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ABSTRACT

Positive correlation can be diversely instantiated as shifting,
scaling, or geometric pattern, and it has been extensively
explored for time-course gene expression data and pathway
analysis. Recently, biological studies emerge a trend
focusing on the notion of negative correlations such as
opposite expression patterns, complementary patterns, and
self negative regulation of transcription factors. These
biological ideas and primitive observations motivate us
to formulate and investigate the problem of maximizing
negative correlations. The objective is to discover all
maximal negative correlations of statistical and biological
significance from time-course gene expression data for
enhancing our understanding of molecular pathways.

Given a gene expression matrix, a maximal negative
correlation is defined as an activation-inhibition two-way
expression pattern (AIE pattern). We propose a parameter-
free algorithm to enumerate the complete set of AIE patterns
from a data set. This algorithm can identify significant
negative correlations that cannot be identified by the
traditional clustering/biclustering methods. To demonstrate
the biological usefulness of AIE patterns in the analysis
of molecular pathways, we conducted deep case studies
for AIE patterns identified from Yeast cell cycle data sets.
In particular, in the analysis of the Lysine biosynthesis
pathway, new regulation modules and pathway components
were inferred according to a significant negative correlation
which is likely caused by a co-regulation of the transcription
factors at the higher layer of the biological network.
We conjecture that maximal negative correlations between
genes are actually a common characteristic in molecular
pathways, which can provide insights into the cell stress
response study, drug response evaluation, etc.

INTRODUCTION

A molecular pathway is referred to as a series of actions
among molecules in a cell leading to a certain end point

∗To whom correspondence should be addressed. Tel: +65 67906253; Fax: +65 6792 6559; Email: jyli@ntu.edu.sg

of cell function. Pathway identification is usually aimed to
uncover all biological molecules participating in the same
functional pipeline, which may include DNA/gene, miRNA,
protein or metal ion, etc. As DNA and protein play the major
roles in a pathway, gene and protein’s indirect relations are of
paramount importance for detecting and analyzing molecular
pathways.

Gene expression data, especially time-course gene
expression data, have been widely used to explore various
relationships of the genes in the pathways, with the particular
focus on the positive correlations. For example, Segal et
al. proposed to identify new pathways by assuming that
most genes in the same pathway can exhibit a similar
gene expression profile, and their proteins often interact
(1); Multiplicative patterns and scaling patterns have been
also used to describe the expression profiles of the genes
in the same pathway (2, 3, 4); Co-regulation patterns,
additive expression patterns or shifting patterns, have been
conceptualized to detect regulatory modules from gene
expression data (5, 6); Further, geometric patterns based on
trigonometric functions are believed to be related to circular
regulation processes (7). Here, concepts such as profile
similarity, shifting pattern, scaling pattern, or geometric
pattern are all concentrated on positive correlations among
genes, implying that genes with expression homogeneity are
possible to have the same biological function.

In this work, we are interested in negative correlation.
It is also an important relationship among genes, and it
has been previously observed in many biological processes.
Schmid et al. had a study on development expression
patterns for large gene families of Arabidopsis thaliana (8);
they highlighted two groups of genes showing an opposing
expression trends from an early seed development stage to
a late stage (Fig. 1(a)). In a study of expression patterns in
the chondrogenic differentiation, James et al. had a careful
analysis on a 15-day temporal gene expression data of a
Mouse micromass culture system (9), and they reported an
interesting example on two groups of genes displaying an
opposite expression pattern. In that example, transcription
factors Sox9 showed high expression levels before day 6,
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(a) Opposing expression (b) Opposite expression

(c) Contrasting expression of
regulatory motifs

(d) Expression of compensatory
genes

Figure 1. Notion of negative correlations in biological studies.

then their expression decreased by about half; while, Ibsp
transcripts showed low expression levels until day 12 and
then had 1200-fold up-regulation (Fig. 1(b)). Chuang et al.
introduced the notion of complementary gene expression
patterns for inferring time-lagged genetic interactions (10),
which is intended to capture contrasting expression patterns
like the one that: when one gene’s expression increases, the
other gene’s decreases, or vice versa. As another example,
Stekel et al. proposed a method for modeling the so called
self negative regulation of transcription factors (11), in which
the product of one gene is assumed to regulate this gene’s
transcription factor in a feedback way.

Based on above biological ideas and primitive observations,
we propose to formulate and systematically investigate the
problem of maximizing negative correlations. The objective
is to discover all maximal negative correlations from time-
course gene expression data. A maximal negative correlation
is defined as a pair of correlated gene sets where genes
between the two sets must be negatively correlated in their
expression over a time segment, and the number of genes and
the number of time points in the segment are required to be
maximized. Therefore, maximization of negative correlations,
like detecting positive correlations, can expand and deepen
down the analysis on molecular pathways. This is in a good
agreement with a biological fact that: when two genes have
a negatively correlated interaction, then the two group genes
locating at the downstream of their participating pathways
will also form a negative relationship (12). To capture such
a pipeline of negative correlations spanning multiple time
points from time-course gene expression data, maximization
of negative correlations is a novel and effective attempt.

Maximization of negative correlations is extendable and
potentially applicable to a wide range of pathway studies
where biological molecular relationships can be mapped to
gene expression correlations. Segal et al. were interested
in motif extraction from sequences of promoters, and
observed that the expression patterns of regulatory motifs
with nucleotide variation were bi-polarly different (13).
See one example of such expression patterns in Fig. 1(c).
Shieh et al. proposed to study transcriptional compensation

interactions or synthetic lethal pairs with the idea that:
following some gene’s mutation, its compensatory gene
will be up-regulated (or down-regulated) (14). Millar et al.
were interested in the whole genome pattern of histone
lysine acetylation and methylation in Yeast to confirm a
hypothesis that different combinations of histone modification
sites are likely associated with specific and contrasting
transcription behaviors (Fig. 1(d)) (15). They also pointed
out that these patterns can exist in other organisms such
as Schizosaccharomyces pombe genome, portions of the
Drosophila melanogaster even Human genomes. Recently,
research results all show that such histone modification
patterns are correlated with Human diseases (16, 17, 18).
Therefore, through maximizing negative correlations, these
biological applications can be certainly deepened down.

