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Abstract

Existing methods for traffic anomaly detection are modelled on taxi trajectory datasets. The concern is that the data
may contain much inaccuracy about the actual traffic situations, because taxi drivers often choose optimal routes to
evade from the congestions caused by traffic anomalies. We use bus trajectory data in this work. Bus trajectories
can capture real traffic conditions in the road networks without drivers’ preference, which are more objective and
appropriate for accurately detecting city-wide anomalous patterns for a broad range of insight analyses on traffics.
We proposed a deep learning-based feature visualization method to map 3-dimensional features into a red-green-blue
(RGB) color space. A color trajectory (CT) is then derived by encoding a trajectory with the RGB colors. With the
spatial and temporal properties extracted from the CT, spatio-temporal outliers are detected by a novel offline detection
method. We then conduct GIS map fusion to obtain insights for better understanding the traffic anomaly locations,
and more importantly the influences on the road affected by the corresponding anomalies. Extended from the offline
detection, an online detection method is developed for real-time detection of anomalous patterns. Our proposed
methods were tested on 3 real-world bus trajectory datasets to demonstrate the performance of high accuracies, high
detection rates and relatively low false alarm rates.

Keywords: Traffic, detection of anomalous patterns, bus trajectory, deep learning, spatio-temporal outliers.

1. Introduction

Detection of anomalous traffic patterns is to figure out
those traffic patterns which are not expected but which
are very helpful for analysis of traffic accidents, fault de-
tection, flow management, and new infrastructure plan-5

ning [1]. In fact, anomalous patterns in moving trans-
portation carriers’ trajectories can reflect abnormal traf-
fic streams on the transportation networks [2]. These
patterns are emerged due to various factors including
traffic accidents, traffic controls, parades, sports events,10

celebrations, disasters or other events. These abnormal
patterns can also be propagated along the whole road
networks, and they will not disappear automatically
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without proper traffic control strategies. Therefore, it is
significant to develop a method to automatically figure15

out these abnormal patterns by data-driven techniques
[3, 4]. To our knowledge, existing trajectory-based traf-
fic anomalies/outliers detection is mainly based on city-
wide taxi trajectory data [2, 5–15]—many accessible
trajectory data sources of bus have not been explored for20

traffic anomalies probing. Bus service operates along
almost all the main roads in metropolitan cities every-
day, which facilitates commuters substantially. Take the
city of Beijing as example, at the end of 2019, 23,010
buses have been on the roads everyday, serving 3.13425

billion people with 1,162 regular bus routes during the
year1. Moreover, the global positioning system (GPS)
has equipped buses with high-resolution positioning in-
formation, which factually underlines the city-wide traf-
fic situations.30

Comparing with the taxi trajectory data, models

1http://www.bjbus.com/home/fun_static_page.php?

uSec=00000156&uSub=00000157
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based on bus trajectory data can take the following ad-
vantages: (i) as a public transportation carrier, there is
not much risk of privacy leakage regarding bus trajec-
tory data; (ii) easy to get access to the real-time bus data35

for many cities via API; and (iii) each bus service has its
own regular route, and bus trajectory is more indepen-
dent of the drivers’ preference, reflecting more objec-
tively on the real road traffic conditions. This is contrast
to taxi trajectory data which may lose much accuracy40

about traffic congestion situations, since taxi drivers can
choose paths for themselves [3, 16]. Especially when a
taxi driver gets the traffic information ahead, the driver
very likely chooses an optimal route to avoid a foresee-
able traffic congestion.45

The work in this paper utilizes deep learning archi-
tecture for feature extraction from bus trajectory data
sources and develops visualization for both offline and
online discoveries of anomalous traffic patterns. We
also develop methods for detecting the anomaly loca-50

tions to provide insights of the corresponding anomalies
for understanding the influences caused by the anomaly
to the road traffic. Our contributions of this research
include:

1. We present a deep neural network architecture to55

extract deeply hidden features for generating bet-
ter features visualization than typical dimensional-
ity reduction methods, and conduct GIS fusion for
getting insights into the anomalies, for example,
the anomaly locations and their impacts caused to60

the road traffic.

2. We devise a novel method for an offline detection
of anomalous traffic patterns at bus route level.
Particularly, unlike introducing machine learning
models, we design algorithm on imbalanced data65

by addressing the discrepancy between different
classes of anomaly.

3. Extended from the feature extraction architecture
and the offline detection method, we propose an
online method for real-time detection of anoma-70

lous traffic patterns.

4. We perform comprehensive experiments on 3 real-
world datasets to confirm the effectiveness and
superiority of the deep feature extraction archi-
tecture, the offline and online anomaly detection75

methods and insight analysis of the anomalous pat-
terns.

The rest of this paper is organized as follows. Section
2 reviews the related work on the studies of anomalous
patterns detection. In Section 3, we elaborate on the80

methods of feature extraction and visualization, offline
and online algorithms for anomalous patterns detection
and insight analysis on anomalies. Section 4 presents
experimental results and analyses. Section 5 concludes
this paper and presents future work.85

2. Related work

Anomalous pattern detection aims to detect unex-
pected patterns, which has been intensively studied in
the domain of data mining and knowledge discovery
[2]. To our best knowledge, at least four categories90

of methods were proposed, including dimensionality
reduction-based methods [17–21], unsupervised meth-
ods [22–28], supervised classification-based methods
[14, 29–32] and statistical methods [33–35].

Dimensionality reduction method like principal com-95

ponent analysis (PCA) has been validated effective in
anomaly detection [17, 18]. In [19], an improved PCA
by introducing Kullback-Leibler divergence was pro-
posed for network anomaly detection. Random projec-
tion (RP) was used for dimensionality reduction and de-100

tect internet traffic anomaly [20, 21]. Apart from linear
methods, a nonlinear dimensionality reduction method
(autoencoders) has been presented in [36].

Unsupervised clustering algorithms including k-
means [22], density-based and grid-based clustering105

[23] and one pass clustering [24] were proposed to iden-
tify anomalous network patterns. Besides clustering al-
gorithms, one-class support vector machine (OneSVM)
with novel kernels was introduced to detect malicious
intrusion to computer systems [25, 26]. Recently, un-110

supervised deep learning-based methods have also been
presented for modelling large scale data, and to detect
anomalies [27, 28].

