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Abstract  11 

Many studies have reported that exercise can influence cognitive performance. But advancing our 12 

understanding of the interrelations between psychology and physiology in sports neuroscience requires 13 

the study of real-time brain dynamics during exercise in the field. Electroencephalography (EEG) is 14 

one of the most powerful brain imaging technologies. However, the limited portability and long 15 

preparation time of traditional wet-sensor systems largely limits their use to laboratory settings. 16 

Wireless dry-sensor systems are emerging with much greater potential for practical application in 17 

sports. Hence, in this paper, we use the BR8 wireless dry-sensor EEG system to measure P300 brain 18 

dynamics while cycling at various intensities. The preparation time was mostly less than 2 minutes as 19 

BR8 system’s dry sensors were able to attain the required skin-sensor interface impedance, enabling 20 

its operation without any skin preparation or application of conductive gel. Ten participants performed 21 

four sessions of a 3-minute rapid serial visual presentation (RSVP) task while resting and while cycling. 22 

These four sessions were pre-CE (RSVP only), low-CE (RSVP in 40%-50% of max heart rate), 23 

vigorous-CE (RSVP in 71%-85% of max heart rate) and post-CE (RSVP only). The recorded brain 24 

signals demonstrate that the P300 amplitudes, observed at the Pz channel, for the target and non-target 25 

responses were significantly different in all four sessions. The results also show decreased reaction 26 

times to the visual attention task during vigorous exercise, enriching our understanding of the ways in 27 

which exercise can enhance cognitive performance. Even though only a single channel was evaluated 28 

in this study, the quality and reliability of the measurement using these dry sensor-based EEG systems 29 

is clearly demonstrated by our results. Further, the smooth implementation of the experiment with a 30 

dry system and the success of the data analysis demonstrate that wireless dry EEG devices can open 31 

avenues for real-time measurement of cognitive functions in athletes outside the laboratory.  32 

Article type: Original Research 33 
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Introduction 36 

The current thinking in sports neuroscience is that athletic performance can be improved by developing 37 

a winning brain. Definitive proof, however, demands better understandings of the links between the 38 

brain and physical behavior and some innovative biometric measurement tools (Park et al., 2015). In 39 

this regard, brain imaging is providing a new approach to training by revealing deeper insights into the 40 

interrelations between psychology and physiology in sports science. Among all the brain imaging 41 

techniques, electroencephalography (EEG) is one of the most powerful. It has a higher temporal 42 

resolution than fMRI or MEG, and it also costs less.  EEG measurements use the time and/or frequency 43 

of electrical activity in the brain to infer what types of cognitive processes are taking place. As such, 44 

they have been used extensively to explain a person’s brain state during sport and exercise (Cheron et 45 

al., 2016; Perrey and Besson, 2018). For example, EEG indexes have been used to study: the 46 

differences in brain activity between champions and novices (Del Percio et al., 2008; Babiloni et al., 47 

2010; Cheng et al., 2015; Wang and Tu, 2017; Wang et al., 2019) and to maintain optimal sporting 48 

performance through neurofeedback training (NFT) (Cheng et al., 2015; Mirifar et al., 2017; Xiang et 49 

al., 2018).  50 

Traditional wet sensor-based EEG systems, i.e., “wet, wired systems” provide excellent signal quality 51 

but require proper skin preparation with the application of conductive gel in order to minimize 52 

impedance at the skin and sensor interface (Miller and Harrison, 1974). So, the preparation time is 53 

usually long and a bit messy as these conductive gel leaves residue on the scalp. Moreover, the skin 54 

preparation for use of wet electrodes is generally uncomfortable for participants as the repeated gel 55 

application poses an infection risk and occasionally, the procedure might be painful due to skin 56 

abrasions. Furthermore, there might be short circuit between electrodes if the gel leaks out of the 57 

electrode (Roberto, 2010). Additionally, these traditional wet sensor-based EEG systems are 58 

particularly not suitable for long-term studies as the signal quality may deteriorate over time as the gel 59 

dries (Ferree et al., 2001). Another major issue with the traditional EEG systems is that the wired 60 

connections from the electrodes need go to the amplifier, which greatly limits the mobility of the 61 

participants, hindering the deployment of these wired EEG systems in real-world applications. For 62 

sports science, this severely limits the practical applications of EEG analytics (Park et al., 2015; 63 