Given a gene expression data matrix, a maximal negative
correlation can be viewed as an activation-inhibition two-
way expression pattern (AIE pattern) where the two groups
of genes exhibit such a behavior that when one group of
genes is up-regulated, the other group is low-expressed,
or vice versa, consistently at a continuous range of time
points. Identifying a complete set of significant AIE patterns
from gene expression data is computationally expensive.
We design a new graph-based method for an exact and
complete enumeration of AIE patterns with high efficiency.
Our algorithm combines two mining strategies: a suffix-tree
structure and a bi-clique approach for efficient search of the
AIE patterns. To our best knowledge, there is no algorithm
that can be specialized to identify AIE patterns. Clustering
methods may be easy to find out activation-inhibition relation
(7, 19), but there will be a lot of false positives, and local
negative correlations under different specific time points
cannot be identified. Biclustering can find gene expression
patterns related to specific conditions, but it’s difficult to mine
large number of genes within negative relations (20, 21). The
so called anti-correlated patterns (22, 23) are closely related
to our AIE patterns, however, their mining algorithm cannot
produce exactly AIE patterns (see a detailed comparison
later). In our in-silicon evaluation, our method has been
successfully applied to Yeast time-course gene expression data
to reveal negative correlations in the molecular pathways of
Saccharomyces cerevisiae for increasing the understanding of
its biological mechanisms.

METHODS

Let M be a time-course gene expression data set denoted
as a triplet M =(G,C,d), where G={g1,g2,··· ,gn} is a set
of genes (rows), C ={c1,c2,··· ,cm} is an ordered set of
continuous time points (columns), and d :G×C⇒R is the
level function by which d(gi,cj) represents the expression
level of gene gi at time point cj .

A continuous subset of C ={c1,c2,··· ,cm} is an ordered
subset of C with continuous time points. In other words, if
T ={t1,t2,··· ,tk} is a continuous subset of C, then k≤m and
ti =ci+j , i=1,...,k, for some j∈{0,1,··· ,m−k}.

DEFINITION 1 (Activation-inhibition two-way expression
pattern). Let X =(I,J,d) be a sub-matrix of a time-course
gene expression data matrix M =(G,C,d), where I is a subset
of G and J is a continuous subset of C, X is defined as an
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(a) An original gene expression data matrix

(b) The dichotomy matrix and its suffix tree

(c) One bi-clique and its corresponding AIE pattern

Figure 2. A suffix-tree and a bi-clique search method are combined for AIE
pattern mining

activation-inhibition two-way express pattern (AIE pattern) if
I can be divided into I1 and I2 such that at every time point
j∈J , the expression levels of genes in I1 and those in I2
satisfy either

di1,j <di2,j ,∀i1∈I1,i2∈I2

or

di1,j >di2,j ,∀i1∈I1,i2∈I2.

Suppose X =(I,J,d) is an AIE pattern in a time-course
gene expression data matrix. Usually, we require |I| and |J |
are both maximal. This means that there are no genes or no
time points that can be added into X =(I,J,d) to maintain the
conditions of the above definition.

Our method to enumerate a complete set of AIE
patterns from a gene expression data set consists of three
computational steps. The first step is to construct a dichotomy
matrix based on the original data set, which captures and
discretises the expression difference between every pair of
genes at every time point. The second step is to transform the
dichotomy matrix into another representation as suffix tree,
and to extract the time-series biclusters from this tree in order
to locate the time period when the genes possibly show a
negative correlation. The third step is to construct a bi-partite
graph according to the row ids (i.e., the gene pairs) from those
biclusters, and to distinguish two groups of genes forming a
bi-clique in such bi-partite graph.

DEFINITION 2 (Dichotomy Matrix). Given a matrix M =
(G,C,d), its dichotomy matrix DM|G|×(|G|−1)/2,|C|(M) is

defined as:

{
DMi1×|I|−i1×(i1+1)/2+(i2−i1)−1,j =0, if di1,j <di2,j

DMi1×|I|−i1×(i1+1)/2+(i2−i1)−1,j =1, if di1,j >di2,j

where i1 <i2. For each row k in DM(M), if

k= i1×|I|−i1×(i1+1)/2+(i2−i1)−1,i1∈G,i2∈G

then, the row ID of this row is assigned as <i1,i2 >.

See an example of dichotomy matrix at the left panel of
Fig. 2(b) which is derived from the gene expression matrix
shown in the left panel of Fig. 2(a). In fact, each row of
the dichotomy matrix can be considered as a 0-1 sequence,
so a suffix tree of all 0-1 sequences/rows (the right panel of
Fig. 2(b)) can be constructed in linear time (22). The depth of
the nodes corresponds to the number of time points; the leaf
nodes and the splitting nodes are marked with the row/gene
pair IDs of the dichotomy matrix. Thus, every splitting node or
leaf node is a maximal sub-matrix with every row identical in
the dichotomy matrix. A proof about the relation between the
nodes in a generalized suffix tree and the maximal biclusters
with continuous columns can be found in (22).

For every splitting or leaf node, we construct a bi-partite
graph using the gene pair IDs stored at the node. Suppose
a node contains k number of gene pair IDs: <i11,i

1
2 >,··· ,<

ik1 ,ik2 >, then we denote {i11,··· ,ik1} as the nodes at one side
of the bi-partite graph, and denote {i12,··· ,ik2} as the nodes at
the other side of the bi-partite graph. Meanwhile, assign an
edge between i

j
1 and i

j
2 for j =1,2,...,k. See an example of bi-

partite graph at the left panel of Fig. 2(c). Then, we enumerate
all maximal bi-cliques from this bi-partite graph. Assume I1
and I2 are the two vertex sets of such a maximal bi-clique, then
I1 and I2 are exactly the two non-overlapping gene groups
for an AIE pattern whose time points are decided by the edge
labels of the path leading to the splitting node or the leaf node
from the root node in the suffix tree.