Literature [29] sorted the average k-nearest neigh-
bour (kNN) distances in ascending orders, and then115

outliers were defined when the difference between two
nearby distances is greater than a preset threshold [29].
Besides the lazy learning approach, recently, supervised
deep leaning-based anomaly detection methods have
also contributed to solve this problem, including the120

recurrent neural network (RNN)-based model [14] and
long short-term memory (LSTM)-based model [30–32].

There are also some studies introducing statistical
methods for outlier detection. Barbará et al. [33] pro-
posed to use transductive confidence machines and hy-125

pothesis testing to uncover outliers. Fan et al. [34] pre-
sented a continual aggregate statistics method. In [35],
a multi-modal distance measure was defined to evalu-
ate the strangeness. Furthermore, statistical testing was
applied to estimate the probability of anomaly.130
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Fig. 1. The workflow of offline and online detection of anomalous traffic patterns and anomaly insight analysis.

Since the anomalous patterns in road traffic possess
their own characteristics, some particular methods were
presented on the top of aforementioned general anomaly
detection methods. Based on the data source utilized,
they could be dichotomized into two families: by using135

trajectory data sources or by using other data sources.
Apart from trajectory data sources, other data sources

used for road traffic anomaly detection are mainly
non-structured, including social media data [37], video
surveillance data [1, 38–40] or heterogeneous traffic140

data [41]. Literature [37] used text data from Twitter
for real-time traffic incident detection. Video data col-
lected from traffic surveillance cameras is employed by
[1, 38–40] to detect or classify traffic anomalies. In ad-
dition to using single data source, study [41] explored145

the heterogeneous data sources collected from various
vehicle sensors for traffic anomaly detection.

Trajectory-based road traffic anomaly detection has
been intensively investigated by many studies, while
most of which are based on city-wide taxi trajectories.150

Studies by [5, 12] used PCA or wavelet transform tech-
nique to identify traffic anomalies from taxi trajectory
data. In [6] and [8], likelihood ratio test was introduced
to represent traffic patterns for fast detection of anoma-
lous patterns. Liu et al. [2] constructed an anomaly de-155

tection model by building a region graph, where a node
represented a region and the link between every two
nodes denoted the traffic flow, and then the extreme out-
liers could be detected from the graph links. In [9], ten-
sor decomposition technique was employed for learning160

dynamic context features from taxi traces data, and then
anomalous degrees for road segments were calculated.
Authors in [13] proposed neighbor-based trajectory out-
lier definitions, and designed an optimized strategy to
detect new outlier classes from massive-scale trajectory165

streams. In [10], a feature grouping-based anomaly

detection framework was proposed to identify outliers
from taxi trajectories. Study work by Wang et al. [7] de-
tected traffic jam events by estimating traffic flow speed
on the road. Research [11] demonstrated a method to170

group taxi trajectories crossing the same source destina-
tion cell-pair, then isolation mechanism was employed
to detect abnormal trajectory. Wu et al. [15] developed a
novel trajectory outlier detection approach by modeling
the driving behavior from historical taxi trajectories.175

3. Methodology

This section introduces the preliminary definitions,
and presents our method for feature extraction and tra-
jectory visualization through deep learning. Then, de-
tails of our proposed offline and online methods are de-180

scribed to detect anomalous trajectory and to obtain in-
sights into the anomaly based on the visualized trajec-
tories. A basic workflow is illustrated in Fig. 1. An
important step of the method is to feed the bus trajec-
tory data and meteorological data into a well trained185

deep sparse autoencoder (DSAE) to generate the color
trajectory (CT), which provides the basis for trajectory
visualization, offline and online detection of anomalies.
Another key sector is to produce a color trajectory map
(CTM) by GIS fusion for anomaly insight analysis.190

3.1. Preliminaries

Definition 1. Trajectory: A trajectory T of a mov-
ing objective is a set of time-ordered data points, T =

(t1, t2, · · ·, tN−1, tN) ∈ RD×N , ti = (ϕi, λi, vi)T ∈ R3,
where each data point consists of latitude ϕi, longitude195

λi and velocity vi at the ith timestamp.
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Definition 2. Class A Anomaly: An anomalous trajec-
tory whose associated spatial and temporal feature val-
ues are both very different from the spatial and temporal
feature values of its spatio-temporal neighbors.200

Definition 3. Class B Anomaly: An anomalous trajec-
tory whose associated spatial feature value is very dif-
ferent from the spatial feature values of its temporal
neighbors.

3.2. Feature extraction and trajectory visualization us-205

ing deep learning

The method employs a nonlinear dimensionality re-
duction method (DSAE) to extract hidden features from
bus trajectory data to characterize the trajectories for
trajectory visualization.210

As mentioned in Definition 1, a trajectory is a time se-
ries of data points with the same time interval, each data
point is typically consisted of latitude ϕ, longitude λ and
velocity v (unit: km/h). The speed information is popu-
larly available in many existing GPS devices. However,215

it can also be approximated by algorithm in literature
[42] in some cases of speed data lack.

Rainfalls, especially heavy rains, can significantly af-
fect traffic flow characteristics and may lead to traffic
congestions or even accidents [43]. We integrate the
bus trajectory data with local precipitation data r (unit:
mm/h). Thus, ti is updated as zi denoted by

zi = (ϕi, λi, vi, ri)T ∈ R4 (1)

and T is updated as Z denoted by

Z = (z1, z2, · · ·, zN−1, zN) ∈ R(D+1)×N (2)

Data normalization is conducted to normalize the
data in each dimension into range [−1, 1]. For exam-
ple, the dimension of longitude λ is normalized by Eq.
(3).

λi
′ = 2(

λi − λmin

λmax − λmin
) − 1 (3)

where λmax and λmin are the maximum and minimum
values of the longitudinal feature in training set.

