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Abstract—Breast cancer is a heterogeneous disease with many clinically distinguishable molecular subtypes each corresponding to a cluster 

of patients. Identification of prognostic and heterogeneous biomarkers for breast cancer is to detect cluster-specific gene biomarkers which 

can be used for accurate survival prediction of breast cancer outcomes. In this paper, we proposed a FUsion Network-based method 

(FUNMarker) to identify prognostic and heterogeneous breast cancer biomarkers by considering the heterogeneity of patients’ samples and 

biological information from multiple sources. To reduce the affect of heterogeneity of patients, samples were first clustered using the K-means 

algorithm based on the principal components of gene expression. For each cluster, to comprehensively evaluate the influence of genes on 

breast cancer, genes were weighted from three aspects: biological function, prognostic ability and correlation with known disease genes. Then 

they were ranked via a label propagation model on a fusion network that combined physical protein interactions from seven types of networks 

and thus can reduce the impact of incompleteness of interactome. We compared FUNMarker with three state-of-the-art methods and the 

results show that biomarkers identified by FUNMarker have stronger discriminative power than the existing methods in differentiating patients 

with different prognostic outcomes and have biological interpretability.    

Index Terms—Prognostic and heterogeneous biomarker, Label propagation, Fusion network  
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1 INTRODUCTION 

reast cancer is a malignant tumor that is caused by multiple 
factors and is highly heterogeneous with many clinically 

distinguishable molecular subtypes each corresponding to a 
cluster of patients [1-3]. Meanwhile, The prognosis of breast 
cancer with the same pathological type and clinical stage is quite 
different even after the same treatment, which indicates the high 
heterogeneity in breast cancer [4-6]. Therefore, the study of the 
prognosis and heterogeneity of breast cancer has profound 
significance. With the development of molecular biology, some 
molecular biomarkers have been found to be associated with the 
prognosis of breast cancer, which makes it possible to more 
accurately and effectively evaluate the prognosis of breast 
cancer patients [7-10]. 

At present, using biological networks as the analytical means 
is a useful way to discover prognostic biomarkers, because 
biomolecules do not perform functions individually, while they 
function together. Therefore, biological networks contain large 
amounts of biological information [11-16]. A number of 
methods identify prognostic biomarkers to predict outcomes of 
patients using gene expression data and single biological 
network, such as protein-protein interaction (PPI) networks, 
transcription factor-target networks or miRNA-target gene 
networks [17-20].  

However, despite the impressive progress in high-

throughput technology, existing interactions remain incomplete 
and false-positives, and single network contains only the single 
biological information, which prompts us to think about how to 
use existing network data to minimize the inaccuracy of follow-
up analysis caused by these problems. Previous study has 
shown that integrating several sources of protein interactions 
can be helpful for disease research, such as mining disease 
modules [21]. Based on this, we consider that the use of a highly 
reliable fusion network can also contribute to the identification 
of biomarkers.  

Some biomarker discovery methods are based on networks 
extracted from certain databases [22, 23], such as the Reactome 
FI network which includes pathways, PPIs, gene co-expression 
and Gene Ontology (GO) annotations. However, these methods 
do not comprehensively analyze the network data from 
multiple biological perspectives, which may miss some 
important information. 

Meanwhile, the network-based computational methods 
typically identify prognostic biomarkers based on the ranking 
of genes in the networks. Liu et al. [24] classify the cancer 
samples by the directed random walk. Winter et al. [17] adopt 
the NetRank algorithm, which is similar to PageRank, to predict 
the outcome of cancer patients. These methods are usually 
affected by the heterogeneity of cancer samples [25], resulting in 
the low prediction accuracy. It is well known that the 
heterogeneity is mainly caused by the genomic instability [26, 
27], and the poor prediction is most likely due to the difficulty 
of identifying prognostic biomarkers for specific cancer 
samples. Some methods have been proposed to reduce the 
impact of heterogeneity by analyzing multi-omics data [28, 29]. 
Some methods cluster cancer samples to eliminate the 
heterogeneity of samples [23]. 

