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ABSTRACT ARTICLE HISTORY
Adiabatic processes are ubiquitous in physics and engineer- Received 7 October 2020
ing. A drawback of such processes is that they tend to be Accepted 18 February 2021
slow, either in tlme—for atomic systems, for example—or in KEYWORDS
space-for photonic systems. A number of techniques have Adiabatic devices:

been developed over the years, generically referred to as waveguide couplers
Shortcuts to Adiabaticity, that promise to speed up the evo-

lution of the process without compromising performance.

Here we review and compare these techniques, and evaluate

their performance using full numerical simulations of realistic

two-waveguide couplers, which perform a key function in

photonic circuits.

1. Introduction

Adiabatic processes, first considered by Fock and Born [1], arise in areas of
physics and engineering such as atomic physics, quantum mechanics and
photonics. Adiabatic processes occur slowly enough that the wave function
or field remains in the same Eigenstate or mode throughout the evolution,
even when the physical nature of this Eigenstate changes strongly [2-6]. The
process may evolve as a function of time, as usually applies in quantum
mechanics, or of propagation length, as typically applies in photonics. Here
we are interested in photonics and in particular adiabatic waveguide cou-
plers, which aim to couple light as efficiently as possible from one waveguide
to another. Since the formalism for quantum mechanical and photonics
processes is identical, we will take the evolution to be in z. Thus, when we
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refer to the length of a device, in an atomic physics context it refers to the
duration of the process.

Most photonic systems require the efficient transfer of light from one
waveguide into another [7], so a number of different approaches have been
developed to achieve it: one of these is butt coupling, in which the two
waveguides are placed end-to-end [8]. Such devices are by their nature very
short, but the efficiency of butt-coupling can be low when the modal profiles
and the propagation constants of the modes in the two waveguides are poorly
matched. Another approach is the directional coupler, illustrated in Fig. 1(a),
in which the two waveguides are placed side-by-side. If the two individual
waveguides have the same propagation constants and the light is coupled into
an equal superposition of the two supermodes of the coupled waveguides, the
light couples back and forth periodically over the length of the device (Fig. 1
(b)). If the device is terminated at the correct position, all light exits through
the other waveguide. Though directional couplers can be fairly short, the
requirement that the waveguides have the same propagation constants, and
the dependence of the coupling length on wavelength, constrain the perfor-
mance in terms of fabrication tolerances and bandwidth [9,10].

In contrast to these two devices, adiabatic couplers, introduced into
photonics by Cook [11], are relatively robust devices that can have a large
bandwidth [6,9,12-18]. The type of adiabatic coupling device we are con-
sidering here is illustrated in Fig 1(c). We consider the two lowest super-
modes of the device; approximately each supermode can be thought of as
a superposition of the fundamental modes of the isolated waveguides 1 and
2. However, the device is designed such that at z = 0 and z = ¢ the super-
modes closely match the modes of the individual waveguides: for the device
in Fig. 1(c), the fundamental supermode at z = 0 corresponds to the isolated
mode of waveguide 1, whereas at z = € it corresponds to that of waveguide
2. For the device in the schematic, this is achieved by varying the widths of
the waveguides. In a perfectly adiabatic process, light that is coupled into the
fundamental supermode enters through waveguide 1, remains in the funda-
mental supermode, and exits via waveguide 2, ideally with 100% efficiency.
A consequence of adiabaticity is that, provided that the supermodes coin-
cide with each of the individual waveguides at z = 0 and z = ¢, the device
performance is relatively insensitive to the perturbations of the device or
even to the details of the device design [9,17].

Even though adiabatic devices promise excellent performance, because of
the requirement of adiabaticity they tend to be quite long-ideally they are
infinitely long! It is therefore not surprising that a number of techniques
have been developed that promise to minimize this length, while maintain-
ing performance. Most of these techniques are referred to generically as
Shortcuts to Adiabaticity (STA) [3-6] — developed initially in the context of
quantum mechanics, these have been considered for applications in optics
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Figure 1. (a) Schematic of a directional coupler: two supermodes, with different propagation
constants, are excited at the input in Waveguide 1. (b) The supermodes’ interference leads to
a periodically varying output with length €. (c) Schematic of an adiabatic coupler: Light is input
in waveguide 1, corresponding to a supermode at z = 0. The light remains in this mode, which
at the end of the device corresponds to waveguide 2. The dashed line schematically indicates
the propagation of the light. (d) As the device length ¢ increases, the crosstalk u has discrete
zeros under an envelope that decreases with €.

since 2009 [19]. In Section 3, we discuss these techniques and clarify their
mutual relationships.

