk
n(Sk),D

[t]
)

+
∑
n∈R

φn,D[t]PRn
[t] +

∑
n∈R

ξne
−θRnφn,D [t]rRn

n,D [t].
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Here, we have re-used the notations for the Lagrange multipli-

ers in Section III for simplicity since it would not cause any

ambiguity.

To minimize the Lagrangian L in (31), we have to find the

link scheduling, rate, and power allocation solution in each

frame t to minimize L[t] as

min L[t] s.t.: Constraints (2), (4). (32)

To solve (32), we consider the following cases.

Case 1. Consider φk,n(Sk)[t] = 1, k ∈ S . We solve the

following power allocation problem to find PSk
[t]:

min
PSk

[t]
PSk

[t]+ (ωk−λk)
(
1+hk,n(Sk)[t]PSk

[t]
)−θSk

/ log(2)
.

(33)

It can be verified that (33) is a convex optimization problem.

Thus, by differentiating the objective function, setting it equal

to 0 and accounting for the non-negativeness of the power

variables, the optimal power allocation solution is derived as:

PSk
[t] =

1

hk,n(Sk)[t]
×

[(
(ωk − λk)

θSk

log(2)
hk,n(Sk)[t]

)(θSk
/ log(2)+1

)−1

−1

]+

. (34)

Then, the objective function value L[t]
∣∣∣
φk,n(Sk)[t]=1

in (32) can

be computed.

Case 2. Consider φn,D[t] = 1, n ∈ R. We have the

following joint rate and power allocation problem at Rn:

min
r
Sk
n,D[t],rRn

n,D[t],PRn [t]

PRn
[t] +

∑
k∈S(Rn)

λke
−θSk

r
Sk
n,D[t]

+ξne
−θRnrRn

n,D[t]

s.t.:
∑

k∈S(Rn)

rSk

n,D[t] + rRn

n,D[t]

≤ log2

(
1 + hn,D[t]PRn [t]

)
. (35)

It can be shown that (35) is a convex optimization problem,

which can be solved using Lagrangian approach. The rate

allocation solution is computed as follows:

rSk

n,D[t] =

[
− 1

θSk

log
(χn,D[t]

λkθSk

)]+

, k ∈ S(Rn),

rRn

n,D[t] =

[
− 1

θRn

log
(χn,D[t]

ξnθRn

)]+ (36)

for some Lagrange multiplier χn,D[t] > 0. The power alloca-

tion solution is derived as:

PRn [t] =

[
χn,D[t]

log(2)
− 1

hn,D[t]

]+

. (37)

The multiplier χn,D[t] is determined such that the inequality

rate constraint in (35) is met with equality. We omit the details

for brevity.

We can then compute the objective function value

L[t]
∣∣∣
φn,D[t]=1

in (32).
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Fig. 2. Convergence of the online iterative algorithm.

Case 3. Consider φk,n(Sk)[t] = φn,D[t] = 0, k ∈ S, n ∈
R. The objective function value of (32) in this case can be

computed as:

L[t]
∣∣∣
φk,n(Sk)[t]=φn,D[t]=0,k∈S,n∈R

=
∑
k∈S

ωk +
∑
n∈R

ξn. (38)

In summary, in frame t, the link scheduling, rate, and power

allocation solution is determined as such to provide minimum

objective function value of (32). Again, the multipliers λk,

ωk, k ∈ S , and ξn, n ∈ R are determined such that the asso-

ciated inequality constraints in (30) are met with equalities.

V. ILLUSTRATIVE RESULTS

A. Simulation Setup

Consider a narrow-band IoT (NB-IoT) dual-hop network

operating over LTE bandwidth of B = 180 kHz with K = 2
sources S1 and S2, and N = 2 relays R1 and R2. Assume

Rayleigh fading channels with a block-fading duration T = 5
ms. Assume the distances between nodes S1–R1, S2–R2,

R1–D, and R2–D are equal, and are twice farther than

the distances between nodes S1–R2, and S2–R1, which are

assumed to be equal. To model the relative received link signal

strengths, we use a path loss model with a path loss exponent

of 2.5. The average link channel power gains are set as follows:

E[h1,1] = E[h2,2] = E[h1,D] = E[h2,D] = SNR0 = 30 dB,

and hence, E[h1,2] = E[h2,1] = SNR0 − 10 log10(2
2.5) dB.

There are four possible network configurations:

C1: both S1 and S2 are assisted by relay R1;

C2: S1 and S2 are assisted by R1 and R2, respectively;

C3: S1 and S2 are assisted by R2 and R1, respectively;

C4: both S1 and S2 are assisted by R2.