The pseudo-code of our algorithm is shown in Algorithm 1.
The core sub-routine of this algorithm for the bi-clique mining
is taken from (24). The whole algorithm can be divided into
two parts and their computational complexities are analyzed
as follows. The first part is a determinant routine to solve P-
problem that discovers maximal row-identical sub matrices.
The initiation of this algorithm (line 4) needs O(G2C) time
and space; the suffix-tree construction (line 6) needs O(G2C)
time and space (20); and the identification of maximal row-
identical sub matrices from the suffix-tree (line 8) needs
O(G2C2) time. So the time and space cost of this determinant
sub-routine are O(G2C2) and O(G2C). While, the second
part is an exhaustive pattern mining subroutine to solve an
NP-problem that discovers all bi-cliques. The size of bi-partite
graph input into bi-clique mining (line 9-17) is no more than
G×C, so under the worst condition, its time complexity is
O(G2N) and space complexity is O(G2) (24). Here, N is the
number of all maximal bi-cliques, or the number of all AIE
patterns. It should be noted that, in the worst situation, the
distribution of all potential AIE patterns will be dense in the
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Algorithm 1 Suffix-tree and bi-clique two-stage method for
detecting AIE patterns in time-course data
Require: a matrix M of size G×C
Ensure: AIE patterns

1: Int GPN =G(G−1)/2
2: Int GP [GPN ][C]
3: /*Produce dichotomy matrix of M at first stage*/
4: GP = Dichotomy(M )
5: /*Construct Suffix-tree at second stage*/
6: SuffixTree ST = SuffixTree(GP )
7: /*Extract row-identical sub-matrix Bic(I∗,J) in suffix-tree*/
8: Bic <ROW,COL> = ExtractBic(ST )
9: for each <rows,cols> in <ROW, COL> do

10: /*Construct bi-partite graph B(I)*/
11: Gragh GG = GenesGraph(rows)
12: /*Bi-clique mining at third stage*/
13: Biclique <ROWG,COLG> = Biclique(GG)
14: for each <rowsG,colsG > in <ROWG, COLG> do
15: Output <rowsG,colsG,cols> is an AIE pattern
16: end for
17: end for

original data. That means the N is so large that the time cost
of AIE pattern mining will increase tremendously. Therefore,
in actual applications, we will use the size, up-down index,
and differential gap (see their definitions later) to limit the
number of potential AIE patterns. The proposed algorithm will
perform an exhaustive search for all AIE patterns under such
specific constraints.

By definition, the negative correlation in an AIE pattern
may go like the way that: at all time points in J , the expression
of the genes in I1 is always higher, or always lower, than those
of genes in I2. This is an extreme case of negative correlation.
For the other cases, I1’s expression may be higher at the first
time point, while turn to be lower at the second time point,
and then come higher again than I2’s expression. This up-
down trend at multiple time points can be measured by an
up-down index value. This index can be used to categorize
the expression trends exhibited by different AIE patterns. We
also believe that this index value of an AIE pattern is related
to the strength of a negative correlation.

DEFINITION 3 (Up-down index). Let X =(I,J,d) is an
AIE pattern, its up-down vector U is a |J |×1 vector
determined by:

∀j,Uj =
{

0, if di1,j <di2,j ,∀i1∈I1,i2∈I2
1, if di1,j >di2,j ,∀i1∈I1,i2∈I2.

An up-down index value UI of X is defined as:

UI =
|{j | Uj 6=Uj+1,j =1,...,|J |−1}|

|J |−1

Fig. 3 shows three examples of AIE pattern where the two
genes marked with solid line are in one group, while the other
two labeled as dotted line are in the second group. The AIE
pattern in Fig. 3(a) has an up-down index value of 3/5. While,

(a) (b) (c)

Figure 3. Examples of AIE patterns and their up-down trends.

the AIE pattern in Fig. 3(b) has an UI value as 1/5. In fact,
the up-down index value of an AIE pattern is the up-down
change frequency of one group’s expression against the other
group’s over a continuous time points. For the case of negative
correlation shown in Fig. 3(c), its up-down index value is 0.
However, it still looks interesting. Therefore, we introduce a
generalized Pearson’s correlation coefficient to measure the
negative correlation between two sets of variables. This is
a finer correlation measurement compared to the up-down
index.

Let I1 and I2 be two sets of gene variables with no
overlapping. The generalized Pearson’s correlation coefficient
(noted as R-value) between I1 and I2 is denoted by R(I1,I2),
and it is calculated by

R(I1,I2)=

∑
gi∈I1,gj∈I2

r(gi,gj)

|I1|∗|I2|

where r(gi,gj) is the Pearson’s correlation coefficient between
the two variables gi and gj . Note that the value of R(I1,I2)
is between -1 and 1, exactly with the same range as the
conventional Pearson’s correlation. The correlation is the most
negative when the value -1 is reached, while on the other hand,
it is the most positive when the value of 1 is approached. The
generalized Pearson’s correlation coefficient can also apply
to a set I of gene variables to measure its inherent negative
correlation if I can be properly divided into two sub-groups
I1 and I2. In this work, such I1 and I2 are obtained by a
hierarchical clustering approach.