One shortcut technique we discuss in Section 3 is based on the Lewis-
Riesenfeld invariant theory [20-25] in which the device design is reverse-
engineered to accelerate adiabatic processes, and it has been used in appli-
cations such as atomic transport [26-28] and trap compression and expan-
sions [29-32]. Other STA methods include the counter-diabatic (CD)
approach developed by Demirplak and Rice [33] and the related transition-
less tracking method of Berry [34]. Starting from an initial device, they
introduce an additional contribution that cancels the diabatic coupling in
the original device, reducing the effect of the imperfect adiabaticity. This
approach has been applied to speed up rapid adiabatic passage (RAP) in two
level atoms [35] and was experimentally implemented in Bose-Einstein
condensates in optical lattices [36]. Alternatively, in the fast quasi-
adiabaticity (FAQUAD) [37] technique, the adiabaticity is violated to the
same extent throughout the device. We also discuss the relationships
between these methods, first addressed by Chen and Muga [21]. Although
we have included a large set of references, Figure 2 summarises some of the
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main references—the foundational papers, major reviews, key references
applying STA techniques in photonics—and provides a timeline.

While developed in the context of quantum mechanics and atomic
physics, these techniques can also be applied to photonic devices when
these are described using coupled mode theory (CMT). This theory enables
a general, simple yet powerful description of photonic devices in which
a complex physical design is expressed in terms of a reduced number of
parameters. Using this framework, a coupler such as in Figure 1 can be
described in terms of only two real functions, corresponding to the differ-
ence in propagation constant of the modes of the device (A), and the
strength of the coupling between the waveguides (k), each of which depends
on longitudinal position, and thus A = A(z) and x = x(z).

The aim of this Review is to examine the adiabatic literature in the
context of waveguide couplers, and to discuss which of the techniques
mentioned above can be useful in this context. Although the techniques
have been applied to other devices such as junctions [38,39], photonic
lattices [40], demultiplexers [41], mode converters [42] and filters [43],
curved waveguides [19], as well as multimode waveguides [44] and inter-
ference splitters [45], we choose to consider the coupling between two
waveguides [46-49] (as in Figure 1) as this is a simple nontrivial case with
only two relevant modes. Therefore, the Hamiltonian that describes the
interaction between these modes can be written as a 2 X 2 matrix with
position-dependent coefficients.

We consider lossless systems and we take this 2 x 2 matrix to be real and
symmetric, so that it has real Eigenvalues and orthogonal Eigenvectors. This
choice deserves two comments. The first indicates a difference with quan-
tum mechanics, where the 2 x 2 matrix is generally Hermitian, but in the
description of the coupling between waveguides the matrix cannot have
complex elements, and thus the description by a Hermitian matrix reduces
to that of a real, symmetric one. The second point is that for strongly
coupled waveguides, the interaction between lossless waveguides requires
a real matrix that is asymmetric [50,51]. Such matrices are of course not
Hermitian, and cannot therefore be described by the theory we are review-
ing here, though we note that STA has been generalized to non-Hermitian
systems [52,53].

The outline of this Review is as follows. In Section 2 we give a general
overview of adiabatic couplers and their mathematical description. In
Section 3 we review the key shortcut methods that have been most widely
used and discuss their mutual relationships. In Section 4 we illustrate the use
of these methods in a physically realistic geometry and compare to alter-
native adiabatic couplers generated by other techniques. Then, in Section 5
we compare the sensitivity of a number of different adiabatic couplers to the
presence of noise in the device parameters, motivated to evaluate robustness
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to fabrication errors. Finally, in Section 6 we discuss our findings and
conclude.

