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FASTQ data sets of short reads are usually generated in tens or hundreds for a biomed-
ical study. However, current compression of these data sets is carried out one-by-one

without consideration of the inter-similarity between the data sets which can be other-

wise exploited to enhance compression performance of de novo compression. We show
that clustering these data sets into similar sub-groups for a group-by-group compres-

sion can greatly improve the compression performance. Our novel idea is to detect the

lexicographically smallest k-mer (k-minimizer) for every read in each data set, and uses
these k-mers as features and their frequencies in every data set as feature values to

transform these huge data sets each into a characteristic feature vector. Unsupervised

clustering algorithms are then applied to these vectors to find similar data sets and
merge them. As the amount of common k-mers of similar feature values between two

data sets implies an excessive proportion of overlapping reads shared between the two
data sets, merging similar data sets creates immense sequence redundancy to boost the

compression performance. Experiments confirm that our clustering approach can gain

up to 12% improvement over several state-of-the-art algorithms in compressing reads
databases consisting of 17 to 100 data sets (48.57 - 197.97 GB).
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1. Introduction

The growth rate of genomic short reads data from high-throughput Next Gen-

eration Sequencing (NGS) platforms 21,26,22 has outpaced Moore’s law, resulting

in petabytes of whole genome sequencing or RNA-sequencing data stored in major
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databases. For example, NCBI Sequence Read Archive maintained over 14 petabytes

NGS data as of Aug 2020. The raw sequencing data are normally stored in the

FASTQ format 8 as a set of reads, where each read consists of an identifier (header),

a DNA string of fixed length and a list of quality scores indicating the confidence of

correct base-calling for each nucleotide base in the string. For instance, one study
5 sequenced 769 individuals of Dutch ancestry and produced 4574 NGS reads data

sets, each of which contains around 50 million reads, having a total file size of

27.74TB in the FASTQ format. A simplified FASTQ format is the FASTA format

whereby only the DNA strings are stored excluding the quality scores. The vast

quantity of reads data has proposed great challenges to data analysis, storage and

transmission; efficient data compression techniques are required to address all of

these issues.

Intensive research has focused on reference-free (de-novo) compression of a sin-

gle reads set. The key idea is to utilize the redundancy information between the

reads in the same set to form groups of reads and de-novo assemble them into

consensus sequences (contigs), and then encode the reads with regard to these con-

sensus sequences. Mince 23 buckets similar reads together and reorder the reads in

each bucket, it also handles paired-end reads by concatenating the left and right

ends of the pair together in accordance with a user-provided library type. HARC 7

searches the maximum overlaps of the reads in the set to locate their approximate

positions in a genome and then creates contigs from reads in the neighbourhood

of these positions in the genome. SPRING 6 is an advanced version from the same

team of authors, improving HARC with options such as compressing reads with

arbitrarily long read lengths. FaStore 25 and Minicom 19 both group reads based on

the redundancy information contained in sub-string patterns called k-minimizers
24; the reads in these groups are then de-novo assembled or condensed into contigs

for referential encoding. A more recently published method PgRC 17 divides the

whole set of reads into two groups: high-quality (without ‘N’ base) and low-quality

(with ‘N’ bases), then generates an approximate shortest common superstring over

each group via merging reads with suffix-prefix overlapping to the existing string

until no reads are left, which is referred as pseudo genome construction 15. PgRC

1.2 16 is a multi-thread version of PgRC with improvements in compression speed.

Earlier reference-free algorithms such as ReCoil 28, SCALCE 12, Quip 14, Fqzcomp
4, ORCOM 11 and Assembltrie 10 also achieved high compression ratio on single

FASTQ file.