Windowing operations is performed as it has been220

validated that windowing processing could smooth the
noise in a relevant study [44]. Suppose a time window
size ω is set to move zi along the time axis. The win-
dowed data point xi and time series X are denoted by

xi = (ϕi
′, λi

′, vi
′, ri
′, · · ·, ϕi+ω−1

′, λi+ω−1
′, vi+ω−1

′, ri+ω−1
′)T ∈ R4∗ω

(4)

and

X =
(
x1, x2, · · ·, xNX−1, xNX

)
∈ R(4∗ω)×NX (5)

where NX = N − ω + 1, ω is an integer and 0 < ω < N.225

X is then fed into DSAE, which is a deep neural
network stacked by many single sparse autoencoders
(SAE). Each single SAE is layer-wise pre-trained be-
fore fine-tuning of the whole network. Suppose the vis-
ible layer’s vector in the lth SAE is denoted by v(l) ∈

RDV×NX , then the hidden layer’s vector h(l) and the re-
construction vector r(l) are defined as

h(l) = tanh(W(l)
en · v

(l) + b(l)
en) ∈ RD(l)

H ×NX (6)

and

r(l) = tanh(W(l)
de · h

(l) + b(l)
de) ∈ RD(l)

R ×NX (7)

where W(l)
en and W(l)

de are the weights of the lth layer of
the encoder and decoder, respectively. b(l)

en and b(l)
de are

the biases of the lth layer of the encoder and decoder,
respectively.

Then, the reconstruction error is calculated by

min L(l) = 1
2

∥∥∥h(l) − r(l)
∥∥∥2

2 + α
(∥∥∥W(l)

en

∥∥∥2

2 +
∥∥∥W(l)

de

∥∥∥2

2

)
+ β

∑D(l)
H

j=1 KL
(
ρ||ρ̂(l)

j

)
(8)

and

KL
(
ρ||ρ̂ j

(l)
)

= ρ log
ρ

ρ̂(l)
j

+ (1 − ρ) log
1 − ρ

1 − ρ̂(l)
j

(9)

where the L2-norm penalty item is used to prevent over-230

fitting, and the Kullback-Leibler (KL) divergence is
mainly for obtaining a sparse hidden layer to generate
more outstanding features. α, β and ρ are the preset
hyperparameters to control the corresponding penalty
items, and ρ̂(l)

j is the average activation of the units in235

the lth hidden layer.
A 3-neuron layer is embedded as the output of DSAE

to get 3-dimensional hidden features for better visual-
ization, representing the red, green and blue channel in
the RGB color space, which is denoted by

Y = (or, og, ob)T ∈ R3×NY (10)

where NY = N − ω + 1.
The red channel or is normalized into range [0, 255]

using Eq. (11).

R = Round
(

or −min(or)
max(or) −min(or)

× 255
)

(11)

and similarly for the green channel (G) and blue channel
(B).

4



Then the color trajectory (CT) of the trip T is denoted
by

CT = (R,G,B)T ∈ R3×NCT (12)

where NCT = N − ω + 1.240

3.3. Offline anomalous traffic patterns detection (OFF-
ATPD)

For the ith complete trajectory, we define τi as

τi =
(
NCTi ,CTi

)
=

(
NCTi , (Ri,Gi,Bi)T

)
(13)

where NCTi = Ni − ω + 1 is a temporal feature that
highly depends on the trajectory duration Ni. A larger
NCT indicates that traffic anomaly might have occurred245

with higher confidence. However, a trip with a normally
ranged NCTi might also be affected by traffic anomalies.
Here, τi is referred to as a trajectory representation.

We choose a trajectory representation τk as exem-
plar. We recommend to choose one with a relatively
small NCT , as it is more unlikely to be anomaly. We
denote s (τi, τk) to represent the similarity between CTi

and CTk (i.e., the color trajectory of the exemplar). If
s (τi, τk) is lower, then it is more similar between CTi

and CTk. To compute the similarity, there is a pre-
condition that NCTi = NCTk . If NCTk < NCTi , we append
NCTi − NCTk number of points of white color (rgb(255,
255, 255)) to CTk to construct a new trajectory repre-
sentation τ j to make NCTi = NCT j , while the temporal
feature NCTk stays the same.

τ j =
(
NCTk ,CT j

)
=

(
NCTk ,

(
R j,G j,B j

)T
)

(14)

Similarly, if NCTk > NCTi , we do the same processing
on CTi, and then get τm.

τm =
(
NCTi ,CTm

)
=

(
NCTi , (Rm,Gm,Bm)T

)
(15)

Then, the similarity between CTi and CTk can be de-
rived by Eq. (16), when NCTi = NCTk or Eq. (17), when250

NCTi , NCTk .

s (τi, τk) =
∑NCTi

n=1

(
(Rn

i −Rn
k)

2
+(Gn

i −Gn
k)

2
+(Bn

i −Bn
k)

2

2552+2552+2552

)
(16)

s (τi, τk) =

s
(
τi, τ j

)
ifNCTi > NCTk

s (τk, τm) ifNCTi < NCTk

(17)

Let dn
ab =

(Rn
a−Rn

b)
2
+(Gn

a−Gn
b)

2
+(Bn

a−Bn
b)

2

2552+2552+2552 . Given a small
positive threshold ε, if the similarity between two color

points is smaller than ε, we ignore the nuance and rede-
fine the similarity as 0. Therefore, we have Eq. (18) in
Eq. (17).

dn
ab =

dn
ab if dn

ab ≥ ε

0 if dn
ab < ε

(18)

For the ith complete trajectory, we have

εi =
(
NCTi , s (τi, τk)

)
(19)

where s (τi, τk) is a spatial feature since it is mainly ex-
tracted from buses’ GPS spatial positional information,
and it can capture the spatial distribution of the moving
object.255

By mapping all ε to a two-dimensional space which is
referred to as a spatio-temporal plane here, we are able
to detect those two classes of traffic anomalies defined
in Section 3.1: class A anomaly and class B anomaly.

The major differences between class A anomaly and260

class B anomaly lies in their neighbors definition and
the measurement of similarities between their neigh-
bors. Class A anomaly considers both spatial and tem-
poral features to define its neighbors and to measure
their similarities. However, if the temporal difference265

between its neighbors is not significant, there might also
be abnormal patterns among them. Therefore, class
B anomaly reveals this abnormal patterns by address-
ing the spatial differences from its temporal neighbors.
Specifically, if there are several bus trajectories pos-270

sessed the same or similar temporal features (same or
similar trajectory durations), we take them as mutual
temporal neighbors. However, if the spatial distribution
of one of them is significantly different from the rest, it
is understandable that there might be some anomalous275

events that changed the spatial distribution of this tra-
jectory. Such spatial distribution could be reflected by
the spatial feature s(τi, τk) aforementioned.