We assume homogeneous sources with similar rate require-

ments and delay constraints. Hence, configuration C3 will

require higher power than configuration C2, and thus, C3 will

not be considered in the following numerical studies since

it is certainly not optimal. We denote PR1,R1
avg , PR1,R2

avg , and

PR2,R2
avg as the average powers for configurations C1, C2, and

C4, respectively.
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Fig. 3. Average powers versus ζR2
for different configurations.

Rate requirement μ
R

2

min
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

A
ve

ra
ge

 p
ow

er
 (

m
W

)

54

56

58

60

62

64

66

68

70

72

PR
1
, R

2
avg

PR
1
, R

1
avg

PR
2
, R

2
avg

Fig. 4. Average powers versus μmin
R2

for different configurations.

For the delay constraints (6), we fix Qmax = 20 kb to

obtain the numerical results. The rate requirement for each

node (sources and relays) varies from 0.1 b/s/Hz (i.e., 18 kbps)

to 0.5 b/s/Hz (i.e., 90 kbps). Hence, in each frame of 5 ms

duration, the average arrival rate to the transmission buffer

varies from 90 to 450 bits. This implies the maximum delay

bound corresponding to Qmax is about 200 ms to 1 s, which

is suitable for IIoT applications such as smart grids, or smart

healthcare. With the fixed power allocation, we assume an

equal power allocation PSk
= PRn

= 100 mW (i.e., 20 dBm).

B. Convergence of the Online Iterative Algorithm

We first demonstrate the convergence of the online iterative

algorithm in Section III. We assume μmin
Sk

= 0.3, and ζSk
=

10−4, k = 1, 2. For the relays, μmin
Rn

= 0.3, n = 1, 2, and

ζR1
= 10−1, and ζR2

= 10−7 corresponding to the loose and

stringent delay constraints, respectively.

Consider configuration C2. The decreasing step-size se-

quence is taken as ε[t] = 1/t0.3. The convergence results

are shown in Fig. 2. We can observe that the time-averaged

effective rates converge after 5× 104 iterations. As expected,

the capacities approach the minimum rate requirements of 0.3
for the sources and relays at convergence, implying no redun-

dant power is used to support unnecessarily larger rates than

the minimum required rates. Although the iterative algorithm

is sub-optimal at the beginning, it quickly converges to the

optimal solution as expected.

C. Fixed Power Allocation

1) Effects of the delay constraints of the relays: We assume

μmin
Sk

= 0.3, and ζSk
= 10−4, k = 1, 2. To study the effects

of the delay constraints of the relays, we assume an equal

value μmin
Rn

= 0.3 but different ζRn , n = 1, 2. Figure 3

shows the average powers of different configurations versus

ζR2
assuming ζR1

= 10−4. It can be observed that any of

the three configurations can be optimal depending on ζR2
.

Particularly, for a very small ζR2
, it is optimal to select R2 to

assist both sources, which can be explained as follows. Given

equal rate requirements of the relays, when R2 has much more

stringent delay constraint than R1, the R2–D link is scheduled

much more frequently than the R1–D link is in order to satisfy

the delay constraint of R2. As a result, both sources should be

assisted by R2 so that their data can be forwarded concurrently

with that of relay R2. Otherwise, the R2–D link capacity

would be under-utilized. For a similar reason, for a large ζR2 ,

it is optimal to select R1 to assist both sources because R1

now has a more stringent delay constraint than R2 does. When

both relays have almost similar delay constraint stringency, it

is optimal that each relay assists the source closer to it. This is

because the R1–D link and the R2–D link will be scheduled

almost as often, and hence, each relay should just assist one

source.

2) Effects of the minimum rate requirements of the relays:
We assume an equal value for ζRn

= 10−3, n = 1, 2 but

different values for μmin
Rn

, n = 1, 2.

Figure 4 displays the average powers of different network

configurations versus μmin
R2

assuming μmin
R1

= 0.3. As in the

previous experiment, it can be seen that any of the three

possible configurations can be optimal depending on μmin
R2

.

More specifically, for a small μmin
R2

, selecting R1 to assist

both sources is optimal. When both relays have similar delay

constraints, since R1 has a much larger rate than R2 does,

the R1–D link is scheduled more often. Consequently, both

sources should be assisted by R1 to utilize the capacity of

the link R1-D. Similarly, for a large μmin
R2

, it is optimal to

select R2 to assist both sources. In other cases when the rate

requirements of both relays are not much different, each relay

should assist the source closer to it.

3) Effects of the delay constraints and rate requirements of
the sources: The relays are assumed to have equal values of

μmin
Rn

= 0.3 and ζRn = 10−4, n = 1, 2.