Algorithms for compressing large collections (databases) of FASTQ files are still

lacking. Although the one-by-one compression approach is straightforwardly ap-

plicable, optimizing de-novo compression algorithms for the compressing multiple

FASTQ files to achieve better performance is challenging. Suppose there are n num-

ber of reads data sets to compress. An easy question is whether we can concatenate

the n data sets together as a single large data set for compression. A difficulty is

the extremely high usage of main memory, with no guarantee of compression per-

formance improvement. A challenging question is how to convert a large reads data
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set into a characteristic feature vector and how to cluster these n vectors to find

small groups of similar data sets to merge for compression.

Intuitively in theory, merging similar data sets for compression is potentially use-

ful for performance improvement. Denote a reads set as Y , the assembled consensus

sequence(s) from Y as Y . The key idea of reference-free compression is merging

these reads into consensus sequence(s) and record each read with regard to the

consensus sequence(s). Denote the information of reads set Y after compression

as I(Y ), I(Y ) = I(Y ) + I(Y |Y ). When Y is split into two sets Y1 and Y2. Then

I(Y1) + I(Y2) = I(Y1) + I(Y1|Y1) + I(Y2) + I(Y2|Y2). Under the ideal condition (op-

timal solution for consensus sequences construction and no correction for mismatch-

ing bases), the consensus sequence(s) Y1, Y2 ⊆ Y , I(Y ) = I(Y1)+I(Y2)−I(Y1∩Y2) ≤
I(Y1)+I(Y2). I(Y |Y ) can be considered as the information of |Y | records, where each

record contains the position of one read in Y (assume no mismatching and all reads

have the same length), with an encoding method such as Lempel-Ziv parsing 29,

the average record length of each compression can be considered as constant, hence

I(Y |Y ) ≈ I(Y1|Y1) + I(Y2|Y2), I(Y ) ≈ I(Y1) + I(Y2)− I(Y1 ∩ Y2) ≤ I(Y1) + I(Y2).

Compressing two sets together will reduce the compressed size in comparison with

compressing them one-by-one separately, and the amount of reduced size should

have a positive relationship with the size of the intersection set of the consensus

sequences generated from the two sets.

Multiple methods have been proposed to search the matched substring between

sequence data 18. For reference-free compression algorithms, the focus is on utilizing

the similarity consensus and sequence redundancy information among the reads,

The main idea is to search the overlapping sub-strings in the pairs of reads through

a ‘seed-extension’ strategy, in which a short common subsequence between two reads

are used as the ‘seed’, then the ‘seed’ is extended, although there are some other

ideas of taking suffix-prefix overlapping (e.g. PgRC), or some without the explicit

extending process (e.g. minicom). Another effective search strategy is based on the

concept of minimizers 24. A minimizer of a string is the lexicographically smallest

k-mer of the string, which is widely used in processing of reads data 20. It is a useful

concept to identify sequence similarity — it has been previously proved 24 that two

reads are likely to have a large overlap if they share a k-minimizer.

Hence for a high-performance compression of multiple reads sets, we should

increase the occurrence of k-minimizer redundancy and should combine only those

reads sets of more similar reads together.

With these foundations, we propose to detect the k-minimizer substring for every

read in each data set, and use these k-minimizers as features and their frequencies

in the data set as feature values to transform each data set into a feature vector.

Unsupervised clustering algorithms are then applied to these vectors to find similar

data sets and merge them. Table 1 is an example to illustrate the high similarity

between two sequences (reads) when they share the same minimizer.

A real example (Table 2) of the feature vector is presented below (only the first

10 elements of the feature vector displayed). The vector is transformed from a huge
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Two sequences G T A C T G A T T G C A C T G A

3-mers and

3-minimizers (in

bold)

G T A T G C

T A C G C A

A C T C A C

C T G A C T

T G A C T G

A G T T G A

Table 1: Two sequences that share the same minimizer

IDs of 8-minimizers 0 1 2 3 4 5 6 7 8 9

Normalized frequency 0.56 0.43 0.61 0.79 0.57 0.15 0.28 0.34 0.74 0.42

Table 2: First 10 elements of the feature vector transformed from a reads set

reads set named ERR532390, which contains 10831122 reads of length 100 having

a total file size 4.27GB. Each feature value in the vector is the percentage of reads

in this data set containing the same specific minimizer. For instance, feature values

0.56 and 0.43 suggest that there are 0.56% of the reads in ERR532390 containing

minimizer AAAAAAAA (feature ID 0) and 0.43% of the reads containing minimizer

AAAAAAAC (feature ID 1), where k=8.