2. Adiabatic processes and FAQUAD

Waveguide couplers as in Figure 1 must be described by several parameters
(refractive indices and dimensions of each waveguide, spacing of the wave-
guides, refractive index of the region between and outside the waveguides),
all of which are functions of propagation length. As discussed in Section 1,
in coupled mode theory only two parameters are required. In coupled mode
theory the field in a waveguide is written as the product of a mode field,
which depends on the transverse coordinates, and a z-dependent factor
describing the propagation. For an isolated waveguide this z-dependent
factor is F = exp(iﬁz), where F is the mode amplitude, defined such that
|F|* corresponds to the power carried by the mode. The propagation in the

isolated waveguides is thus described by idF/dz = —fF.
If two waveguides 1 and 2 are brought together, and allowed to interact
linearly then we find

I‘Z—I;l = _ﬁlFl + KF2,

1
i = 4 kF, — B, M

where « represents the coupling between the waveguides and both « and the
B, , are real functions of z. We note that Bu# B, , due to the proximity of
the other waveguide. Now defining f, , = BFA and G = Fexp(—ifz),
Equation (1) can be rewritten as

d
2o =i % )ie=-io) @)

which defines the ‘Hamiltonian’ H, and where the ket |G) has the ele-
ments G172.

In the following analysis of these equations we follow Louisell [46], who,
to the best of our knowledge, reported the first systematic investigation of
adiabatic processes in the context of photonics. The instantaneous
Eigenvalues of H are + I'= 4- \/A? + «2 with associated Eigenvectors

() e p-(R)

corresponding to the instantaneous supermodes of the device, and where

tan 6 = x/A. (4)
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We now write the general solution to Equation (2) as
|G) = wi|+) + w_|—); when A and x are constant, then the wy vary
harmonically. In general though, A and « depend on z, and the w_ satisfy
the coupled equations [46]

dw, . 146

—ddz +ilw, = -3 w_—, (5)
dw_ _ — 4 1df _

. — Iw_ =437 w_

Equations (4) and (5) confirm that when A and « are constant, the w. vary
as e** and do not couple. Variations in A and « that cause variations in 6,
lead to coupling of the w.. In the truly adiabatic limit the derivatives on the
right-hand sides in Equations (5) are arbitrarily small and the equations
again decouple.

Adiabatic coupling can then be understood by taking 6(0) =0 and
0(€) = m. If light is coupled into waveguide 1, say, at z = 0, it is in super-
mode |+). In an adiabatic coupler without supermode coupling, the light
remains in this supermode, and therefore exits entirely through waveguide
2. Of course, for the light to remain rigorously in the same supermode
throughout its propagation, the device needs to be infinitely long. All the
techniques discussed in this Review correspond to strategies to minimise the
device length without compromising device performance.

Although the parameters that enter the Hamiltonian are A and «, they
enter as the combinations I' and 0 in the solutions. However, only variations
in 0 cause changes in the supermodes; thus, if A and « vary at the same rate,
so 0 is constant, then the supermodes are unchanged.

Equations (5) can be solved formally at various levels of approximation.
Assuming that the field amplitude in the original super mode remains close
to unity, the crosstalk g, that is, the fraction of the incoming power that is
not coupled over at z = ¢ can be written as [46]

2 2
¢ 40 721'J I()d7 1

1
‘lxl—Z Joae dz _Z (6)

where dp/dz = I, and p is an effective position. Note from Equation (6) that
p is, in essence, the Fourier transform of df/dz, as is particularly clear when
I' is constant. Now recall the theorem that the Fourier transform of
a function with a discontinuous m™ derivative, asymptotically is a power
law with exponent — (m + 1) [47,54]. Applying this to Equation (6) we
conclude that the asymptotic behaviour of y, i.e. the behaviour as £ — o0, is
determined by the inevitable discontinuities of 6 or any of its derivatives at
z=0 and z = { (assuming that 6 and all of its derivatives are smooth

elsewhere): when the m™ derivative is discontinuous, pox —2(m+1) [47].
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Figure 1(d) shows a typical result for the crosstalk versus device length as
calculated by integrating the coupled mode Equation (2). Note that the
crosstalk has discrete zeros, superimposed on a monotonically decreasing
envelope. Before discussing the results in Figure 1(d), we note that
Equations (5) and (6) show that the relevant quantity that determines the
degree of adiabaticity involves d0/dz; in fact, the adiabaticity criterion can
be written as [46]

——=n1<K< 1 (7)

Given inequality (7), one strategy to designing a coupler is to take # to be
constant-this is the fast quasi-adiabatic (FAQUAD) approach, which was
introduced formally by Martinez-Garaot et al. [37] and applied by Hung et
al. [55], but was used prior to that by Sun et al. [56]. From Equations (5), (6)
and (7), decreasing # leads to lower crosstalk, but with a longer device.
Hence, the choice is a compromise between performance and device length.
Note that within the constraint of Equation (7), any 6(z) that is continuous
and that has a continuous first derivative lends itself to the FAQUAD
approach. Although not obvious from Equation (7), the FAQUAD proce-
dure has the advantage that it can be applied without the need to use a
coupled mode description of the device.