In this paper, the survival time regression problem is 
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converted to a classification problem. Then, a FUsion Network-
based method (FUNMarker) is proposed to identify prognostic 
and heterogeneous biomarkers for accurate survival prediction 
of breast cancer outcomes and it is different from the global 
biomarker analysis which focuses on representative genes 
across all the subtypes of patients. We fist cluster the breast 
cancer patients through the principal components of gene 
expression data to minimize the effects of the heterogeneity of 
breast cancer samples. For each cluster, we adopt a fusion 
network to identify the prognostic biomarkers of breast cancer, 
because the fusion network derived from multiple network 
sources can minimize the impact of incomplete network data 
and better reveal the molecular mechanism of diseases [21]. 
Meanwhile, due to the fact that the fusion network contains 
more sources, the importance of a gene in the network needs to 
be evaluated from multiple respects combined with a variety of 
biological information. Therefore, we score genes in the fusion 
network from the perspective of biological functions, prognostic 
ability and correlation with known disease-associated genes 
(DAGs), and a label propagation model is applied to evaluate 
the importance rankings of genes based on the weighted fusion 
network. Top genes are used as the prognostic biomarkers. 
Finally, a random forest classifier is applied to evaluate the 
outcome of cancer samples according to the gene expression of 
biomarkers. 

Because the effective prognostic biomarkers should have the 
high discrimination ability to distinguish patients with good 
prognosis from those with poor prognosis, as well as the high 
biological interpretability. Therefore, we evaluated identified 
biomarkers from both the classification accuracy and the 
functional interpretability. We compare FUNMarker with 
several network-based biomarker identification methods (such 
as CPR, NetRank and stSVM) on six datasets. The results show 
that biomarkers identified by FUNMarker have stronger ability 
to differentiate patients with different prognostic outcomes 
compared with other methods. Then, we compare the 
performance of our proposed framework in every single 
biological network and the fusion network, and it is verified that 
the fusion network can help to improve the accuracy of 
classification on each dataset better than any single network. We 
also comprehensively evaluate the biological significance of 
biomarkers found by FUNMarker, such as the reproducibility, 
the survival analysis, the biological interpretability and 
dysregulation of biomarkers. All these show the superiority of 
FUNMarker in identifying prognostic and heterogeneous breast 
cancer biomarkers. The MATLAB-package for our algorithm is 
freely available from 
https://github.com/CSUBioGroup/FUNMarker. 

2 MATERIALS AND METHODS 

2.1 Dataset and preprocessing 

We collected a high-throughput sequencing data from the 
UCSC Cancer Genomics Browser (https://genome-
cancer.ucsc.edu), which is derived from files downloaded from 
The Cancer Genome Atlas (TCGA) data. The dataset shows the 
gene-level transcription estimates, as in log2(x+1) transformed 
RSEM (RNA-seq by expectation maximization) normalized 
count. The survival information of patients was collected from 

the TCGA database (https://portal.gdc.cancer.gov/).  We also 
downloaded four gene expression profiles were downloaded 
from Gene Expression Omnibus (GEO) 
(https://www.ncbi.nlm.nih.gov/geo/) [30], namely GSE1456 
[31], GSE2034 [32], GSE3494 [33], GSE4922 [34], and 131 breast 
cancer patients from van de Vijver dataset [35]. For BRCA, NKI, 
GSE2034, GSE3494 and GSE4922, samples that survived more 
than ten years were labeled as good prognosis (five years for 
GSE1456), and samples that survived less than five years were 
labeled as poor prognosis. Probes corresponding to multiple 
genes were discarded, and when multiple probes are mapped 
to the same gene, the median value was used to eliminate the 
influence of measurement errors. The gene expression data 
were normalized by the Z-score. Meanwhile, due to the certain 
number of zero values in the RNA-seq data, we filter out the 
genes whose number of zero values are more than 10% of the 
total number of samples so as to reduce the impact of noise. 
Table 1 shows the details of the gene expression datasets.  

The data of human GO annotations was collected from Gene 
Ontology Consortium [36, 37] 
(http://www.geneontology.org/) 
. Known disease-associated genes (DAGs) were downloaded 
from DisGeNET (http://www.disgenet.org/) [38]. 