Spatio-temporal outliers’ co-ordinate points can be
detected using our proposed offline anomalous traffic280

patterns detection (OFF-ATPD) algorithm (Algorithm
1), where steps 1 to 11 divide the whole training set into
different subsets for class A anomaly detection (εtrain C1)
and class B anomaly detection (εtrain C2) by adopting
a threshold NC . For class B anomaly detection (i.e,285

εi < NC), we employ the Boxplot rule with a parame-
ter δ to identify anomalous observations by aggregating
all the spatial features of εi as well as its forward and
backward temporal neighbors within η steps (i.e., tem-
poral feature located in NCTi ± η) to form S (steps 12 to290

25). On the other hand, class A anomaly can be detected
by computing the Euclidean distance from the nearest
spatio-temporal neighbor under a threshold r (steps 26
to 31).
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Algorithm 1 OFF-ATPD algorithm295

Parameters: NC , δ, r, η.
Input: εtrain, εi. // εi is for test
Output: Ci. // True denotes anomaly

1: m← 0, n← 0;
2: for ε j ∈ εtrain do300

3: NCT j ← Get the temporal feature of ε j;
4: if NCT j ≥ NC then
5: m← m + 1;
6: εtrain C1(m)← ε j;
7: else305

8: n← n + 1;
9: εtrain C2(n)← ε j;

10: end if
11: end for
12: if εi < NC then310

13: T N ← Search the forward and backward tem-
poral neighbors of εi from εtrain C2 within steps of
η;

14: S ← Aggregate all the similarities of εi and
members in T N;315

15: Q1 ← Compute the first quartile of S ;
16: Q3 ← Compute the third quartile of S ;
17: IQR← Q3 − Q1;
18: U ← Q3 + δ ∗ IQR;
19: L← Q1 − δ ∗ IQR;320

20: if S (εi) > U or S (εi) < L then
21: Ci ← True;
22: else
23: Ci ← False;
24: end if325

25: else
26: D ← Compute the distance between εi and its

nearest spatio-temporal neighbor in εtrain C1;
27: if D > r then
28: Ci ← True;330

29: else
30: Ci ← False;
31: end if
32: end if

3.4. Insight analysis using anomalous patterns335

We combine the trajectory T and the color trajectory
(CT) in Eq. (12) to construct a color trajectory map
(CTM) through conducting GIS fusion with CT. Note
that we have NCT < N after a window size ω was intro-
duced in the windowing process. Then we construct a
location vector li and a location matrix L:

li = (ϕi, λi)T ∈ R2 (20)

and

L =
(
l| w−1

2 |+1, l| w−1
2 |+2, · · ·, l| w−1

2 |+N−w, l| w−1
2 |+N−w+1

)
∈ R2×NL (21)

where NL = NCT = N − ω + 1.
We also combine the location matrix L with CT to

generate L′:
L′ = (L,CT) (22)

For each L′i , map the color with the value of
(Ri,Gi,Bi)T to coordinate (ϕi, λi)T on the GIS map, so
as to generate the CTM of a whole trajectory.

L′i =
(
(ϕi, λi)T , (Ri,Gi,Bi)T

)
(23)

The color trajectory (i.e., CT in Eq. (12)) and CTM
are linked via the conjunct RGB values. By compar-
ing the CT of an anomalous trajectory with those non-
anomalous trajectories, the most significant difference340

between them can be found, and the corresponding sec-
tor of these colors can be regarded as anomalous. Then,
the anomaly occurring location as well as the road in-
fluence sector are estimated, by locating the coordi-
nate (ϕi, λi)T on the CTM via the anomalous colors345

(Ri,Gi,Bi)T obtained from last step.

3.5. Online detection of anomalous traffic patterns
(ON-ATPD)

The proposed OFF-ATPD method in Section 3.3
takes the complete bus trajectories as input. It is an350

offline detection mechanism because the data is ready
only after the bus completes the whole trip from the
origin place to the terminal stop. In this section, we
propose an online anomalous traffic patterns detection
(ON-ATPD) algorithm (Algorithm 2), which is a sub-355

stantial extension to the OFF-ATPD algorithm.
By Algorithm 2, Xt is the real-time input at times-

tamp t, derived from Eq. (5). Step 1 computes the color
trajectory of input Xt with DSAE (see details in Sec-
tion 3.2). Step 2 tests whether the bus has arrived at360

the terminal of the trip or not. Steps 3 and 4 go to the
OFF-ATPD algorithm when the bus reaches the termi-
nal stop. While the bus is still on the way to the terminal
stop, steps 6 to 13 append or remove segments from the
current color trajectory CTt by comparing with the most365

similar color trajectory from the training set εtrain. Steps
14 and 15 calculate εt′′ with the newly constructed color
trajectory CTt′′ and apply the OFF-ATPD algorithm for
anomaly detection. Since we have defined the nearest
neighbor (the most similar) color trajectory of the real-370

time CTt (by step 6), there might be a situation that pat-
terns of the nearest neighbor are quite different from the
original complete color trajectory. In order to improve
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the reliability of online anomaly detection, we introduce
an integer parameter n to decide whether all abnormal375

patterns adjudged from the the previous n−1 detections
and the current detection can yield an anomaly report
(steps 16 to 20).