Bertollo et al., 2019; Wang et al., 2019). To overcome this constraint, several dry, wireless systems 64 

have been developed over the past decade (Liao et al., 2011; Lin et al., 2014; Lin et al., 2019; Lin et 65 

al., 2020; Chen et al., 2014; Lopez-Gordo et al., 2014). These systems bring great convenience and 66 

portability that could help brain imaging progress from lab-based research to field applications (Lopez-67 

Gordo et al., 2014; Xu et al., 2017). Compared to the fitting and removal of wet electrodes, which 68 

require specific expertise and time (Chen et al., 2014), the easy-to-handle dry electrodes can be quite 69 

helpful in fostering the practical application of EEG in sports while minimizing variances related to 70 

measurement errors (e.g., cross-talk between electrodes due to excessive amounts of gel application).  71 

The reliability of dry systems in measuring brain dynamics has already been demonstrated with real-72 

world brain-computer interfaces (Lin et al., 2019), education (Xu and Zhong, 2018), and clinical 73 

assessment (Lin et al., 2017). However, their use in sports science has barely been explored. Recently, 74 

di Fronso et al. (2019) used an endurance cycling task to compare the performance of a novel 64-75 

channel dry sensor cap versus a gel-based one. Their results show the average preparation time of the 76 

dry cap at around a third that of the gel-based cap. Further, through an average power spectral density 77 

analysis, they found the quality of measurements from both systems to be equivalent. Bertollo et al. 78 

(2017) reach the same conclusion in a study of individual alpha peak frequencies (iAPFs) induced by 79 

fatigue (Bertollo et al., 2017). Dry electrode sensors have also been shown to reliably detect the P300 80 

component of event-related potentials (Zander et al., 2011 and Mathewson et al., 2017). 81 
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Since attention promotes goal-directed behavior by reducing distractions from external stimuli, it is a 82 

critical cognitive ability during exercise and competition (Furley, and Wood, 2016). P300 waves are a 83 

reliable indicator of attention (Polich, 2007, Wang et al., 2016 and Kao et al., 2019), and some studies 84 

have shown this brain dynamic has strong links to sports expertise (Nakata et al., 2010, Zhang et al., 85 

2015 and Wang and Tu, 2017), although the correlations are far from conclusive. Further, there is still 86 

no consensus on its effects (McMorris and Hale, 2012). Magnié et al. (2000), for example, use 87 

significant increases in P300 amplitude and significant decreases in P300 latency to demonstrate that 88 

long-term exercise has a favorable effect on cognitive functions, whereas Killane et al. (2013) show 89 

both remain stable across different exercise conditions. Their study used a conventional wet sensor-90 

based EEG system to investigate the amplitude and latency of P3 event-related potentials in an auditory 91 

oddball task while subjects were seated (static condition) and while cycling (in place) (dynamic 92 

condition). Using a small, mobile EEG system, Debener et al. (2012) obtained reliable P300 readings 93 

during an auditory oddball paradigm where participants walked outdoors around a university. Their 94 

results show that single-trial P300 measurements can be categorized, with a further correlation analysis 95 

showing a strong association between P300 amplitudes in indoor and outdoor recording conditions. 96 