Given an AIE pattern, the number of genes in one sub-
group (I1 or I2) can be sometimes much smaller than the other
group. So, we also introduce a group ratio index GR(I1,I2)
to measure the size balance between I1 and I2 for an AIE
pattern, as calculated by

GR(I1,I2)=
min(|I1|,|I2|)
|I1|+|I2|

To gain more insight into the negative correlation of an AIE
pattern, we also examine how wide the expression between
the two groups is. When the difference becomes wider, the
expression behavior of the two groups are more distinct,
thus the negative correlation may be more significant. To
highlight this expression divergence between the two groups
of genes I1 and I2, we define a differential gap to average the
minimum difference of expressions between the two groups
of genes, namely mini1∈I1,i2∈I2 |di1,j−di2,j | over multiple
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Table 1. Different methods on negative correlation mining.

Methods # of gene clusters Average # of genes Average # of time points
from a data set over all clusters in a data set over all clusters in a data set

(Alpha, Cdc15, Cdc28) (Alpha, Cdc15, Cdc28) (Alpha, Cdc15, Cdc28)
HCL-30 (26,14,30) (21, 35, 17) (18, 24, 17)
HCL-50 (47,34,50) (11, 10, 10) (18, 24, 17)

HCL-100 (99,82,100) (5, 5, 5) (18, 24, 17)
Kmeans-30 (30,30,30) (17, 17, 17) (18, 24, 17)
Kmeans-50 (50,48,50) (10, 10, 10) (18, 24, 17)

Kmeans-100 (99,89,94) (5, 6, 5) (18, 24, 17)
CC (100,96,96) (19, 10, 15) (8, 6, 7)

OPSM (3,2,4) (27, 58, 23) (10, 15, 9)
e-CCC-Biclustering (43,70,28) (14, 16, 12) (10, 12, 10)

AIE (105,165,151) (11, 11, 11) (10, 10, 10)

Here, Average # of time points indicates the average number of time points in the clusters or biclusters. Note that these values for HCL or Kmeans clusters are always the same.

time points. This differential gap is calculated by

G(I1,I2)=

∑
j∈J mini1∈I1,i2∈I2 |di1,j−di2,j |

|J |

RESULTS

The data used in our evaluation is a time-course gene
expression data repository related to Yeast. The raw data were
published by the Yeast cell cycle analysis project (25). This
project had acquired the expression measurements of 6179
genes involved in the Yeast cell cycle under three different
conditions: Alpha factor-based synchronization, Cdc15-based
synchronization and Cdc28-based synchronization. These
measurements are actually the relative expressions against the
control/background data; the zero expression represents the
control level. We denote these three data sets simply as Alpha
factor, Cdc15 and Cdc28 data set in this paper. The number of
time points was set by the project as 18, 24, or 17 respectively
for the Alpha factor, Cdc15, or Cdc28 condition. The time
point number 18 for the Alpha factor condition (similarly,
24 and 17 for the other two conditions) means that the RNA
samples for the 6179 genes were collected at 18 time points
starting at 0 to 7, 14, 21, ..., till the 119th minute, which covers
two cell cycles. In our data preprocessing, genes that do not
occur in any known pathways were removed according to the
Saccharomyces Genome Database (SGD) (26) which contains
142 known Yeast pathways covering 515 genes. There were
502 genes finally left in the three expression data sets, which
were subsequently used as input in our experiments. We
note that each of these 502 genes participates into at least
one pathway, and some of them participate into up to seven
different pathways. The number of genes involved in these 142
pathways varies from 1 to 23 with 5 on average.

We compare the P -values (biological significance) and R-
values (negative significance) of AIE patterns with those of the
gene clusters found by the widely used clustering/biclustering
methods. The purpose of this comparison is to confirm that
many important negative correlations were unable to be
identified by those conventional algorithms. We also present
representative AIE patterns, and other statistics information
of AIE patterns, including the up-down index values and the

differential gap information. More importantly, we take case
studies to illustrate how the AIE patterns are biologically
interpreted for enhancing the analysis of molecular pathways.

Comparison by using P -values and R-values
Conventional clustering methods under our comparison
include a hierarchical clustering method (HCL) (19, 27), a K-
means clustering method (Kmeans) (27), the Cheng&Church
biclustering method (CC)(3, 27), the order preserving sub-
matrix algorithm (OPSM) (3, 27) and e-CCC-Biclustering
(e-CCC) (23). All of their implementation are available at
BicAT (27) or at BiGGEsTS (28).

It’s specially noted that the notion of CCC-Biclusters (22)
and its extension e-CCC-Biclusters are closely related to our
concept of AIE patterns, in particular when the sign-change
rule (U ↔ D) is combined to form CCC-Biclusters or e-
CCC-Biclusters. By definition, a CCC-Bicluster has to satisfy
the condition that every possible gene pair in this bicluster
shares a positive (coherent) expression change behavior over
the time. e-CCC-Bicluster extends CCC-Bicluster by allowing
a certain degree of noise (measured by the parameter e) in
a CCC-Bicluster, such that the coherent expression change
behavior in an e-CCC-Bicluster may not be always the same
on some time points. The sign-change rule introduced in the
e-CCC-Bicluster mining algorithm (23) enriches the diversity
of these biclusters, and it can be used to detect the so called
anti-correlated patterns.

As introduced, the definition of AIE patterns is simple
and different. Two non-overlapping gene groups I1 and I2
can form an AIE pattern if and only if I1 and I2 have a
negative expression change behavior over a time segment
(Definition 1). That is, the genes in the same group (I1 or I2)
are not necessarily required to have exact coherent expression
change over the time segment. Even if the sign-change rule
is applied to AIE patterns, the gene pairs within I1∪I2 may
still not have much coherence. Though an anti-correlated
pattern may sometimes become an AIE pattern, on the other
hand, an AIE pattern usually does not satisfy the conditions
required by an anti-correlated pattern. Therefore, they two
are not equivalent. Another difference lies in the algorithms
of mining e-CCC-Bicluster and AIE patterns. Although both
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(a) Proportion of P -values in Alpha factor
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(c) Proportion of P -values in Cdc28

Figure 4. Biological significance comparison between our AIE patterns and gene clusters by the conventional methods. Here, HCL-x or Kmeans-x stands for x
number of clusters being pre-set.

of them take an exhaustive enumeration approach, e-CCC-
Biclustering needs the parameter e to control the noise level
of e-CCC-Biclusters and also needs sign-change to allow
negative correlation, while AIE pattern mining is a parameter-
free algorithm (many proposed indexes such as up-down index
and differential gap are just used in the post-analysis, although
these indexes can also be used as predefined parameters to
reduce the running time of AIE pattern mining). We would like
to also point out that both CCC-Biclusters and AIE patterns
use the maximality rule to get rid of some redundancy in the
patterns.