Algorithm 2 ON-ATPD algorithm

Parameters: NC , δ, r, η, n.380

Input: εtrain, Xt, t > n.
Output: Ct, t > n. // True denotes anomaly

1: CTt ←Get the color trajectory of Xt with DSAE;
2: if t is the end timestamp of the trip then
3: εt ← Compute the temporal and spatial features385

of CTt by Eq. (19) and go to OFF-ATPD algorithm;
4: Ct ← OFF-ATPD(NC , δ, r, η, εtrain, εt);
5: else
6: CTt′ ← Get the most similar color trajectory of

CTt from εtrain;390

7: NCTt ← Get the temporal feature of CTt;
8: NCTt′ ← Get the temporal feature of CTt′ ;
9: if NCTt < NCTt′ then

10: CTt′′ ← Append CTt with the last NCTt′ −

NCTt color points of CTt′ ;395

11: else
12: CTt′′ ← Remove the last NCTt − NCTt′ color

points of CTt;
13: end if
14: εt′′ ← Compute the temporal and spatial fea-400

tures of CTt′′ and go to OFF-ATPD algorithm;
15: Ct ← OFF-ATPD(NC , δ, r, η, εtrain, εt′′ );
16: if Ct−n+1, ...,Ct−1,Ct are all True then
17: Ct ← True;
18: else405

19: Ct ← False;
20: end if
21: end if

4. Experiments and analyses

We have performed comprehensive experiments to410

answer the following research questions:
RQ1: Is OFF-ATPD effective and sensitive to detect

all anomalies (i.e., with a high detection rate)?
RQ2: Is our developed feature visualization method

useful for capturing anomaly locations and traffic im-415

pacts with the detected anomalies?
RQ3: How does our proposed ON-ATPD perform in

real-time traffic anomaly detection?
RQ4: How well do our proposed feature extraction

deep architecture and anomaly detection methods per-420

form in comparison with the state-of-the-art methods?

4.1. Experimental settings
4.1.1. Datasets

We use trajectory datasets from 3 bus routes in
Guiyang (China) with a duration of 4 months in the year425

of 2016. All the data (including the local hourly precip-
itation data) is officially provided by the Guiyang Open
Government Data Platform 2. The first two datasets are
collected on weekends, while the last one is form the
off-peak hours (except the morning peak from 06:00430

to 09:00 and afternoon peak from 17:00 to 19:30) on
weekdays. Each dataset is divided into a training set (the
first 3 months) and a test set (the following month). All
datasets are naturally unbalanced, since traffic anoma-
lous event rarely occurs along the same bus route. The435

imbalanced ratios (minority/majority) are 0.025, 0.014
and 0.007 for the test sets of Route 66, Route 50 and
Route 18, respectively. Table 1 provides a detailed de-
scription about these datasets.

4.1.2. Parameters440

The parameters are set as: (ω, α, β, ρ, ε) = (10, 10−5,
10−4, 0.05, 0.01) for all the bus routes. The window
size ω cannot be set with either too big or too small
value, we choose 10 as suggested by the literature work
[44]. We set ρ with a value near 0 because the centre445

of each RGB space axis is 0. In addition, the values
of α, β and ε are set empirically, but without using a
specific parameters tuning method. Parameter δ is a key
parameter for detection performance, since too high or
too low δ will result in a low detection rate or a high450

false alarm rate (as illustrated by Fig. 4). The default
value range to determine the upper and lower fences is
1.5 in Boxplot rule. We fine tune the value of δ around
1.5. The parameters in both algorithms OFF-ATPD and
ON-ATPD are set as the same: (NC , δ, r, η) = (450,455

2.0, 50, 2) for Bus Route 66, (NC , δ, r, η) = (500, 1.7,
50, 2) for Route 50 and (NC , δ, r, η) = (350, 0.9, 40,
2) for Route 18, with the understandings and trials from
the training set. The Bus Route 18 utilizes a smaller
value of NC as its route is shorter. The setting of the460

other parameters in algorithm ON-ATPD is discussed
in Section 4.4. Moreover, we employ a DSAE of four
encoding layers with dimensions 40→ 20→ 10→ 3 to
identify the 3-dimensional hidden features3.

4.1.3. Evaluation metrics465

In the performance evaluation, we use measurements
accuracy (Acc), detection rate (DR), false alarm rate

2http://www.gyopendata.gov.cn/city/index.htm
3The layer number and neuron number can be changed. However,

the network should be a deep learning architecture.
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Table 1. Datasets description

Route Day Type Whole Sample Training Sample Test Sample Training Set Period Test Set Period Input Size
66 Weekend 486 324 162 1 Aug.∼ 31 Oct. 1 Nov.∼ 30 Nov. 118041×40
50 Weekend 1304 950 354 1 Aug.∼ 31 Oct. 1 Nov.∼ 30 Nov. 406030×40
18 Weekday Off-peak 1117 824 293 1 Sept.∼ 30 Nov. 1 Dec.∼ 31 Dec. 238555×40
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Fig. 2. Spatio-temporal planes of Bus Routes 66, 50 and 18. The Y-axis s stands for the spatial feature which is computed by Eq. (16) or (17), NCT
is the temporal feature obtained by N −ω+ 1. The objects inside � were not detected as anomalies, because their spatial and temporal features are
not far away from their spatio-temporal neighbors.

(FAR) [45] and area under the ROC curve (AUC). Cri-
teria of Acc, DR and FAR are calculated as follows:

Acc =
T P + T N

T P + T N + FP + FN
(24)

DR =
T P

T P + FN
(25)

FAR =
FP

FP + T N
(26)

• True Positive (TP): the number of anomalous tra-
jectory correctly detected as anomaly;

• True Negative (TN): the number of non-anomalous
trajectory correctly identified as non-anomaly;

• False Positive (FP): the number of non-anomalous470

trajectory incorrectly identified as anomaly;
• False Negative (FN): the number of anomalous tra-

jectory falsely identified as non-anomaly.

We also define an index named averaged moving
standard deviation (AMSD) to evaluate the concentra-
tion of the majority samples (negative samples), which
is also a criterion for evaluating the hidden feature ex-
traction architecture. A lower AMSD indicates that
those non-anomalies are closer to their neighbors. How-
ever, from an overall perspective, a higher AMSD value

shows that those non-anomalies are more dissimilar to
each other. Method with a higher AMSD might make
more false detections, which we should try to avoid in
this study. The definition of AMSD can be referred to
Eq. (27). Firstly, a window size κ for the windowing op-
eration along the horizontal axis NCT is employed here.
Then we compute the sample standard deviation of all
the normalized s

(
τi j, τk

)
(denoted as ŝ

(
τi j, τk

)
) within

each κ-sized NCT . Following this, we get the mean stan-
dard deviation of all κ-sized NCT for AMSD.