Zink et al. (2016) used a mobile EEG system to evaluate the ERP characteristics of a three-class 97 

auditory oddball paradigm. The scenarios were sitting still on a bike, pedaling a fixed biked and biking 98 

freely around – all outdoors. They noted a decrease in P300 amplitude in the free biking condition as 99 

compared to the still and fixed pedaling condition. Using an ICA approach, Gramann et al. (2010) 100 

contrasted ERPs recorded using standard equipment during a visual oddball task with four movement 101 

conditions: performed on a treadmill, standing, slow walking, fast walking and running. Their results 102 

provide evidence of comparable P300 effects across different movement conditions, demonstrating 103 

that reliable effects can be obtained during moderate whole-body movements. However, their study is 104 

limited to a laboratory setup. 105 

Wireless dry-sensor EEG devices are a critical part of bringing BCI applications to the real world. In 106 

this study, we explore the impact of exercise at varying intensities on visual attention using a wireless 107 

dry-sensor EEG system (Lin et al., 2011, Lin et al., 2015). Our results make several contributions to 108 

the literature:  109 

 evidence that dry EEG systems can reliably assess the brain dynamics during exercise 110 

 the effect of varying intensities of exercise on visual attention.  111 

Materials and Methods  112 

The EEG cap and dry sensors 113 

The EEG data were collected using the BR8 system (Brain Rhythm Inc.), designed by our research 114 

team. This EEG device (Figure 1A) uses two types of dry sensors, Foam-based and Spring-loaded dry 115 

sensors (Figure 1B and 1C). The foam sensors are made of an electrically conductive polymer covered 116 

in a conductive fabric. The spring-loaded sensors have eight probes coated in gold arranged in a 117 

geometric configuration that establishes good electrical contact with an irregular scalp surface with 118 

low skin-electrode interface impedance. To avoid any pain should force be applied to the sensors, the 119 

bottom surface is covered with rubber padding. Both types of sensors can measure EEG signals without 120 

any conductive gel. Detailed specifications for each are shown in Table 1. 121 

The performance and reliability of the BR8 system is comparable to conventional wet sensor-based 122 

systems (Liao et al., 2014). And the efficacy of both types of sensors has been validated in a series of 123 

studies: Liao et al., 2011; Lin et al., 2011; Liao et al., 2014; Yu et al., 2016; Lin et al., 2019; Lin et al., 124 
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2020). Foam based sensors are used on the hairless region (Lin et al., 2011), therefore mainly in the 125 

frontal electrodes, and spring-based sensors are used for the remaining electrodes as hairs reduces the 126 

contact area at the electrode-skin interface (Liao et al., 2014). Of course, the main benefit is that the 127 

cap takes considerably less time to fit since there is no need for gel. The EEG channel locations follow 128 

the international 10-20 system and include FP1, FP2, Fz, C3, C4, Pz, O1 and O2 with average 129 

impedance values below 210KΩ. In this study, we collected data from all eight channels, which cover 130 

most areas of human brain including frontal, central and posterior regions. Only the signals in the Pz 131 

channel were used to analyze P300 wave as the traditionally maximum P300 amplitude is observed in 132 

this posterior region (Polich, 2007). P300 waves are known to reflect attention and memory processes 133 

(Isreal et al., 1980; Wickens et al., 1983). Since we applied RSVP experimental procedure with visual 134 

stimulus in this study, the P300 amplitude in the Pz channel will be the largest (Rosenfeld et al., 1999; 135 

Gonsalvez et al., 2007; Polich, 2007). Therefore, only the Pz channel was used for further P300 wave 136 

analytics. Participants 137 

Experimental procedure 138 

Ten male college students, at an average age of 23.5±1.5 years, were recruited from National Chiao 139 

Tung University. All participants reported corrected-to-normal vision and no history of neurological 140 

or heart problems. Additionally, all signed a consent form before performing the experiment. Ethical 141 

approval was obtained from the Research Ethics Committee for Human Subject Protection of National 142 

Chiao Tung University (NCTU-REC-106-057). 143 

The experiment consisted of a rapid serial visual presentation (RSVP) task to be performed four times, 144 

once with a resting heart rate, once after low-intensity exercise, once after high-intensity exercise, and 145 

a fourth and final time after a 2-minute rest post vigorous exercise. The salient details are illustrated in 146 