The fusion network contains the following sources: (1) 
regulatory interactions; (2) binary interactions from several 
yeast two-hybrid high-throughput and literature-curated 
datasets; (3) literature-curated interactions derived mostly from 
low-throughput experiments; (4) metabolic enzyme-coupled 
interactions; (5) protein complexes; (6) kinase-substrate pairs 
and (7) signaling interactions. The network data was 
downloaded from [21] and only physical protein interactions 
were retained. There are 13,460 proteins and 141,296 
interactions in the network. 

• Binary interactions: Several yeast-two-hybrid high-
throughput datasets [39-43] with binary interactions from 
IntAct [44] and MINT databases [45] were combined, resulting 
in 28,653 interactions between 8,120 proteins.  

• Literature curated interactions: the interactions 
obtained by low-throughput experiments from the literature 
were collected from IntAct, MINT, BioGRID [46] and HPRD 
datasets [47], resulting in 88,349 interactions between 11,798 
proteins. 

• Regulatory interactions: The TRANSFAC database [48] 
preserved the regulatory interactions and there were 271 
transcription factors regulating 564 genes via 1,335 interactions. 

• Metabolic enzyme-coupled interactions: The metabolic 
interactions were obtained from Lee, et al. [49] and there are 
5,325 such metabolic links between 921 enzymes. 

• Protein complexes: the CORUM database [50] was used 
to obtain protein complexes, resulting in 2,837 complexes with 
2,069 proteins connected by 31,276 interactions. 

• Kinase-substrate pairs: The network of peptides that 
can be bound by kinases can be obtained from PhosphositePlus 
[51] , which included 6,066 interactions between 1,843 kinases 
and substrates. 

• Signaling interactions: The dataset from Vinayagam, et 
al. [52] listed 32,706 interactions between 6,339 proteins that 
integrated several sources, both high-throughput and literature 
curation, into a directed network in which cellular signals were 
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transmitted by PPIs. 
2.2 Prognostic and heterogeneous biomarker 

identification 

The prediction and diagnosis of cancer patients are difficult 
due to the heterogeneity of samples. Inspired by Choi et al. [23], 

cancer samples were clustered by using the principal 
components of gene expression and k-means to minimize the 
effects of the heterogeneity of samples. We utilized the maximal 
silhouette score to determine the number of clusters. The 
principal component analysis (PCA) plots were shown in Fig.1. 

TABLE 1 SUMMARY OF THE GENE EXPRESSION DATASETS 

Name Good samples Poor samples Total samples Total genes Characteristic for label Reference 

BRCA 31 92 123 14160 days_to_death 
https://genome-
cancer.ucsc.edu 

GSE1456 123 22 145 12432 SURV_RELAPSE [31] 

GSE2034 44 93 137 12432 Time to relapse or last follow-up [32] 

GSE3494 123 36 159 12432 Disease-Specific Survival Time [33] 

GSE4922 107 69 176 12432 Disease Free Survival Time [34] 

NKI 83 48 131 10703 TIMEsurvival [35] 

  

  

  

  
Fig.1 PCA plots. PCA plots using two highest principal components (PC) 

for each dataset. 

To comprehensively evaluate the effect of genes on breast 
cancer, genes in the network were scored from the perspective 
of biological functions, prognostic ability and correlation with 
DAGs for each cluster of samples. The scores of DAGs which 
represent the relevance of breast cancer were used as the values 
of these genes in the network. The prognostic ability of a gene 
was evaluated through its t-score, which is calculated as 
follows, 
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where 
ix and 

iy are the means of gene i in positive samples 

and negative samples.
ixs and

iys are the sample standard 

deviations of gene i in positive samples and negative samples, 
respectively. n and m are the number of positive and negative 
samples, respectively. 