AMS D =
1
m

m∑
i=1

√√√
1

ni − 1

ni∑
j=1

(
ŝ
(
τi j, τk

)
− s̄i

)
(27)

4.2. Offline detection results about anomalous patterns
(answering RQ1)475

The performance comparisons between our proposed
OFF-ATPD versus the state-of-the-art baselines are
listed in Table 4 (note that we have transferred the
anomalous observations from the training set to the
test set to enlarge the positive sample size for perfor-480

mance evaluation). The proposed OFF-ATPD detects
all known anomalies with a high accuracy and a low
false alarm rate. The spatio-temporal planes for Bus
Routes 66, 50 and 18 are shown in Fig. 2, where those
points distributed along the tick (X) sign exhibit a trend485
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Fig. 3. Illustration of the process of class B anomalies detection (steps 12 to 25 in Algorithm 1). The isolated points that are smaller than the lower
fence or larger than the upper fence are identified as anomalies.

(a) Bus Route 66 (b) Bus Route 50 (c) Bus Route 18

Fig. 4. Performance comparisons under different settings of parameter δ.

Table 2. Detected anomalies for each bus route

Bus Route Anomaly Service Date Running Time Event Anomaly Category

66

#1 18 Sept. 2016 07:30 AM-09:01 AM Event 2 Class A anomaly
#2 18 Sept. 2016 07:00 AM-08:23 AM Event 2 Class A anomaly
#3 26 Nov. 2016 12:43 PM-01:55 PM Event 3 Class B anomaly
#4 26 Nov. 2016 12:07 PM-01:09 PM Event 3 Class B anomaly

50

#1 18 Sept. 2016 06:58 AM-09:25 AM Event 2 Class A anomaly
#2 18 Sept. 2016 07:22 AM-09:40 AM Event 2 Class A anomaly
#3 18 Sept. 2016 07:34 AM-09:48 AM Event 2 Class A anomaly
#4 14 Aug. 2016 07:41 PM-09:01 PM Event 1 Class B anomaly
#5 14 Aug. 2016 05:32 PM-06:51 PM Event 1 Class B anomaly

18 #1 14 Dec. 2016 09:31 AM-10:28 AM Event 4 Class B anomaly
#2 14 Dec. 2016 09:50 AM-10:48 AM Event 4 Class B anomaly
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that the s similarity increases with NCT when NCT >
NCTk , while it decreases with NCT when NCT < NCTk .
Also in Fig. 2 (a), anomalies #1 and #2 are categorized
as class A anomalies as their spatial and temporal fea-
tures are both var far away from their spatio-temporal490

neighbors, and similarly for anomalies #1, #2, and #3 in
Fig. 2 (b).

However, anomalies #3, #4 in Fig. 2 (a), #4, #5 in
Fig. 2 (b) and #1, #2 in Fig. 2 (c) were detected as class
B anomalies, because only their spatial features are far495

away from their temporal neighbors. In general, class A
anomaly has more serious impact on traffics than class
B anomaly does, while class B anomaly is more difficult
to identify. Fig. 3 illustrates the processes of detecting
class B anomalies, with steps 12 to 25 in Algorithm 1.500

Fig. 4 presents the performance on all the datasets under
different settings of parameter δ. With the increase of
δ, a higher accuracy and lower false alarm rates were
achieved for all datasets. However, when δ rises above a
threshold (e.g., δ > 2.8 for Bus Route 66), the detection505

rate decreases, while it remains high when δ is below
the threshold.

The detected anomalies shown in Table 2 are all co-
incided with the known traffic anomalous events, which
are elaborated as follows:510

Known event 1: A sedan bumped a car at Shachong
East Road in the late afternoon of 14 August 2016, the
driver of the sedan escaped after the accident resulting
in serious traffic congestion4. It was raining at that time
and this event only affected services for Bus Route 50.515

Known event 2: A severe car crash (an SUV and
a truck) occurred on the West No.2 Ring Road in the
morning of 18 September 2016. Two men died on site
and one got injured5. This event imposed impacts on
Bus Route 66 and Route 50 bus services.520

Known event 3: Two cars crashed at a bus station
near the Guizhou Cancer Hospital (West Beijing Road)
around the noon on 26 November 2016. A pedestrian
died6. This event affected Bus Route 66 service.

Known event 4: An SUV crashed an electric motor-525

cycle on the North Wenchang Avenue in the morning of
14 December 2016. Two riders on the electric motorcy-
cle got injured while trapping under the vehicle7. Only
Bus Route 18 service was influenced by this crash.

4http://www.gywb.cn/content/2016-08/16/content_

5188212.htm
5http://www.sohu.com/a/114567218_398062
6https://m.sohu.com/n/474230721/?wscrid=53843_3&

_smuid=BnKG38irJV6gorGDwjyzS0&mv=2
7http://gz.sina.com.cn/news/sh/2016-12-15/

detail-ifxytqav9265554.shtml

4.3. Results about feature visualization and anomaly530

insight analysis (answering RQ2)

Fig. 5 (a), (e) or (i) depicts the CT of a real-world
trajectory in Bus Route 66, 50 or 18, respectively. It
is evident from Fig. 5 (a) that the bus trajectory starts
at the color of yellow �; the color changes gradually535

and finally gets to blue � when the bus is approaching
to the terminal stop. The horizontal axis indicates the
temporal feature (NCT , 1 unit equals 10 seconds, each
row contains 100 units).

The CTM of anomalous trajectory is obtained by fu-540

sion of the color trajectory (CT) with the GIS map (via
Eq. (22) and Eq. (23)). Here we illustrate an anoma-
lous trajectory by taking the anomaly #1 in Bus Route
66 as example. As shown in Fig. 6 (a), subfigure (i) is
the CTM of #1, and © denotes the actual event site.545

By contrasting the CT of anomaly #1 (i.e., subfigure
(ii)) and non-anomalies (i.e., subfigure (iii) and (iv)),
we can have an intuitive perspective that the anomaly
might have occurred around light yellow�, because the
part with such color is very different from those of the550

non-anomalies. However, when it proceeds to the color
of grey�, the rest part of CT turns to be similar to those
of non-anomalies. It means that the anomaly happened
at the locations highlighted between locations � and �
in Fig. 6 (a), which is in line with the real location (©)555

of event 2.
Apart from location detection, our method also pro-

vided insights to understand implications of the car
crash on the road by highlighting the road section be-
tween � and � (at the left bottom of Fig. 6 (a)). Sim-560

ilarly, Fig. 6 (b) visually illustrates another example of
anomaly #4 in Bus Route 50 that happened between the
color of bright red � and dark red �, which also coin-
cides with the real site (©) of event 1.