Figure 2A. Specifically, the task required participants to watch a screen, which displayed a random 147 

letter of the alphabet in white against a grey background every 200ms, equating to five visual stimuli 148 

per second (5 Hz) (see Figure 2A). One letter was chosen as the target letter, which was presented 149 

randomly in a stream of distractor letters. The participants were asked to left click a wireless mouse as 150 

soon as they identify the target letter. The rate of occurrence of the target was approximately 5% and 151 

the targets were randomly distributed in each three minutes RSVP session. Each target presentation 152 

was separated from the preceding target presentation by at least 900ms.In the first of the four sessions 153 

(pre-CE (cycling exercise)), the participants simply performed the RSVP task without cycling. 154 

However, in the next two sessions, the participants were required to cycle for 2 minutes at a specific 155 

percentage of their estimated maximum heart rate [HR(max)] before performing the task (Loprinzi and 156 

Kane, 2015) (see Figure 2C). Proposed by the American Heart Association, a person’s HR(max) is 157 

calculated according to a standard equation, MHR=220-age * (0.7~0.8)). The cycling was performed 158 

on a stationary mechanical recumbent cycle ergometer (Matrix R1x, Johnson Inc.), as shown in Figure 159 

2B. To help them reach the required heart rate, the ergometer was automatically increased by 20W 160 

every 30 seconds until they were within the specified HR(max) range. The range for the second low-161 

CE session was 40%-50% of their HR(max), and 71%-85% for the third vigorous-CE session. In the 162 

fourth and last session, i.e., post-CE, the participants rested for 2 minutes and then performed the RSVP 163 

tasks for a final time.  164 

Prior to the actual experiment, the participants were fitted with a wireless EEG acquisition system 165 

(Figure 2B) with dry sensors (Brain Rhythm Inc.) and heart rate band (Bioharness 3 monitor, Zephyr 166 

Technology Corporation) in a soundproof lab setting. The device was fixed in place using a bandage 167 

to maintain electrode-skin contact stability. The participants were instructed to avoid head movement 168 
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and electrode impedance was monitored continuously. As the sensors have a flexible substrate, it 169 

allows for high conformity between the irregular scalp surface and the electrode, thereby, molding well 170 

to the scalp surface to achieve and maintain stable electrode-skin contact. The BR8 headset is 171 

lightweight, with an unobtrusive design that provides great wearing comfort (Lin et al., 2010; Liao et 172 

al., 2011; Radüntz and Meffert, 2019). The experimenter also evaluated and confirmed with each 173 

participant the wearing comfort of the BR8 headset before the start of each session. The preparation 174 

time was less than 2 minutes as the sensors were able to attain the required skin-sensor interface 175 

impedance for its operation. The average impedance at the foam-based sensors was 103±10 KΩ and at 176 

the spring-based sensor, it was 85±7 KΩ. The ground and reference electrodes, both foam-based 177 

sensors, are applied with a clip on each ear lobe. Additionally, the participants were asked to practice 178 

both the RSVP task and cycling exercise. The whole experiment was designed in such a way as to hold 179 

the intensity of the exercise, i.e., the subject’s heart rate, at a consistent level during each session. The 180 

participant’s heart rate, displayed on a monitor, was continuously monitored by the experimenter 181 

throughout the experiment. Participants were required to increase the speed of cycling exercise to 182 

achieve the required heart rate for a specific session. The experimenter instructed the participants to 183 

adjust the speed of cycling exercise to keep their heart rate stable for a specific session. No resting 184 

interval was set, and the total duration of the experiment was 20 minutes.  185 

Behavioral data analysis 186 

Accuracy and reaction times were recorded as the behavioral data. Reaction time (RT) was defined as 187 

the time from the appearance of the target to the mouse click. Accuracy was calculated as the ratio of 188 

correct detections, both target and non-target, to the total number of corresponding appearances. For 189 

example, in a session where 847 letters appeared that were not the target letter, non-target detection 190 

accuracy was calculated as the number of times the participant did not click the mouse, divided by 847. 191 