In our comparison, the input parameters of these
conventional methods are all set as the default values as
suggested in (23) and (27). In order to avoid possible
comparison bias, some of the gene clusters obtained by the
biclustering methods are filtered if the overlap degree between
any two clusters is more than 25% as previously done by
(22, 23, 27).

We first compare P -values (29) which can indicate a
biological significance of a gene cluster indirectly. In this
paper, P -values are calculated through gene set enrichment
analysis with Fisher’s exact test (29). A P -value less than

10−3 is widely accepted as a gold standard in most biological
significance analysis. Fig. 4 shows the bar charts representing
proportions of gene clusters whose P -values are less than
some thresholds. For example, from the Cdc28 data set, there
are 57592 AIE patterns identified. 151 of them are left after
the filtering, in which 99% have a P -value less than 10−3,
and 22% with a P -value less than 10−6. In many cases,
AIE patterns have better proportions of biologically significant
gene clusters than those of the gene clusters found by the
conventional methods. It is worth noting that the OPSM
method seems to perform better than the other biclustering
methods. A possible reason is that it only outputs no more
than 30 top clusters and no more than 5 clusters after filtering
(shown in the second column of Table 1). CC and e-CCC-
Biclustering are slightly better than our AIE method in terms
of these P-values. We also note that when the number of
clusters is set to be big by HCL or Kmeans, the genes
contained in each cluster tend to be small. As the size of a
cluster affects the calculation of P-values, the performance of
HCL or Kmeans is influenced greatly by the pre-given number
of clusters. See Table 1 for detailed information of the clusters
under different settings.
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(f) Group ratio in Cdc28

Figure 5. The generalized Pearson’s correlation coefficient and group ratio comparison between AIE pattern mining and the conventional methods.

We have seen that AIE patterns have close competitive
P -values with those of the gene clusters generated by the
conventional clustering methods. Next, we report the R-
values and group ratio information of AIE patterns. Fig. 5(a),
Fig. 5(c) and Fig. 5(e) show a box-plot view of the R-
values of the gene clusters from the Alpha factor, Cdc15,
and Cdc28 data set, respectively, by different methods. We
can see that the R-values of the AIE patterns are almost all
less than 0. This result is in full agreement with our original
notion of negative correlation. In particular, nearly half of
the AIE patterns have a R-value lower than -0.5. However,
among the gene clusters found by the traditional clustering
methods and OPSM, usually only a small proportion of them
have negative R-values. So combining the R-values and P -
values, we can note that only CC, e-CCC-Biclustering, and
our AIE approach are good to detect biologically significant
and negative correlations. We also consider the group ratio
information GR(I1,I2) of the clusters in the comparison.
The CC and e-CCC-Biclustering method both tend to find
clusters with small group ratio values around 0.2, while
our AIE patterns usually have a group ratio value higher
than 0.4. This indicates that CC and e-CCC-Biclustering
prefer negative correlations between unbalanced gene group
pairs. However, our AIE approach can indeed find negative
correlation spanning two size-balanced gene groups which can
have strong biological significance. See Fig. 5(b), Fig. 5(d)

and Fig. 5(f)) for a detailed comparison of the group ratio
information.

Representative AIE patterns from the three expression
data sets
Table 2 presents statistics information of all AIE patterns
discovered from the three data sets when the gene number
threshold for |I1| and |I2| is set as 5, and the minimal
number of time points in |J | is set as 10. In this table, the
column “# of AIE Patterns” refers to the total number of
AIE patterns from one data set, together with their average
number of genes and their average time points in one pattern;
the column Differential gap indicates the smallest, biggest,
and average expression differences between the two subgroups
for the AIE patterns in each data set; the column Up-down
index indicates the smallest, biggest, and average up-down
index values for the AIE patterns in each data set; and, the
column P-Value shows the minimal, maximal, and average
P -values of the AIE patterns in each data set. From this table,
we can see that the shape and property of AIE patterns can
vary very much. There are many other choices to set the size
threshold for |I1|, |I2|, and |J |; readers are referred to use our
website http://sunim1.birc.ntu.edu.sg/˜aie/ to get the statistics
information when a different threshold is set.

Fig. 6 displays three typical examples of negative
correlation under the three experiment conditions. These
negative correlations can be categorized into two kinds of
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Table 2. Some statistics information on the complete sets of AIE patterns.

Data sets # of AIE patterns Differential gap Up-down index P-value
& (avg. I , avg. J) (min, max, avg.) (min, max, avg.) (min, max, avg.)

Alpha factor 8508 (12, 10) (0.013, 0.311, 0.075) (0.0, 1.0, 0.20) (1.36E-13, 0.002, 3.34E-5)
Cdc15 279473 (19, 11) (0.007, 0.312, 0.073) (0.0, 1.0, 0.80) (0.0, 0.003, 1.53E-5)
Cdc28 57592 (15, 11) (0.010, 0.328, 0.086) (0.0, 0.67, 0.157) (0.0, 0.002, 2.11E-5)

(a) From Alpha factor (b) From Cdc15 (c) From Cdc28

Figure 6. Representative examples of AIE pattern from the three data sets. Here, two groups of genes colored in red and blue, show negative correlation during
the time points in orange area.

behavior according to their up-down index values. Under the
experiment condition Alpha factor or Cdc28, the expressions
of the two gene groups do not up-down change frequently.
Fig. 6(a) shows such an expression trend where the expression
up-down change happened only once which was at the time
point 9.