4.4. Online detection results about anomalous patterns565

(answering RQ3)

We conducted online detection simulation experi-
ments for all trajectories in test sets. The online
anomaly report is carried out every 3 minutes. The pa-
rameters NC , δ, r and η set for ON-ATPD are the same570

as those used by OFF-ATPD. Parameter n is tested with
different values from 1 to 3. Table 3 shows the per-
formance of our proposed online detection algorithm.
All of the known anomalies are detected correctly. In
particular with the increase of parameter n, higher ac-575

curacies and lower false alarm rates can be achieved on
all datasets. On average for each detection, the method
needs about 3 seconds of computational time for each
detection in Bus Route 66, while needs about 7 seconds
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(a) DSAE (Bus Route 66) (b) PCA (Bus Route 66) (c) RP (Bus Route 66) (d) SAE (Bus Route 66)

(e) DSAE (Bus Route 50) (f) PCA (Bus Route 50) (g) RP (Bus Route 50) (h) SAE (Bus Route 50)

(i) DSAE (Bus Route 18) (j) PCA (Bus Route 18) (k) RP (Bus Route 18) (l) SAE (Bus Route 18)

Fig. 5. Examples of color trajectories generated by DSAE, PCA, RP or SAE. Each method generates similar visualization patterns on all of these
datasets. The CT visualizations generated by our proposed DSAE model are the smoothest.

(a) Anomaly #1 in Bus Route 66 (b) Anomaly #4 in Bus Route 50

Fig. 6. Insight analyses for anomaly #1 in Bus Route 66 and anomaly #4 in Bus Route 50. (i) CTM of the anomalous trajectory. (ii) CT of the
anomalous trajectory. (iii) CT of a non-anomalous trajectory. (iv) CT of another non-anomalous trajectory.
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(a) No anomaly (07:43 AM) (b) No anomaly (07:46 AM) (c) No anomaly (07:49 AM) (d) No anomaly (07:52 AM)

(e) No anomaly (07:55 AM) (f) No anomaly (07:58 AM) (g) No anomaly (08:01 AM) (h) No anomaly (08:04 AM)

(i) Anomaly (08:07 AM) (j) Anomaly (08:10 AM) (k) Anomaly (08:13 AM) (l) Anomaly (08:16 AM)

(m) Anomaly (08:19 AM) (n) Anomaly (08:22 AM) (o) Anomaly (08:25 AM) (p) Anomaly (08:28 AM)

Fig. 7. An illustrative example of online traffic anomaly detection process in Bus Route 66.

and 12 seconds in Bus Route 18 and Route 50 detection,580

respectively.

Table 3. Performance of the proposed online anomaly detection
method (ON-ATPD)

Route Parameter Acc (%) DR (%) FAR (%) Time

66
n=1 94.51 100 5.63 3.2s
n=2 95.12 100 5.00 3.2s
n=3 97.56 100 2.50 3.2s

50
n=1 91.92 100 8.19 12.1s
n=2 92.76 100 7.34 12.0s
n=3 95.26 100 4.80 12.3s

18
n=1 74.40 100 25.77 6.5s
n=2 76.45 100 23.71 6.5s
n=3 87.71 100 12.37 6.6s

Notes: Time is the mean computational time for one detection.
Our experiments were conducted on the server with Intel Xeon
Gold 6150 of 2.7GHz.

Fig. 7 illustrates some sequential steps of the online
detection of anomaly #1 in the Route 66 dataset, where
the real-time color trajectories with an interval of 3 min-
utes are displayed at corresponding timestamp. A de-585

tection result of ‘Anomaly’ or ‘No anomaly’ indicates
whether there exists any anomaly for the current trajec-
tory. For anomaly #1, the detection system is alarmed
around 08:07 AM with an anomaly reporting, when the
bus is located at the color �. Comparing with the real590

anomaly location shown in Fig. 6 (a), the detected site
at color � is quite close to the real anomaly location �.

4.5. Comparisons with baseline methods (answering
RQ4)

4.5.1. Feature extraction and visualization595

Our deep learning-based feature extraction method
DSAE is compared with other popular baseline methods
including PCA, random projection (RP) and sparse au-
toencoder (SAE) to understand the quality of our color
trajectories (CT). From Fig. 5, it is apparent that our600

DSAE-based model can generate the smoothest color
distributed trajectories. In Fig. 5 (a)(e) and (i), with
the trajectory moves on, it gradually changes from one
color to another distinct color. While the trajectories by
the rest baselines sometimes switch back to the previ-605

ous color at certain parts of the CT. This conflict will
make it difficult for anomaly insight analyses when they
are overlapped on the GIS map. Furthermore, on the
spatio-temporal planes derived by the above baseline
methods, none of them can get better detection perfor-610

mance than the DSAE-based method for all the datasets
(Fig. 8). The distribution of some known anomalies (es-
pecially the class B anomalies) yields a similar pattern
with that of non-anomalies (#3, #4 in Bus Route 66 by
PCA and SAE, #4, #5 in Bus Route 50 by RP and SAE,615

#1, #2 in Bus Route 18 by PCA, RP and SAE), which
makes difficulties to clearly distinguish between anoma-
lies and non-anomalies. Moreover, many of the known
non-anomalies are obviously mapped as isolated outlier
points (labeled © in Fig. 8), which do not exhibit the620

characteristics of the expected patterns.
We also calculated the AMSD values (see Section
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(a) PCA (Bus Route 66) (b) RP (Bus Route 66) (c) SAE (Bus Route 66)

(d) PCA (Bus Route 50) (e) RP (Bus Route 50) (f) SAE (Bus Route 50)

(g) PCA (Bus Route 18) (h) RP (Bus Route 18) (i) SAE (Bus Route 18)

Fig. 8. Spatio-temporal planes derived from the baseline methods PCA, RP and SAE on different dataset. Objects with © represent those points
which can be regarded as anomalies with high confidence, while they are not anomalies in reality. Moreover, the distribution of some known class
B anomalies yeilds similar patterns with these non-anomalies, which makes them difficult to identify.
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(a) Bus Route 66 (b) Bus Route 50 (c) Bus Route 18

Fig. 9. Comparison of concentration performance on the training sets.