SPSS was used for the statistical analysis. 192 

EEG data analysis 193 

The EEG data were pre-processed and analyzed using the MATLAB toolbox, EEGLAB (Delorme and 194 

Makeig 2004). Each epoch included the signal from 100 ms before the target appearance to 800 ms 195 

afterwards. Each epoch was baseline corrected using the average EEG activity in the 100 ms before 196 

the target onset. The epochs with incorrect responses were not considered for P300 analytics. To 197 

investigate the brain dynamics elicited with high signal-to-noise ratios (SNR) and to estimate the P300 198 

component, ensemble averaging (EA) was applied to all epochs. Ensemble averaging method involves 199 

averaging all the target trials to extract the event related potential from EEG background activity (Luck, 200 

2005)  and is a commonly employed method to reliably detect and amplify the P300 wave 201 

(Rakotomamonjy et al., 2008; Mak et al., 2011; Shi et al., 2012; Bekdash et al., 2015; Vareka and 202 

Mautner, 2015).During preliminary analysis, we evaluated the amplitude of P300 wave in the C3, C4 203 

and Pz channels, however, the maximum amplitude is observed in the Pz channel as reported widely 204 

in the literature (Polich, 2007 and Lin et al., 2015). Therefore, we evaluated the P300 amplitude in the 205 

Pz channel at around 250 to 500 ms across all experimental sessions. 206 

To eliminate interference, we followed the difference wave method (target minus non-target) and all 207 

points within the range were averaged for further comparison. Statistical differences in the heart rate 208 

and P300 amplitude comparisons were identified through two-tailed paired t-tests with the p-values 209 

adjusted according to the false discovery rate (FDR).  210 
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Results  211 

Heart rate 212 

The mean heart rates for the four sessions are shown in Figure 3 and listed as follows: pre-CE mean 213 

73.6 ± 6.4 bpm; low-CE mean 112.0 ± 4.4 bpm; vigorous-CE mean 151.2 ± 3.7 bpm; and post-CE 214 

mean 115.5 ± 5.6 bpm. The paired t-tests with FDR correction was employed to compare the heart 215 

rates during different sessions. Unsurprisingly, the pre-CE heart rates were significantly lower than 216 

both the low-CE rates (t(9)=17.69, p<0.001) and the post-CE rates (t(9)=20.21, p<0.001). And the 217 

vigorous-CE rates were significantly higher than all other sessions at: pre-CE t(9)=43.28, p<0.001; 218 

low-CE t(9)=25.56, p<0.001; and post-CE t(9)=38.87, p<0.001. There was little difference between 219 

the heart rates for the low- and post-CE sessions (t(9)=2.09, p=0.066).  220 

Behavior 221 

These behavioral results indicate the impact of different intensities of exercise on the cognitive 222 

performance. Figure 4 shows the average reaction times (RT) for each session. The average reaction 223 

time for each session were: pre-CE mean 371 ± 89 ms; low-CE mean 361 ± 82 ms; vigorous-CE mean 224 

335 ± 56 ms; and post-CE mean 384 ± 102ms. The paired t-tests with FDR correction show that 225 

participants responded significantly faster to the targets in the vigorous-CE session than in the pre-CE 226 

(t(9)=-2.76, p=0.022), low-CE(t(9)=-2.63, p=0.027) and post-CE session (t(9)=-3.02, p=0.014). 227 

Further, RTs in the post-CE session were significantly greater than that of the low-CE session 228 

(t(9)=2.42, p=0.038), but not the pre-CE session (t(9)=1.971, p=0.08). There was no difference 229 