If the amount of common k-mers with similar feature values between two data

sets is big, then the two data sets should be merged to hold an excessive propor-

tion of reads containing the same minimizer sub-strings to create immense sequence

redundancy for boosting compression performance. Driven by this principle, we pro-

pose a novel clustering method (named MRC — Multiple Reads Sets Clustering)

for compressing reads sets databases. MRC constructs feature vectors based on the

minimizer frequencies of each reads set, then applies K-means clustering recur-

sively to divide the reads sets into subgroups with higher inter-similarity than the

original reads sets. Then the compression of these clustered reads sets is carried

out group-by-group instead of one-by-one separately. We evaluate MRC on various

benchmark databases to demonstrate that the method improves the compression

ratio as compared to the original algorithms in all cases.

2. Method

Let R = {R1, R2...Rn} be a collection (database) of reads sets, Ri = {ri1, ri2..rij},
where rij denotes a single read sequence, rij [l] ∈{A,C,G,T,N} for l = 1, 2, . . . , L

where L is the length of the reads.

The proposed algorithm MRC consists of three stages: transformation of a reads

set into a feature vector, clustering of the feature vectors, and group-by-group com-

pression.
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(1) Transformation of a reads set into a feature vector: A feature space with

n feature vectors is constructed, each of them is transformed from a reads set

Ri using the minimizers as features and the minimizers’ frequency as feature

values.

(2) Clustering of the feature vectors: A variant of K-means clustering, that

is, a K-means clustering with a limit on cluster size is applied to the feature

space to divide the original set R into subgroups.

(3) Group-by-group compression: The reads sets in each subgroup are com-

pressed together by state-of-the-art compression algorithms with additional in-

formation recorded for lossless decompression.

2.1. Transformation of a reads set into a feature vector

For a reads set Ri, the reads are classified into two types: the reads without ‘N’

and the others, during transformation, only reads without ‘N’ is considered. The

set of reads without ‘N’ from Ri is denoted as Ri = {ri1, ri2..}, rij [l] ∈ {A,C,G, T}.
Via an encoding function, each k-mer (subsequence s with length k) in rij can be

mapped to a 2×k bit integers, such as f(s) =
∑a=k

a=1 φ(s[a] ·4a−1), φ(A) = 0, φ(C) =

1, φ(G) = 2, φ(T ) = 3.

In de novo compression, the overlap search between reads normally focuses on

finding one suitable overlapping for merging and encoding (to reduce computation

time) instead of searching all possible overlaps among reads. To fit the procedure

of de novo compression, we extract one representative k-mer from each read.

The lexicographically smallest k-mer (minimizer) of each read is selected as the

representative k-mer for the read, and count the frequency of each unique k-mer in

the reads set to estimate the similarity between reads sets. Here we use a normal-

ized frequency as feature value. For a reads set Ri, the corresponding feature vec-

tor Vi = {vi1, vi2..vi4k}, vij =
frequency of minimizer with valuej in Ri

|Ri| , the value

of minimizer s is computed using f(s) =
∑a=k

a=1 φ(s[a]) · 4k−a, φ(A) = 0, φ(C) =

1, φ(G) = 2, φ(T ) = 3. In order to reduce storage usage, only the frequency of min-

imizers that appears at least one time are recorded in implementation. Table 3 is

an example of the minimizers and corresponding feature vector of a set of 10 reads

with k=2.