4.1.3) for all of the non-anomalies, under every win-
dow size κ from 2 to 10. DSAE-based model achieved
the best performance on the datasets of Bus Route 66625

and Route 18, as shown in Fig. 9. RP obtained fairly
good performance on Bus Route 50; however, its perfor-
mance in anomaly detection is sensitive as it made false
predictions on quite a number of points in Bus Route
50. SAE performed the worst on all of the datasets.630

4.5.2. Comparison on anomalous traffic patterns de-
tected by our offline approach

We compare the anomaly detection performance by
our offline detection approach (OFF-ATPD) with those
by the commonly used methods in outlier/anomaly635

detection [46], including classification-based methods
(one-class SVM (OneSVM) [25, 26], binary SVM
(BiSVM) and LSTM network), a clustering-based
method (HDBSCAN clustering [47]) and a nearest-
neighbor-based method (kNN). The same features ex-640

tracted via DSAE are used for these baseline methods.
Our approach is implemented by Python and Tensor-
flow, the code of our algorithms is publicly available
in GitHub repositories8. OneSVM and BiSVM use the
‘e1071’ package in R. LSTM network is implemented645

by the ‘rnn’ package in R. While baselines of HDB-
SCAN and kNN use the R packages of ‘dbscan’ and
‘FNN’, respectively. The output probabilities of our
approach to calculate AUC are linearly scaled by the
similarity (i.e., S (εi) in Algorithm 1). While the output650

probabilities via OneSVM and BiSVM are estimated by
Platt scaling [48]. The performances are shown in Table
4. Because there is no positive sample in the training
set of Bus Route 18, the supervised learning methods

8https://github.com/Xiaocai-Zhang/

Anomalous-Traffic-Patterns-Detection

of BiSVM, LSTM and kNN are not applicable. Over-655

all, OFF-ATPD achieved better performances with high
accuracies, the 100% detection rates, low false alarm
rates and high AUC scores on all of these datasets.
OneSVM is also a competitive method that detected all
anomalies correctly; however, its high false alarm rates660

(61.25%, 47.74% and 52.23%) make it less efficient.
BiSVM and HDBSCAN also demonstrated low false
alarm rates and high AUC scores; nevertheless, they are
unable to identify all the anomalies accurately. None of
the rest machine learning baseline methods could detect665

all of the anomalies correctly. One reason is probably
that the real-world datasets for traffic anomaly detection
as we utilized in this experiment are extremely imbal-
anced. Machine learning on imbalanced datasets might
produce unsatisfactory classifiers [49, 50]. Instead of670

taking machine learning ideas for pattern recognition,
our developed algorithm explores the ideas of spatio-
temporal neighborhood and Boxplot rules to identify
anomalous traffic patterns in class A task and in class
B task, respectively. Because these anomalous patterns675

have distinct spatial and temporal characteristics, our
approach can achieve better performance on imbalanced
data than the baseline machine learning approaches.

5. Conclusion and future work

This work has developed novel methods for online680

and offline detections of anomalous traffic patterns from
bus trajectory datasets. Our methods have explored
deep learning ideas to extract novel features and the
methods can make good visualization of the features as
well. Based on the spatial and temporal characteristics685

of the anomalies, we have termed class A anomaly and
class B anomaly to better address the discrepancy is-
sues between these diversified anomalous patterns. The
key idea of our algorithm is to use the Boxplot rule or
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Table 4. Performance comparison on the test sets with the baseline methods

Route Metric OFF-ATPD OneSVM BiSVM LSTM HDBSCAN kNN

66
Acc (%) 99.39 40.24 98.78 98.17 98.17 98.78
DR (%) 100 100 50.00 25.00 75.00 50.00
FAR (%) 0.63 61.25 0 0 1.25 0
AUC (%) 99.61 75.63 99.53 75.00 97.19 75.00

50
Acc (%) 98.33 52.92 99.44 98.89 99.44 99.44
DR (%) 100 100 60.00 20.00 60.00 60.00
FAR (%) 1.69 47.74 0 0 0 0
AUC (%) 99.66 79.52 100 60.00 97.12 80.00

18
Acc (%) 96.93 48.12 — — 99.32 —
DR (%) 100 100 — — 0 —
FAR (%) 3.09 52.23 — — 0 —
AUC (%) 97.25 75.60 — — 99.14 —

Notes: Supervised learning method BiSVM, LSTM or kNN cannot be applied to Bus Route 18
dataset since there is no positive sample in the training set. AUC is computed by the ‘sklearn’
package in Python.

the nearest neighborhood for different detection tasks690

of anomalous patterns. Our methods are also able to
conduct insights analysis on the locations of anomalies
as well as on the traffic influences to the road caused
by the corresponding anomalies. We developed an on-
line detection method extending from the offline method695

for a real-time detection. Comprehensive experiments
on 3 real-world bus route datasets confirmed the effec-
tiveness and superiority of our deep feature extraction
method, offline and online detection approaches while
comparing with the baseline methods PCA, RP, SAE,700

one-class SVM, binary SVM, LSTM, HDBSCAN and
kNN.

Future infrastructure plans for some cities have
adopted the ‘Bus Lane’ strategy for main roads during
certain periods to improve the reliability and efficiency705

of bus services. In that case, our approach may not be
efficient to detect the incident-related anomaly, as the
situation that some incidents affecting other vehicles on
the road might not affect buses. However, from the per-
spective of bus service operation or management, that710

situation does not make much sense, since those anoma-
lies that impose little impact on bus service will not be
taken into account for decision making. In the future,
we plan to study how to improve the reliability of on-
line traffic anomaly detection algorithm and to test our715

methods on more datasets. Besides, we will explore
the possibility of our methods on other trajectory data
sources, such as the city-wide taxis or trains trajectory
data.
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