(t(9)=1.56, p=0.152) between the RTs for the pre-CE and low-CE sessions. These results show that 230 

exercise enhances attention.  231 

Figure 5 shows the mean accuracy of correctly identifying non-targets for each session, i.e., not 232 

clicking the mouse when the displayed letter is not the target. The mean accuracy for each session is: 233 

pre-CE mean 0.79 ± 0.06; low-CE mean 0.79 ± 0.06; vigorous-CE mean 0.79 ± 0.05; and post-CE 234 

mean 0.79 ± 0.05. The paired t-tests with FDR correction reveal no significant differences between 235 

these accuracy rates. Figure 6 shows the mean accuracy for the targets at: pre-CE mean 0.95 ± 0.06; 236 

low-CE mean 0.91 ± 0.15; vigorous-CE mean 0.93 ± 0.09); and post-CE mean 0.95 ± 0.07. The low-237 

CE session had the lowest accuracy, but the differences were not statistically significant (pre-CE 238 

session t(9)=0.925, p=0.189; vigorous-CE t(9)=0.741, p=0.239; post-CE session t(9)=1.439, p=0.09. 239 

Therefore, accuracy did not vary significantly across the different sessions. 240 

P300 at different maximal heart rates 241 

P300 waves reflect brain dynamics involved with decision making, particularly stimulus evaluation 242 

and categorization. Hence, these results indicate visual attention. Figure 7 shows the ERP waveforms 243 

recorded in the Pz channel during each of the sessions. Table 2 summarizes the P300 amplitudes for 244 

the target (T) and non-target (NT) and the difference wave generated by subtracting the non-targets 245 

from the targets. The paired t-tests with FDR correction show a significant difference between the 246 

target and non-target during all sessions. The P300 component for target detection was clearly evoked 247 

at different levels of exercise. The amplitude of P300 in the post-CE session was significantly lower 248 

than in the other sessions: pre-CE t(9)=-2.57, p=0.030; low-CE t(9)=2.51, p=0.033; and vigorous-CE  249 

t(9)=4.10, p=0.003. Although the amplitude for the vigorous-CE seems notably higher, the differences 250 

to the other sessions were not significant: pre-CE and low-CE t(9)=0.26, p=0.805; pre-CE and 251 
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vigorous-CE t(9)=0.50, p=0.629; and low-CE and vigorous-CE t(9)=-1.84, p=0.099. There was a 252 

marked declining trend in P300 amplitude during the vigorous-CE session. 253 

Discussion 254 

In line with others that have found exercise influences cognitive performance (Sibley et al., 2006, 255 

Tomporowski et al., 2005, Vestberg et al., 2012, 2017, Cona et al., 2015, Chaddock et al., 2012, Chang 256 

et al., 2011 and Voss et al., 2011), working memory (Komiyama et al., 2015), and executive function 257 

(Chang et al., 2015), our results show considerable evidence that exercise enhances cognitive 258 

performance.  259 

The experimental task was designed in a manner to evaluate the visual attention during a cycling task 260 

that mimics real-world exercise condition. Consistent with a realistic exercise condition, initially the 261 

participants are at rest before starting the exercise at a low-intensity and then proceeding to a more 262 

vigorous exercise at the end. Therefore, the participants performed RSVP task before performing any 263 

cycling exercise in the first session. In the second session, the participants performed RSVP task with 264 

a low-intensity exercise. Further, the third session reflects the attention in maximal exercise condition 265 

where the participants perform RSVP task in vigorous exercise. The fourth session reflects the cool-266 

down condition after exercise where the attention of the participants after performing exercise is 267 

evaluated. The sequence of cycling exercise was not randomized as it might be strenuous for 268 

participants to perform vigorous exercise swiftly from the rest condition(s). Therefore, we designed 269 

the task such that the participants can gradually increase the intensity of the exercise, mimicking 270 

realistic exercise conditions. However, the intensity of exercise, evaluated by the heart rate of the 271 

participant, is held at a consistent level in each session. Thus, the observed effects in reaction time and 272 

P300 amplitude during each session cannot be explained by cross-condition influences. 273 

In this study, we examined the impact of exercise on visual attention using a classical RSVP task. The 274 

randomization of single-target trials in each session diminished response biases related to expectancy. 275 