However, most AIE patterns under the condition Cdc15
can have up-down index values close to 1.0. See the fourth
column of Table 2. This means that the gene groups change
their expression up-down very frequently under this cell
environment. Fig. 6(b) shows a perfect example for this
expression trend that continuously crosses 14 time points.
Therefore, we can conjecture that negative correlation can
behavior in tremendously different ways in the Yeast cell cycle
when different conditions are applied, meanwhile their P -
values are all very significant (as shown in the 5th column of
Table 2 as well as in Fig. 4).

Biological interpretation of AIE patterns: three case
studies
We take special case studies to illustrate how AIE patterns
and negative correlations can be used to infer new modules
of gene regulation, transcription factors (TFs), and regulatory
networks. Our first example is the representative AIE
pattern identified from the Alpha factor data set, whose
gene expression profile is shown in Fig. 6(a). Total 11
genes are involved in the two gene subgroups of this
pattern that have a negative correlation spanning 14
continuous time points. One sub-group consists of 6
genes; We specially name it “red” group and denote
by Ir ={Y IR038C (GeneID:854856), Y NR001C
(GeneID:855732), Y KL127W (GeneID:853732),
Y OL126C (GeneID:853994), Y JL068C (GeneID:853377),
Y LR328W (GeneID:851039)}. The other group consists
of 5 genes; We specially name it “blue” group and denote
by Ib ={Y DR234W (GeneID:851820), Y DL182W
(GeneID:851346), Y DL131W (GeneID:851425),
Y BR265W (GeneID:852568), Y NR050C
(GeneID:855786)}. We also denote this pattern simply
as AIE-Alpha-87. It is one of the most negative AIE patterns
in Alpha factor according to their R-values; and its P -value

Table 3. Possible YEL009C binding sites at the upstream of the 5 genes in
the blue group of AIE-Alpha-87

Object Genes Possible binding sites
YDL131W TGACTGA, TTGCGCAA
YDL182W TGACTGA
YDR234W TGACTGA
YNR050C TGACTGA, TGACTMT
YBR265W TGACTMT

is 2.9×10−10. The main covering pathway of AIE-Alpha-87
is lysine biosynthesis, which has 7 genes known currently and
4 of them are contained in the blue group Ib.

A new regulatory module and its putative transcription
factor Let’s start the analysis on the five genes in the blue
group Ib of AIE-Alpha-87. As mentioned, four genes in Ib are
directly involved in the lysine biosynthesis pathway. In fact,
the four genes are co-regulated by a known TF Y EL009C.
As all of the five genes in Ib are inherently co-expressed, we
can infer that they altogether form a regulatory module with
Y EL009C as a co-TF. To confirm this hypothesis,

we examined the whole upstream of each gene to
identify their binding motifs by using YEASTRACT (30).
Three possible Y EL009C binding sites were identified
(Table 3). We can infer that the first four genes in this
table share a binding motif “TGACTGA”, while the last two
genes Y NR050C and Y BR265W share a binding motif
“TGACTMT”. Thus, these five genes are all likely to be co-
regulated by Y EL009C through its binding upon regulation
segments in the upstream of the five genes. This is a new
insight into the gene regulatory behavior of this module and
its transcription factor. This new understanding is mainly
attributed to the positive relationship of the genes within the
blue group.

Building a tree-structure regulatory network On top of
the idea of Boolean regulatory networks (31), we incorporate
our negative correlations and introduce a tree-structure
regulatory network for genes involved in an AIE pattern.
We take two steps to complete the induction of these trees.
The first step is to use YEASTRACT (30) to construct an
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Figure 7. A sub-regulatory tree for AIE-Alpha-87.

initial regulatory network (RN) by taking as input all the
genes in an AIE pattern as well as all of their known TFs
in Yeast; the second step is to trim the RN to eventually
become a tree structure. The trimming constraints are set
as follows: (i) all the leaf nodes of the tree are required to
represent the genes in the AIE pattern, (ii) the inner nodes all
represent the known TFs, and (iii) the tree can be decomposed
into two sub-trees by removing one edge in such a way
that each sub-tree exactly covers all genes in one group of
the AIE pattern. This edge under the removal is critically
important. The regulation represented by this edge should be
either ‘enabled’ or ‘disabled’, and there should be at least
one negative regulator to produce this negative correlation
between the expressions of the two gene groups. Fig. 7 shows
a tree-structure regulatory network built from AIE-Alpha-87.

This regulatory sub-tree possesses strong biological
meanings. First of all, the regulatory relations indicated as

edges in this tree all have direct/indirect evidence supported by
known literatures (30). In particular, Y LR451W is a negative
regulator as reported and studied in (32), while other TFs
are positive regulators. Next, we explain why genes in the
blue group can show the negative correlation with the genes
in the red group. This is likely due to the participation of
the negative regulator Y LR451W (32), which is the next
TF after Y EL009C on the regulatory paths from the root
Y HR084W to the genes in the blue group. As the TFs on the
paths from the root to the red genes are completely different
from the TFs on the paths from the root to the blue genes,
it is most likely that the negative co-regulation between the
genes in the two groups is caused by Y HR084W with an
auxiliary help from Y LR451W . In fact, a recent study found
that Y HR084W is a specific Yeast cell cycle transcription
factor (33). Thus, we can see that an AIE pattern can not only
identify two groups of genes with a negative correlation on
gene expression profiles, and can also imply that one group
genes possibly come from a same pathway, having similar
expression behavior as reference to the genes in the other
group. Therefore, such negative correlations can uncover the
connections among TFs which are at a higher layer in the
regulatory network.