To reduce processing time and avoid potential problems such as curse of dimen-

sionality 3 or overfitting 27, m features are selected from the original 4k: the variance

of each feature {v1j , v2j ...vnj} is computed, then m features with highest variance

are selected. Finally, a set of m-dimensional n vectors are generated, denoted by

V = {V 1, V 2...V n}.
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Sequence Minimizer(s) Mapped value f(s)

G T C G C C G A CC 5

A T T G T C G G AT 3

G A C G A A T C AA 0

C T G T T G C A CA 4

A G G T C C G C AG 2

G T C A A G C A AA 0

G G T C T C T A CT 7

C G A G T T C G AG 2

T G T T G T G C GC 9

A C C T A T C G AC 1

Example of minimizers in a reads set with k=2 and the corresponding values f(s).

Minimizer AA AC AG AT CA CC CG CT GA GC

Frequency 2 1 2 1 1 1 0 1 0 1

Frequency of each minimizer in above reads set.

Feature AA CA GA TA AC CC GC TC AG CG GG TG AT CT GT TT

Value 0.2 0.1 0.2 0 0.1 0.1 0 0.2 0 0.1 0 0 0 0 0 0

Normalized feature vector of the above reads set.

Table 3: Example of the minimizers and corresponding feature vector of a set of 10

reads with k=2

2.2. Clustering of the feature vectors

Clustering is the process of grouping a set of points (feature vectors) into a number

of subgroups such that similar points are placed in the same subgroup. Here our

clustering is to ensure higher similarity in each subgroup that are to be compressed

together to achieve better performance of compression.

A critical part of this stage is the size of a cluster: As mentioned before, the reads

sets in each cluster will be compressed as a single file by state-of-the-art algorithms,

however, the complexity of most algorithms is larger than O(|Ri|), which causes

sharply increasing compression time with respect to the number of reads. Hence

the total size of each cluster should be limited to control compression time. We

apply a variant of K-means clustering to ensure the efficiency and practicability for

the method.

Variant of K-means Clustering

K-means is a method that divides n points into K clusters in which each point

belongs to the cluster with the nearest centroid 13. The main difference between

our clustering process and the standard K-means is as follows:
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(1) The K-means clustering is applied on reads sets recursively with K set as 2

until the size of all clusters is less than or equal 3.

(2) When a cluster with size 1 is generated, one object from another cluster will be

tried to added to this size 1 cluster, the criteria is shown in Algorithm 1.

The clustering process is shown as Algorithm 1, the standard version of K-means

is shown in supplementary A1.

Algorithm 1 Optimized K-means clustering

1: Input: vector set V = {V 1, V 2...V n}, threshold λ, cluster set C;

2: C ← ∅;
3:

4: procedure Clustering(V )

5: if |V | ≤ 3 then

6: Add V to C;

7: else

8: c1, c2 ← result of K-means on V with K=2

9: if |c1|+ |c2| ≥ 4 AND (|c1| == 1 OR |c2| == 1) then

10: a← id of cluster with size 1, b← id of the other cluster;

11: cb[min]← the vector in cb with minimum distance to

12: ca[0];

13: if distance(ca[0], cb[min]) ≤ λ· minimum distance

14: between cb[min] and other vectors in cb then

15: add cb[min] to ca;

16: remove cb[min] from cb;

17: Clustering(c1);

18: Clustering(c2);

19: Clustering(V );

20: return C;

2.3. Group-by-group compression

For each cluster Ci ∈ C, Cij represents the jth vector in Ci, which corresponds to

one specific reads set in R.