However, our results show high level of accuracy in identifying the target in all the four sessions. This 276 

can be explained by our RSVP task design as it is widely reported in the literature that accuracy is high 277 

in a single-target RSVP task (Raymond and Arnell, 1992). In our RSVP task, we found that the 278 

participants had enhanced attention and responded significantly faster after performing vigorous 279 

cycling exercise. 280 

It has been demonstrated in many studies that exercise also induces a higher P300 amplitude (Magnié 281 

et al., 2000, Hillman et al., 2003, Tomporowski and Ellis, 1986, Kamijo et al., 2007, Won et al., 2017), 282 

which suggests that vigorous exercise is of value to cognitive performance, particularly, attention. P300 283 

amplitude is known to be proportional to the number of attentional resources allocated for a particular 284 

task (Wickens et al., 1983, Schubert et al., 1998; Kida et al., 2004) and an indication of the allocation 285 

of attention and context updating in working memory (Donchin and Coles, 1988). In our tests, P300 286 

amplitudes were higher during vigorous-CE (Ref. Fig. 7). However, P300 amplitudes for the post-CE 287 

session were significantly lower than that of the other sessions, probably as a result of peripheral and 288 

central fatigue (Dempset et al., 2006, Faria et al., 2005). Our findings show that vigorous exercise 289 

enables attentional resource allocation, and more resources were allocated to the RSVP task during the 290 

vigorous-CE session, suggesting the value that vigorous exercise brings to executive control function.  291 

Increased P300 amplitudes following intense exercise is explained to be the result of general arousal 292 

and enhanced attention (Magnié et al., 2000). Higashima et al. (1996) found a direct correlation 293 

between increased P300 amplitudes during vigorous exercise and increases in cerebral blood flow. 294 
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Further, according to Bhambhani et al. (2007), cerebral blood flow increases during exercise until the 295 

subject reaches a respiratory compensation threshold and then decreases due to fatigue, explaining the 296 

decreased P300 amplitude during post-CE session. Our findings also indicate an increased P300 297 

amplitude during vigorous exercise, which confirm that the observed increase in the P300 amplitude 298 

is a function of the intensity of the exercise. Another major highlight of our work is the use of the BR8 299 

dry sensor EEG system, which greatly reduced the setup time as no skin preparation was required. 300 

Studies with oddball experiments both stationery (Zander et al., 2011) and walking (Debener et al., 301 

2012; De Vos et al., 2014) have already demonstrated that dry sensor systems can measure P300 302 

amplitudes as reliably as conventional wet sensor systems. Moreover, the performance and reliability 303 

of the signals recorded by the BR8 was demonstrated to be comparable to traditional wet sensor-based 304 

systems (Liao et al., 2014). Furthermore, in our earlier study (Lin et al., 2015), the BR8 system 305 

demonstrated great success in detecting P300 waves. In current study, we evaluated the amplitude of 306 

P300 wave in the Pz channel as the maximum amplitude is reported to be observed in the Pz channel 307 

(Polich, 2007 and Lin et al., 2015). However, despite recording the signals in eight channels, it is only 308 

due to the nature of the experiment that we limited our analysis to Pz channel. Even though only a 309 

single channel was evaluated in this study, the quality and reliability of the measurement using these 310 

dry sensor-based EEG systems is clearly demonstrated by our results.  311 

 312 

However, the EEG signals during a real-world sports activity might be plagued with various artifacts 313 

due to sports movement, including electromyography artifacts from muscular activity and 314 

ballistocardiographic artifacts (Thompson et al., 2008; Gwin et al., 2010; Kline et al., 2015). Therefore, 315 

more rigorous artifact removal strategies should be employed in such real-world sport applications 316 

(Gramann et al., 2014; Cao et al., 2015). Moreover, BR8 system can be conveniently deployed in 317 

mobile real-world scenarios as it is wireless and transfers data via Bluetooth as compared to traditional 318 