The score of biological functions for each gene is defined as 
the frequency of GO terms containing the gene within the set of 
all GO terms,  
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where 
iN  is the number of GO terms contained in gene i, and N 

denotes the number of all GO terms.  
For each scoring strategy, we introduced the label 

propagation model to rank genes in the fusion network with the 
initial weight of gene nodes. With the given fusion network 

( )n nW 
 and the weighted genes, the label propagation model is 

to reassign a score to each gene according to the structure of the 

network and the initial weights of genes. Let ĝ be the initial 

weight of genes in the fusion network which represents the 
prior information constructed by different scoring methods, and 
g be the score vector to be learnt. The label propagation 
considers that two connected nodes in the network should be 
assigned similar scores [53], and the objective function can be 
expressed as follows. 
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where ˆ
ig is the i-th element of vector ĝ  while

ig is the i-th element 

of vector g. D is a diagonal matrix and
iiD is the sum of row i of 

W.  ( 0 1  ) is used to control the relative importance of 
the prior information, and the value is set as 0.6. The parameter 
analysis is shown in Fig.S1. In Eq. (3), the first term is the 
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Laplacian graph constraint, and it is used to make the connected 
genes to have similar label scores. The second term is the 
regularization term, which ensures the label scores of genes to 
close the initial scores. 

After constructing the normalized matrix 1/2 1/2'W D WD  , 

i.e., ' /ij ij ii jjW W D D , Eq. (3) is equivalent to, 
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For each cluster, three sets of scores of genes are obtained by 
the label propagation model and the three scoring strategies. 
Then, the comprehensive scores of genes are obtained by,  
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where m represents the three scoring strategies: biological 
functions, prognostic ability and correlation with DAGs, and 

( )m i  is the score of gene i in the m-th scoring strategy.  

Finally, we computed the average rank of each gene in all 
clusters and selected high ranking genes (in the study, the top-
ranking value is set as 100) as biomarkers. Thus, genes which 
are more important topologically and functionally, related to 
breast cancer and significantly differentially expressed are 
ranked higher. The details are stated in Algorithm FUNMarker. 

A lgor i t hm FU N M arker Algorithm of biomarker discovery

I nput : Genes expression data and fusion network

Out put : Biomarkers

1: Datan or m Ã normalize the gene expression data

2: Obtain PC1 and PC2 from Datan or m based on PCA

3: Cluster the samples using K-means

4: for c = 1; :::; K do

5: for i = 1; 2; 3 (three scoring strategies) do

6: weighted networki Ã i scoring strategy

7: scor ei Ã Label propagat ion (weighted networ ki )

8: end for

9: Scor ec = 1
3

P 3
m = 1 scor em

10: end for

11: Compute the average rank of each gene in all clusters

12: BiomarkersÃ Top-ranking genes
 

3 RESULTS AND DISCUSSION 

3.1 Prognostic effectiveness of biomarker identification 
methods 

To evaluate the performance of our method, a 
comprehensive scheme was built to verify the effectiveness of 
our method. Three network-based biomarker identification 
methods were compared to our method, namely NetRank [17], 
stSVM [18] and CPR [23]. NetRank is a biomarker discovery 
method which is alike to Pagerank. NetRank sorts genes based 
on their prognostic relevance using both expression and 
network information. stSVM identifies biomarkers by 
smoothing t-statistics of individual genes over the structure of 
network. CPR clusters samples and uses modified PageRank to 

score and rank genes and extracts effective prognostic and 
heterogeneous features.  

A random forest classifier and five-fold cross-validation were 
used to evaluate the performance of the methods in the 
classification. For the unbiased evaluation, we repeated these 
experiments for 100 times for entire datasets.  

The ROC curves and AUC were shown in Fig.2 and Table 2. 
The results have shown that the ROC and AUC resulted from 
FUNMarker is better than other methods, which indicates that 
the biomarkers found by FUNMarker have stronger 
discriminative power than those by other methods for breast 
cancer patients with different prognosis. Meanwhile, the 
method CPR shows better classification performance than the 
other two methods in general. This may be attributed to the fact 
that CPR reduced the influence of heterogeneity of samples 
through sample clustering. However, CPR does not consider 
enough biological information in view of the complexity of 
cancer samples. This may lead to its relatively poorer 
classification ability than FUNMarker. 