The corresponding reads sets of each Ci is merged together in order, denote the

array of reads number of reads sets in each cluster by L = L[1...l], the
∑i−1

a=1 L[a]th

to
∑i−1

a=1 L[a + 1]th reads in the merged set are the reads of the ith reads set in

cluster. The merged set is then compressed under the order preserving mode, the

name and read number of each reads set are recorded. The decompression process

is the reverse process of the compression. First, the compressed file of each merged

set is decompressed, then each reads set is restored using the recorded read number.
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Cluster Reads set Feature vector

A

1 0.299 0.104 0.007 0.035 0.049 0.032 0.009 0.025 0.023 0.108

2 0.300 0.105 0.007 0.035 0.051 0.031 0.009 0.025 0.024 0.109

3 0.297 0.105 0.007 0.034 0.048 0.031 0.007 0.025 0.023 0.109

B
1 0.148 0.067 0.021 0.063 0.070 0.051 0.021 0.046 0.044 0.102

2 0.140 0.063 0.022 0.072 0.069 0.051 0.021 0.047 0.045 0.101

Table 4: Example of the first 10 features of feature vectors from two clusters in the

database of 21 reads sets

3. Result and Performance Analysis

Compression experiments were conducted at a computing cluster running Red Hat

Enterprise Linux 6.7 (64 bit) with 2 Intel Xeon E5-2695 processors(2.3GHz,14

Cores), 128 GB of RAM. Four state-of-the-art compression algorithms, FaStore 25,

SPRING 6, minicom 19 and PgRC1.2 16, were tested on four collections of reads sets

to understand the performance improvement achieved by our clustering approach

in comparison with compressing the set separately via the same compression algo-

rithm. PgRC1.2 and minicom focus on compression of the sequence in reads data,

FaStore and SPRING retain all data in FASTQ files. All algorithms were executed

with the order preserving mode, other parameters follow the default setting (e.g.

24 threads for minicom, 8 threads for PgRC1.2).

Details about the collections of reads data sets are shown in Table 5. The original

data were downloaded from http://ftp.sra.ebi.ac.uk/vol1/fastq/. The URLs of each

file are listed in Supplementary Data.

3.1. Compression performance gains

To measure the performance improvement brought by MRC, we define performance

gain as:

gain =

(
1− Compressed size with MRC

Compressed size of one-by-one compression

)
× 100%

A higher value of gain indicates more compression improvement.

Table 6 shows the compression results by minicom and PgRC1.2 using the ‘one-

by-one’ approach or the ‘MRC’ approach. The best compression algorithm PgRC1.2

can compress the 48.57 gigabytes of database-17 into 1.01 gigabytes, achieving 48.09

folds of compression ratio, when the straightforward one-by-one approach is taken.

The compression ratio is improved to 54.86 folds when the clustering approach MRC

is used. In fact, PgRC1.2 achieves an average performance gain of 7.69% on the four
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Table 5: Four collections of reads data sets

Collections number of reads sets total size (in GB) length of reads

database-17 17 48.57 101

database-21 21 135.68 100

database-50 50 71.04 50

database-100 100 197.97 36

More information of each file can be found in Supplementary Data

Table 6: Compressed file size (in byte) comparison between the straightforward one-

by-one approach and our MRC approach (with k = 7 for the setting of k-minimizer)

Collection minicom PgRC1.2

one-by-one with MRC gain one-by-one with MRC gain

database-17 1184071680 1053224960 11.05% 1087246442 950620160 12.57%

database-21 6074501120 5800316800 4.47% 6263079421 5722808320 8.63%

database-50 3714529280 3548344320 4.41% 3006844741 2880102400 4.22%

database-100 9593702400 9485285120 1.13% 8828937571 8355092480 5.37%

Collection SPRING FaStore

straightforward with MRC gain straightforward with MRC gain

database-17 8628849779 8484075520 1.68% 9666709566 9437614080 2.37%

database-21 23029063680 22549555200 2.08% 25241707218 24566077440 2.68%

database-50 13646202880 13519677440 0.93% 15492111069 15372031320 0.78%

database-100 28880547840 28573671680 1.06% 23964221072 23478440608 2.03%

databases when MRC is used. Specifically, the gains are respectively 8.63%, 4.22%,

5.37%, and 12.57%, revealing a positive correlation with the average file size in

each database (database-17: 2.86GB, database-21: 6.46GB, database-50: 1.42GB,

database-100: 1.97GB). For minicom, the improvement is 11.05%, 4.51%, 4.47%,

1.13% for the four databases and 5.29% on average.