EEG devices that require the wired connections to go from the electrodes to the amplifier. However, 319 

deploying the device in long term EEG studies extending over two hours might be limited as the device 320 

battery will need charging. 321 

 322 

 323 

Our findings in the RSVP task enrich the literature with evidence that dry sensor-based EEG systems 324 

can reliably detect P300 waves and amplitudes. As P300 waves reflect changes in attention, this study 325 

shows that it is possible to measure attentional resources using dry sensor EEG systems. In the current 326 

study, we measured event-related potential and the effect of exercise on visual attention, but there are 327 

many other forms of attention that could and should be explored. Further, similar studies with a greater 328 

number of subjects would add strength to these findings. Nevertheless, our results are encouraging and 329 

pave the way for a closed-loop BCI system with wireless, dry sensor-based EEG systems in real-world 330 

sports environments.  331 

 332 

Conclusion 333 

In this study, we show that it is possible to measure brain dynamics accurately and reliably during a 334 

cycling exercise using dry-sensor EEG systems. Furthermore, we demonstrate that exercise improves 335 

visual attention, as evidenced by decreased reaction times and increased P300 amplitudes. Beyond 336 

providing evidence that EEG activity can indicate intensity of exercise and attention levels, our results 337 

also demonstrate that dry EEG systems have great potential for convenient, real-time monitoring of 338 

athletic performance through brain dynamics in the field in the near future. Future research should 339 

explore the use of dry sensor systems in field settings with a greater number of subjects to gain more 340 
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accurate and statistically significant results. However, these promising results so far should promote 341 

investigation of attentional cues in real-world settings, thereby advancing sports neuroscience.  342 
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Table 1. Specifications of the dry sensors in the BR8 wireless EEG acquisition system 609 

 Foam Spring-loaded 

Size (mm) 15*15*14 15*15*14 

Weight 0.8g 1.8g 

Impedance 200-500K 200-500K 

Average life 

span 

60 hours 8760 hours 

Position No hair area Hairy area 

 610 

Table 2. The mean ± standard deviations for P300 amplitude in the Pz channel with the wireless EEG 611 

system for different heart rate conditions. * Standard deviations are in parentheses.  612 

 

Target Non-Target t value p value 

Difference Wave  

(Target-Nontarget) 

Pre-CE 12.90 (9.76) -0.60 (1.38) 4.75 < 0.001 13.50 (8.89) 

Low-CE 11.58 (6.79) -0.98 (1.35) 4.93 < 0.001 12.57 (8.07) 

Vigorous-CE 15.11 (7.17) -0.10 (1.38) 7.88 < 0.001 15.2 (6.10) 

Post-CE 5.19 (2.03) -0.28 (0.93) 8.78 < 0.001 5.47 (1.97) 

 613 
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 615 

Figure1: (A) The BR8 EEG acquisition device; (B) a foam sensor; and (C) a spring-loaded sensor, both 616 

used in the BR8 system 617 

 618 

Figure 2: (A) The experiment setup; (B) A subject performs the RSVP task and cycling exercise 619 

simultaneously wearing the BR8 wireless EEG system; (C) Experiment design with four sessions. The 620 

different exercise intensities are set as a percentage of the participant’s estimated maximum heart rate 621 

(Loprinzi and Kane, 2015).  622 

 623 
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 624 

Figure 3. Average heart rates (in bpm) during the four experimental sessions (Pre-CE, Low-CE, 625 

Vigorous-CE and Post-CE). *** denotes that p < 0.001 626 

 627 

Figure 4. Average reaction times (in ms) in different sessions (with different maximal heart rate 628 

conditions). * denotes p < 0.05.  629 

 630 
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 631 

Figure 5. Average non-target detection given different maximal heart rate conditions. 632 

 633 

Figure 6. Average target detection given different maximal heart rate conditions. 634 
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 635 

Figure 7. Averaged P300 values for target (T) and non-target (NT) detection in the Pz channel  636 

 637 