 
 TABLE 2 AUC OF THE FOUR METHODS ON SIX DATASETS  

Methods GSE1456 GSE2034 GSE3494 GSE4922 NKI BRCA 

FUNMarker 0.87 0.73 0.85 0.76 0.88 0.83 

CPR 0.70 0.64 0.65 0.63 0.78 0.64 

NetRank 0.67 0.63 0.62 0.59 0.74 0.61 

stSVM 0.68 0.58 0.63 0.60 0.74 0.60 

 

 

Fig.2 ROC curves. (A) GSE1456, (B) GSE2034, (C) GSE3494, (D) 
GSE4922, (E) NKI, (F) BRCA. 
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3.2 Analysis of the effectiveness of fusion network  

To verify the effectiveness of the fusion network in the cancer 
prognosis analysis, we applied our proposed framework to 
every single biological network, and then we compared the 
AUC of every single network and fusion network. The results 
were shown in Fig.3. For every dataset, the AUC of our method 
using the fusion network is higher than those using single 
networks, which indicates that, compared with any single 
network, the fusion network can improve the accuracy of 
classification on each dataset. 

 

Fig.3 Comparison of the fusion network and single networks.  

3.3 Reproducibility and Kaplan–Meier survival analysis 

Reproducibility is an important consideration for the 
effectiveness of biomarker identification methods. Therefore, 
we analyzed the overlapped prognostic biomarkers among the 
six datasets. Fig.4 shows that there are overlapped biomarkers 
appearing in n datasets, which indicates that FUNMarker can 
capture biomarkers with reproducibility. Meanwhile, 
biomarkers identified by FUNMarker include some famous 
disease genes related to breast cancer, such as TP53, AKT1, 
BRCA1, CHEK2, EP300, MLH1, CTNNB1, ESR1, ATF4, MDM2, 
STK11, IKBKG, and TP53, IKBKG, EP300 appear in at least two 
datasets. 

 

Fig.4 Reproducibility of biomarker prediction. The bars show the number of 
prognostic biomarkers appearing in n datasets. 
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Fig.5 The Kaplan-Meier survival curves for the prognosis data of breast cancer in training and test cohorts. (A) GSE1456 in training cohorts. (B) GSE1456 
in test cohorts. (C) GSE2034 in training cohorts. (D) GSE2034 in test cohorts. (E) GSE3494 in training cohorts. (F) GSE3494 in test cohorts. (G) 

GSE4922 in training cohorts. (H) GSE4922 in test cohorts. (I) NKI in training cohorts. (J) NKI in test cohorts. (K) BRCA in training cohorts. (L) BRCA in test 
cohorts. 

Next, we estimated the advantage of converting the survival 
time regression to the classification problem, which divides the 
patients into two classes based on the survival time, and the 
effectiveness of prognostic biomarkers identified by 
FUNMarker. The Kaplan–Meier survival analysis is 
implemented by R package ‘survival’. 

To investigate the Kaplan-Meier analysis for biomarkers 
captured by FUNMarker, we chose the cutoff score according to 
the votes of random forest and then samples in both the training 
and test cohorts were classified into two classes: good and poor 
prognosis by using biomarkers resulted from FUNMarker. The 
Kaplan-Meier survival estimation is shown in Fig.5. The 
Kaplan-Meier survival curves show that p-value<0.0001 in 
training cohorts (Fig.5A, Fig.5C, Fig.5E, Fig.5G, Fig.5I, Fig.5K) 
and p-values in test cohorts are significant on all the six datasets 

(Fig.5B, Fig.5D, Fig.5F, Fig.5H, Fig.5J, Fig.5L), which indicates 
that FUNMarker performs well for the breast cancer. 
3.4 Functional analysis of biomarkers 

To verify the relationship between biomarkers identified by 
FUNMarker and breast cancer, we first analyzed the GO 
annotations for the identified biomarkers. The R package 
‘clusterProfiler’ was used for GO enrichment analysis at three 
levels: biological process (BP), cellular component (CC), and 
molecular function (MF). The results of BRCA dataset were 
shown in Fig.6 and Fig.S2-Fig.S6. It can be seen that most of 
biomarkers are mapped well onto breast cancer-related 
processes or biological factors, which reveals the functional 
importance of the identified biomarkers. 
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Fig.6 GO annotations for the identified biomarkers in BRCA dataset. (A) 
BP. (B) CC. (C) MF. 