The improvements on SPRING and FaStore are lower than the other two algo-

rithms, which varies from 0.78% to 2.68% on different databases, the main reason

is that SPRING and FaStore also compress the identifier and quality score (i.e.,

compressing the FASTQ format files), as the compression performance of quality

scores is mainly dependent on the rate of smoothed quality scores, the increase in

the overlapping redundancy between reads provided by MRC does not contribute
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to the compression. How to convert quality scores in a reads set into a characteristic

feature vector is a topic for investigation.

Overall, as shown in Table 6, our proposed MRC method outperforms over

compressing reads sets separately in all cases.

3.2. 3D visualization for the clusters of reads data sets after

transformation

By the feature extraction and selection of MRC, a reads set is converted into a

vector with m dimensions. To assess the effectiveness of our clustering method,

we apply Multi-Dimensional Scaling 9 on the original feature spaces of database-

17, database-21, database-50, database-100 (see Figure 1 a, c, e, g), in comparison

with the feature vectors constructed by MRC (the cluster labels marked in Figure

1 b, d, f, h). It can be seen that the clusters from MRC matches the distance

space computed by Multi-Dimensional Scaling, suggesting that MRC is effective for

selecting subgroups of high similarity for compression of multiple reads sets. Full

scale version of Figure 1 are shown in supplementary file.

3.3. PCA analysis on the feature vectors converted from the reads

data sets

To get deeper insights into the roles of the minimizers in the clustering, Principal

Component Analysis 1 is conducted on the feature vectors converted from each

database to compare the importance of each feature. Principal Component Analysis

(PCA) is a method to reduce the dimension of data by maximizing the variance of

each dimension 2. By PCA, the original data (with dimension n×m, each column fj
is a feature vector, j ∈ [1,m]) is transformed to a n×p matrix where p ≤ min(m,n),

each column vector corresponds to one component ci = (ci1, ci2...cim), i ∈ [1, p], ci
represents the direction of the i-th maximum variance of the original data, the

absolute value of cij represents the magnitude of vector projection of feature fj
onto ci, which can be considered as the importance of feature j for ci. Each ci
explains an amount of the variance of original matrix, the percentage of variance

explained by ci is denoted as vri.

The new components are efficient for data analysis but not interpretable enough.

In order to understand which features are more important for clustering, we measure

the importance of feature fj through wj =
∑p

a=1 |caj |×vra, j ∈ [1,m]. The features

with the highest importance for each database and the corresponding minimizers

are listed in Table 7. Interestingly, some databases share common features. For

example, the features with mapped IDs 0, 2, 15, 25, 27, and 38 occurred in more

than one database, which can be considered as representative minimizers of these

databases worth of further investigation. Our PCA analysis results are also displayed

in Figure 2.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 1: 3D Visualisation of the feature space after Multi-Dimensional Scaling

from (a) database-17, (b) database-17 by clustering of MRC; (c) database-21, (d)

database-21 by clustering of MRC; (e) database-50, (f) database-50 by clustering

of MRC; (g) database-100, (h) database-100 by clustering of MRC
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database-21 database-50 database-100

v w minimizer v w minimizer v w minimizer

12 0.725 AAAAATA 15 0.725 AAAAATT 1 0.627 AAAAAAC

6 0.723 AAAAACG 22 0.694 AAAACCG 27 0.626 AAAACGT

4 0.710 AAAAACA 25 0.650 AAAACGC 25 0.581 AAAACGC

29 0.708 AAAACTC 27 0.646 AAAACGT 2 0.577 AAAAAAG

2 0.697 AAAAAAG 0 0.621 AAAAAAA 39 0.572 AAAAGCT

17 0.694 AAAACAC 38 0.614 AAAAGCG 13 0.563 AAAAATC

15 0.665 AAAAATT 24 0.607 AAAACGA 26 0.558 AAAACGG

18 0.664 AAAAAGT 11 0.601 AAAAAGT 38 0.552 AAAAGCG

0 0.657 AAAAAAA 37 0.599 AAAAGCC 20 0.551 AAAACCA

13 0.655 AAAAATC 21 0.577 AAAACCC 41 0.541 AAAAGGC

v indicates the mapped ID of a feature, w represents an importance score of a

feature, a higher score indicates a more important feature.