New pathway components Through the above analysis,
we have already understood that there exists a possible
regulation pathway of Y EL009C on the five genes in the blue
group, and that the six genes in the red group have a negative
correlation with lysine biosynthesis which is likely caused by
the co-regulation of Y HR084W and the negative regulation

Figure 8. An expanded diagram for the pathway lysine biosynthesis after our functional annotation is used to derive new components (shown as dashed lines)
based on the negative correlation of AIE-Alpha-87.
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of Y LR451W . We next study whether the 11 genes of AIE-
Alpha-87 have any biological function relations with lysine
biosynthesis.

A known lysine biosynthesis pathway diagram can be
obtained from SGD (26). As mentioned, four (Y DL131W ,
Y DL182W , Y DR234W , and Y NR050C) of the 11 genes
of the AIE-Alpha-87 pattern participate directly in this
pathway. To see whether the other 7 genes have any
function related to a biological molecular or a biochemistry
reaction in the current lysine biosynthesis, we attempted a
function annotation. A more complete diagram for the lysine
biosynthesis pathway is shown in Fig. 8, where the dashed line
means a new component assessed by the annotation. In detail,
genes Y BR265W and Y OL126C can affect on molecules
NAD and NADPH through oxidation. Genes Y NR001C,
Y KL127W , Y IR038C, and Y JL068C are also indirectly
related to this pathway through their biochemical functions on
the direct partners of lysine biosynthesis. The most amazing
gene is Y LR328W . This gene is a key component in the
pathway of NAD biosynthesis which produces NAD, an
important molecule for the lysine biosynthesis. Therefore, all
the 11 genes have a direct or indirect relationship with the
lysine biosynthesis pathway. If taking only positive correlation
for the study, many genes indirectly related to the pathway
like those in the red group of AIE-Alpha-87 would be ignored.
Therefore, through function analysis on AIE patterns, we can
expand existing pathways by adding indirect biochemistry
reactions or by linking to other biosynthesis pathways. This
is the main reason why we say AIE pattern can enhance our
understanding on molecular pathways.

The second example of our case study is to show how a
negative correlation of the genes in the same pathway can
be used to identify gene targets in biological experiments for
testing the negative mechanism.

Gene target identification for testing negative
mechanism We found that many of our AIE patterns consist
of two groups of genes that are from the same pathways. One
example is the representative AIE pattern in Cdc15 condition
named AIE-Cdc15-273421, whose gene expression profile
is shown in Fig. 6(b). Its P-value is 4.54E−12, R-value is
about -0.55, up-down index is 1.0, and differential gap is
about 0.068. A reason to choose this pattern for illustration
is because of its extremely high up-down change frequency
(i.e. 1.0). Of the total 14 genes in this pattern, there are
six genes contained in the pathway ergosterol biosynthesis.
Three of them (Y ML008C (GeneID:855003), Y GL001C
(GeneID:852883) and Y LR100W (GeneID:850790)) are
located at upstream, while the rest three (Y MR202W
(GeneID:855242), Y GL012W (GeneID:852872) and
Y MR015C (GeneID:855029)) are at the downstream.
According to a known structure of the pathway ergosterol
biosynthesis partially shown in Fig. 9, these 6 genes function
sequentially one by one to achieve the final function of this
pathway. Associating these genes’ expressions with their
roles in this pathway, it can be observed that when upstream
genes are up-regulated or down-regulated, the genes located
at the downstream have simultaneous opposite expressions.
Intuitively, we can infer that there exists some negative
control mechanism in the path from fecosterol to episterol,
which is the functional boundary between the upstream
and downstream gene groups (Fig. 9). Interestingly, it has

Figure 9. A partial diagram of the pathway ergosterol biosynthesis.

been previously reported that ergosterol exerts a negative
feedback on its own biosynthesis in S.cerevisiae, particularly
at the C-24 methylation step involving the gene Y ML008C
(34, 35). Therefore, we can see that the negative correlation of
the genes in the same pathway is potentially useful to identify
gene targets in the biological experiments for testing negative
mechanisms.

Invariable negative correlations under different
conditions We present our third case study and examine
hierarchical clusterings of the expression profiles of the
genes in one AIE pattern under the three different cell cycle
environments. Taking again AIE-Alpha-87 as an example,
hierarchical clusterings of the expression profiles of the 11
genes in Alpha factor, Cdc15, and Cdc28 are shown in Fig. 10
(The drawing was done by the software PermutMatrix (36).)
In the case of Alpha factor, the 11 genes are nicely divided
into two groups: one matches with the blue group, the other
maps to the red group. However, the negative correlation
under Alpha factor, disappeared in the other two environments
of cell cycle. We can also see that the 4 known genes in the
pathway lysine biosynthesis always have co-behaviors under
different conditions of cell cycle, but the other genes’ negative
correlation cannot be always maintained.

Thus, another perspective to understand AIE patterns is
to see whether one pattern as a whole can be conserved
during different biological environments. Of course, the
above example is not the case. In fact, there are very
little overlapping between any two AIE pattern pairs
from different environments of cell cycle. This is because
most environmental perturbations can cause big change in
expression, resulting in alteration in the complex regulatory
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(a) AIE-Alpha-87 under Alpha factor

(b) AIE-Alpha-87 under Cdc15

(c) AIE-Alpha-87 under Cdc28

Figure 10. The expression profiles of the genes in AIE-Alpha-87 under 3
different conditions (Alpha factor, Cdc15 and Cdc28). The signs following
each gene name have specific meanings. -B stands for this gene in the blue
group; -BP stands for this gene in the blue group and also belonging to the
pathway; and -R stands for this gene in the red group.