In order to verify the interpretability of biomarkers found by 
FUNMarker, we analyzed the enrichment of DAGs in 
biomarkers. DAGs can directly reveal the causes of diseases in 
the biological sense, Thus, the enrichment of DAGs in 
biomarkers were calculated to indicate the functional 
interpretability power of biomarkers. The hypergeometric test 
was used to calculate the p-value of the enrichment of the DAGs. 
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where N is the number of all genes in the gene expression data, 
M is the number of DAGs enriched in all genes, n is the number 
of biomarkers, m is the number of DAGs enriched in the 
biomarkers. 

We transformed the p-value to −𝑙𝑜𝑔10(𝑝 − 𝑣𝑎𝑙𝑢𝑒) . The 
significance of DAG ratio of biomarkers captured by 
FUNMarker in six datasets were shown in Fig.7. The results 

show that the method incorporating the functional information 
and inferring features from multiple levels is more enriched 
with DAGs.  

 

Fig.7 Significance of DAG ratio for biomarkers identified by FUNMarker in 
six datasets was evaluated by hypergeometric test. 

Differentially expressed genes (DEGs) can effectively assess 
the extent of dysfunction and may contain more prognosis 
information. Therefore, we also analyzed the level of 
significance of dysregulation in the biomarkers. DEGs were 
obtained by t-test and hypergeometric test was used to calculate 
the p-value of the enrichment of the DEGs. The significance of 
DEG ratio is shown in Fig.8. Obviously, FUNMarker has the 
powerful ability of identifying dysfunction-explainable 
biomarkers. 

 

Fig.8 Significance of DEGs ratio for biomarkers identified by FUNMarker in 
six datasets was evaluated by hypergeometric test. 

4 CONCLUSION 

As a highly heterogeneous disease, breast cancer lacks 
effective prognostic biomarkers that can effectively predict the 
outcome of breast cancer patients. Conventional network-based 
methods either only utilize the network with single attribute 
and gene expression profiles to identify the prognostic 
biomarkers, or use network with multiple attributes without 
considering the integration of multiple biological information. 
The former may lead to the inaccurate results due to the 
incomplete interactome, false-positives and false-negatives of 
the networks, and the latter may result in that important 
information may not be used effectively.  

In this study, we proposed a novel computational 
framework, which identified the prognostic breast cancer 
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biomarkers based on multiple network fusion and multiple 
scoring strategies. The biomarkers captured by our approach 
have both strong discriminative power in differentiating 
patients with different prognostic outcomes and better 
biological interpretability. 

To validate the performance of our computational 
framework, we have compared our approach with some state-
of-the-art approaches, such as CPR, NetRank and stSVM. The 
results have shown that the biomarkers can classify patients 
more accurately than other methods. We also analyzed the 
effectiveness of the fusion network in the cancer prognosis 
analysis, and the results showed that the fusion network can 
improve the accuracy of classification on each dataset, 
compared to any single network. Then, reproducibility and 
Kaplan–Meier survival analysis were investigated. Moreover, 
as the features should be biologically meaningful, we also 
analyzed the functional interpretability and dysregulation of 
biomarkers. Since DAGs can directly reflect the correlation of 
diseases, DEGs can effectively evaluate the extent of 
dysfunction and may capture more prognosis information. We 
analyzed the biological sense of biomarkers according to the 
enrichment of DAGs and DEGs. As expected, the results 
indicated that the biomarkers obtained by FUNMarker have 
meaningful biological sense.  

At present, we only analyze the biomarkers related to the 
prognosis of breast cancer. In the future, we would expand our 
work to pan-cancer analysis. Meanwhile, a smaller but powerful 
set of biomarkers are more practical in the clinical application, 
thus we would optimize FUNMarker to achieve the optimal 
classification ability with the minimum number of biomarkers. 
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