Table 7: Minimizers of high importance in our PCA analysis

3.4. Time complexity and speed performance

Running time is an essential factor for measuring the applicability of an algorithm.

For MRC, the time complexity of the compression depends on the compression

algorithm. Here we present the time complexity for the transformation and feature

vector construction. Let L and NR denote the read length and total number of reads

in a collection of reads set R. The computation of the minimizers of the reads takes

O(NR(L− k + 1)) time, where k is the length of the minimizers. The computation

of the variance of each feature and sorting based on the value of variance takes

O(mfn+mf logmf ) time, where mf is the number of minimizers that appears at

least one time in the datasets. In the worst case, mf = 4k, the time complexity is

O(4kn+ 2k4k log 2). The standard K-means clustering takes O(tKned), where t is

the number of iterations, ne is the number of vectors, d is the dimension of vectors.

In the worst case (assuming K-means splits the original data into two clusters

with size 1 and ne − 1 each time), the clustering stage will apply n − 3 K-means

with K = 2, d = m,ne = n, n − 1..., 4, the time complexity is O(2
∑ne=n−3

ne=4 td) =

O((n + 1)(n − 3)tm). As NRL and 4k is much larger than n2m in normal cases,

the running time of stages 1 and 2 are mainly related on NR, L and k. When k is

fixed, the running time has a positive linear relationship with NRL, which is the

total size of database. The actual speed of our method on different databases fits

the analysis.

To achieve the performance of our algorithm in the compression of multiple reads

sets, we test the running time of MRC on the four databases. As mentioned before,

the running time of MRC can be divided into two parts: transformation+clustering

(only depending on the input databases) and compression (depending on both input

set and compression algorithm).
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(a) (b)

(c) (d)

Fig. 2: 3D Visualisation of the feature space after Principal Component Analysis

from (a) database-17 (b) database-21; (c) database-50 (d) database-100

Stage database-17 database-21 database-50 database-100

Transformation+Clustering 149.54 492.98 321.16 850.63

Compression (by minicom) 1866.94 18682.44 5051.15 8786.49

Compression (by PgRC1.2) 1203.26 7543.40 4168.48 8565.72

Compression(by SPRING) 1936.84 5283.13 2325.19 11207.65

Compression(by FaStore) 2963.19 18870.07 15058.386 50333.904

Table 8: Transformation and clustering time of MRC (in second), red indicates the

shortest compression time of each dataset.

MRC took 149.54, 492.98, 321.16, 850.63 seconds on the transformation and

clustering stage for database-17, database-21, database-50 and database-100 respec-

tively (Table 8), while the shortest compression time taken by the four algorithms on

these databases are 1203.26, 5283.13, 2325.19, 8565.72 seconds. The transformation

and clustering time is much shorter than the compression time.
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4. Conclusion

In this work, we introduced MRC, a clustering-based algorithm for the compression

of reads databases. The key idea of this method is the measurement of the similarity

between reads sets based on minimizer frequency and the application of a variant K-

means clustering to group the reads sets into subsets with a high similarity between

each other. Reads sets in each cluster are compressed together with additional

information recorded to enable decompressing separately.

This algorithm is applicable for reads sets with the same read length. We have

demonstrated that MRC achieved a substantial improvement in all cases compared

to the original state-of-the-art compression algorithms. In addition, analysis of the

time complexity on real databases shows that the time complexity of our algorithm

is linear in practice, the time of additional preprocessing and clustering stage are

much less than the compression time.
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