(a) AIE-BeforeStress-4411 (b) Invariable component of
AIE-BeforeStress-4411

(c) AIE-AfterStress-3827 (d) Invariable component of
AIE-AfterStress-3827

Figure 11. An invariable negative correlation shared by six common genes
of two AIE patterns (AIE-BeforeStress-4411 and AIE-AfterStress-3827).

system. Ronen et al. had designed a glucose plus experiment
to detect affection of the small constraint perturbation (37),
which is on the other hand helpful to understand stable

negative correlations. We briefly explain two AIE patterns
identified from their data set. One AIE pattern before glucose
plus (denoted as AIE-StressBefore-4411) contains 31 genes
whose expression profiles are shown at Fig. 11(a). An AIE
pattern after glucose plus (denoted as AIE-StressAfter-3827)
contains 30 genes whose expression profiles are shown
at Fig. 11(c). Interestingly, these two patterns share six
genes that maintain the same negative correlation. The
six genes are: Y DR050C (GeneID:851620), Y JL200C
(GeneID:853230), Y CL018W (GeneID:850342) and
Y IL083C (GeneID:854726), Y OR321W (GeneID:854499),
Y OR136W (GeneID:854303). The expression profiles of
this stable negative correlation are displayed at Fig. 11(b) and
Fig. 11(d). It looks that these six genes and their negative
correlation are a stable genetic indicator during glucose plus.
From the viewpoint of gene function, the other 25 genes
in AIE-StressBefore-4411 have a significant function hit on
transferase activity (10 out of 25 genes), while the other 24
genes in AIE-StressAfter-3827 have a significant function
hit on oxidoreductase activity (10 out of 24 genes). It is also
known that oxidoreductase is closely related to high-glucose
ambience (38). Therefore, it is suggestive that this stable AIE
pattern shared by these six genes is likely involved in both
normal and stress activity of Yeast.

CONCLUSION

The main contribution of this work is the formalization of
the widely observed negative correlations in genes’ functions
within molecular pathways. Through our mining algorithm
which uses a suffix-tree data structure and a bi-clique
search idea, all possible AIE patterns in a time-course gene
expression data set can be enumerated. As some of them
are perhaps of less interests, we have suggested to use the
size threshold, up-down index, and R-value index to control
the quantity and quality of AIE patterns in the post-analysis.
Although pairs of gene clusters computed by the traditional
clustering methods can find some negative correlations, they
are unable to detect negative correlations shown in time
segments as our AIE patterns can do. The biclustering
methods can iteratively conduct clustering from both genes
and time points, it is still hard to detect all negative correlation
candidates in large data set. However, our mining algorithm
can overcome this difficulty.

Our experimental results on three Yeast cell cycle
expression data sets have demonstrated that maximal negative
correlation can occur between pairs of large groups of genes,
one group or both covering many genes from the same
pathway. Basing on existing knowledge about molecular
pathways, negative correlations can be used to infer new
gene regulation modules, transcription factors, and regulatory
networks, as shown in our case studies. With these new
elements, we are able to get a fuller and deeper picture about
the direct and/or indirect relationships of all components in
a molecular pathway. Besides, significant invariable negative
correlations are found in both normal activity and stress
activity of Yeast. All these ideas and results highlight that
maximal negative correlation is an important characteristic
in the gene expression profiles within pathways, which is
expected to be useful in the cell stress response study, drug
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response evaluation, and cancer related pathways’ detection,
etc.
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Figure 1.(a) Opposing expression  
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Figure 1.(b) Opposite expression  
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Figure 1.(c) Contrasting expression of 
regulatory motifs  
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Figure 1.(d) Expression of compensatory 
genes  
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Figure 2.(a) An original gene expression data matrix  
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Figure 2.(b) The dichotomy matrix and its suffix tree  
196x68mm (600 x 600 DPI)  
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Figure 2.(c) One bi-clique and its corresponding AIE pattern  
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Figure 3.(a)  
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Figure 3.(b)  
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Figure 3.(c)  
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Figure 4.(a) Proportion of P-values in Alpha factor  
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Figure 4.(b) Proportion of P-values in Cdc15  
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Figure 4.(c) Proportion of P-values in Cdc28  
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Figure 5.(a) R-values in Alpha factor  
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Figure 5.(b) Group ratio in Alpha factor  
208x61mm (600 x 600 DPI)  
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Figure 5.(c) R-values in Cdc15  
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Figure 5.(d) Group ratio in Cdc15  
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Figure 5.(e) R-values in Cdc28  
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Figure 5.(f) Group ratio in Cdc28  
208x61mm (600 x 600 DPI)  

 

Page 31 of 44 Nucleic Acids Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 
  

 

 

Figure 6.(a) From Alpha factor  
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Figure 6.(b) From Cdc15  
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Figure 6.(c) From Cdc28  
198x87mm (600 x 600 DPI)  
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Figure 7. A sub-regulatory tree for AIE-Alpha-87.  
196x75mm (600 x 600 DPI)  
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Figure 8. An expanded diagram for the pathway lysine biosynthesis after our functional annotation 
is used to derive new components (shown as dashed lines) 

based on the negative correlation of AIE-Alpha-87.  
194x154mm (600 x 600 DPI)  
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Figure 9. A partial diagram of the pathway ergosterol biosynthesis.  
124x283mm (600 x 600 DPI)  

 

Page 37 of 44 Nucleic Acids Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 
  

 

 

Figure 10.(a) AIE-Alpha-87 under Alpha factor  
191x78mm (600 x 600 DPI)  
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Figure 10.(b) AIE-Alpha-87 under Cdc15  
201x66mm (600 x 600 DPI)  
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Figure 10.(c) AIE-Alpha-87 under Cdc28  
191x80mm (600 x 600 DPI)  
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Figure 11.(a) AIE-BeforeStress-4411  
201x103mm (600 x 600 DPI)  
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Figure 11.(b) Invariable component of 
AIE-BeforeStress-4411  

201x116mm (600 x 600 DPI)  
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Figure 11.(c) AIE-AfterStress-3827  
199x103mm (600 x 600 DPI)  
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Figure 11.(d) Invariable component of 
AIE-AfterStress-3827  

200x116mm (600 x 600 DPI)  
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