Figure 5 show the average powers of different network

configurations. In Fig. 5(a), we fix μmin
Sk

= 0.3 and vary ζSk
,

and in Fig. 5(b), we fix ζSk
= 10−4 and vary μmin

Sk
. Note that

for these settings, configuration C1 and C4 have similar power

consumption. Again, depending on the rate requirements and
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Fig. 5. Average powers for different configurations

delay constraints of the sources, either configuration can

be optimal. For large rate requirements, and stringent delay

constraints, it is better to select only one relay to assist both

sources. This is because we can now utilize the capacity of

the link from that relay to the destination to transmit the data

of both sources. We can conclude that the optimal network

configuration depends on the rate requirements and delay

constraints of the sources and relays.

D. Adaptive Power Allocation
We will now demonstrate the benefits of the adaptive

power allocation over the fixed power allocation schemes.

The sources and relays are assumed to have the same rate

requirements, i.e., μmin
Sk

= μmin
Rn

= μmin, and delay constraints,

i.e., ζSk
= ζRn

= ζ, k, n = 1, 2. Moreover, for the fixed power

allocation, we assume PSk
= PRn

= 10 mW. We show the

average powers of both schemes when sources S1 and S2 are

assisted by relays R1 and R2, respectively.
Figure 6 plot the average powers for fixed and adaptive

power allocation schemes. While we fix μmin = 0.3 and vary

ζ in Fig. 6(a), we fix ζ = 10−4 and vary μmin in Fig. 6(b). It

can be seen that the adaptive allocation achieves significant

power gains over the fixed allocation. The gains are more

profound under the looser delay constraints. This is because

data transmissions of the sources and relays can be delayed

for a longer time duration, and adaptive power allocation is

efficient in exploiting the temporal fading diversity. On the

other hand, under more stringent delay constraints, data trans-

missions need to take place more urgently, and the adaptive

power allocation becomes less useful. Also, adaptive power

allocation can achieve the rates beyond 0.35 (see Fig. 6(b)),

which are impossible by the fixed power allocation.
Before concluding, it should be emphasized that the cho-

sen parameters in this section is for illustrative purposes

only to demonstrate the effects of the rate requirements and

delay constraints on the power consumption and optimal

routing configuration. In practice, depending on operating

specifications, much lower power consumption can be used,

which suits real-life IoT applications with low-power sensor

nodes. Example scenarios include environmental monitoring

applications with small data rate requirements, relaxed delay

constraints, good channel conditions, which are typically true

for IoT. Moreover, aspects of NB-IoT technology are not

considered in the simulations. For example, re-transmission

mechanism is not considered as reliable communications

is implicitly assumed, for example, by using strong codes.

Nevertheless, typical parameters in narrowband-IoT (NB-IoT)

technology such as bandwidth of 180 kHz, frame duration of

5 ms etc. have been used, implying that with some suitable

modifications, the simulation setting can be applied for small

NB-IoT systems such as in home healthcare monitoring or

manufacturing process monitoring with a wide range of rate

requirements and delay constraints [25].

VI. CONCLUSIONS

We have studied the optimal resource allocation (i.e., joint

link scheduling, rate, and power allocation) problems in dual-

hop IoT networks. To provide delay QoS guarantees, we

have imposed delay-outage constraints on the end-to-end sum

queuing delays of the data flows of the nodes. The goal

is to minimize the total power under the minimum rate

requirements and delay constraints of the nodes. The proposed

solution employs asymptotic delay analysis to compute the

achieved delay exponents of the queue length tail distributions

so that the delay-outage constraints are satisfied. After deriving

the relation between the delay exponents and resource alloca-

tion variables, the solutions to the resulting constrained opti-

mization problems are obtained using Lagrangian approach

and convex optimization. We have also developed online

algorithms based on stochastic approximation iterations when

the fading statistics are a-priori unknown. Numerical studies

have demonstrated the effects of delay constraints and rate

requirements on the optimal power consumption and network

configuration. Interesting future works include: 1) Extension

of the presented design for general multi-hop networks and;

Page 9 of 22

http://www.ieee-ies.org/

Industrial Electronics Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



10

Outage probability ζ
10-7 10-6 10-5 10-4 10-3 10-2 10-1

A
ve

ra
ge

 p
ow

er
 (

m
W

)

1

2

3

4

5

6

7

8

9

10

11
Fixed power allocation
Adaptive power allocation

(a) versus ζ

Rate requirement μmin
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

A
ve

ra
ge

 p
ow

er
 (

m
W

)

0

10

20

30

40

50

60

70

80

90
Fixed power allocation
Adaptive power allocation

(b) versus μmin

Fig. 6. Average powers for fixed and adaptive power allocation schemes

2) Development of testbeds/prototypes for practical IIoT ap-

plications with experimental results to validate the theoretical

results presented in this work. Also, it would be interesting

to consider the non-cellular based protocols such asZigbee,

802.15.4, WirelessHART in the design and optimization, and

model validation of resource allocation schemes.
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