To illustrate the results in this section, we consider a set of couplers with
parameters that can be varied systematically [47]: we consider the elements
of the Hamiltonian to take the values

A =T cos(nP,(()),

k = I'sin(nP,(()), ®)

where the normalised propagation length { = z/¢, with € the device length,
and thus 0 < { <1, and I is constant. The P,({) are polynomials which
satisfy P,({) + P,(1 — {) = 1, with P,(0) = 0 and thus P,(1) = 1. They are
most easily defined through their derivative (with respect to the argument)
through [47]

(2n+1)!
P,n =
(€) o

and thus Py({) = (and P,({) = 3¢% — 207, etc. As illustrated in Figure 3(a),
at { =0, 1, the lowest n derivatives of these polynomials are continuous,
whereas higher ones are discontinuous. All of the designs based on Equation
(8) have the property that 6 increases smoothly from§ = 0at{ =0to 6 =
at { = 1. As n increases, the discontinuities at the edges become weaker, and
so 0 needs to increase more rapidly in the central part of the coupler.

(((1 - ())nv (9)
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shows the mixing angle 8 along the normalised length of the device. P_, (a directional coupler)
and P, are also plotted for comparison. (b) Normalised Hamiltonian components, with coupling
coefficient k (solid) and phase velocity mismatch A (dashed) versus normalised position along
the device. (c) Crosstalk from solving Equation (2) (solid lines) for different device lengths,
keeping I constant. The crosstalk envelope (dashed line) decreases for increasing n.

Weakening the discontinuities at the edges improves the performance for
large €.

To see the drawback of increasing n we consider the expression for y in
more detail. For constant I" and for the symmetric devices we are consider-
ing here, the crosstalk vanishes when

1

f Z—?cos(2f€()d( _o, (10)
0

where 6({) = 6({ 4 1/2). For large n, d9/d( is concentrated near { = 1/2,
and so the first zero occurs for large values of I'{, whereas for small n the
first zero occurs at smaller values of I'€. To illustrate this, for n = 0, the first
zero in the crosstalk occurs when I'€ = 7, whereas for n = 1 it occurs at
I't =1.43m, and for n = 2 at I'{ = 1.837. By comparison, for a directional
coupler, for which A=0 and thus x=1I, the first zero occurs
when I't = 7/2.

The couplers defined by Equations (8) and (9) thus illustrate the practical
difficulty in choosing an ‘optimal’ design. For the polynomials with large #,
the envelope (see Figure 3(c)) decreases rapidly with I'€ [47]. Note that the
crosstalk envelope represents the degree to which the mode remains in its
Eigenstate during propagation. It thus indicates robustness to variations in
the ideal design. For larger n, the first zero in the crosstalk appears at longer
lengths. In contrast, for small n the envelope decreases slowly, but the first
zero appears at shorter lengths. However, in that case the design competes
with directional couplers. Thus, the criterion that is used to optimize the
coupler thus has a strong influence on its eventual shape.
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For the coupler with n = 0, the parameter # defined in Equation (7) is
constant, and it thus satisfies the FAQUAD condition. To compare its
performance with other couplers, we extend the polynomial Ansatz from
Equations (8) and (9) to negative integers n. We do so by defining
P_,(¢) = P, '({), where the superscript indicates the inverse of the function
(rather than its reciprocal). Thus, for all integers n, the properties listed
between Equations (8) and (9) are maintained. In this way, we obtain a set of
couplers that range from those that are highly discontinuous at the edges,
and slowly varying in the centre (n large and negative), to couplers which
are smooth at the edges and rapidly varying in the centre (n large and
positive), with the FAQUAD coupler as a compromise between these
extremes. We discuss these further in Sections 4 and 5.

3. Shortcuts to adiabaticity: methods and relations

In this section, we describe the three STA methods that have found most
widespread use [57]: the invariant method of Lewis and Riesenfeld [20], the
work of Demirplak and Rice in counter-diabatic (CD) driving [33], and
Berry’s transitionless tracking (TT) algorithm [34]. We first give general
descriptions of each of these methods at the operator level and then explore
how they can be applied to solve the particular problem of power transfer in
a waveguide coupler. Furthermore, we discuss connections between these
methods. To better facilitate this, notation is kept consistent between sub-
sections where applicable. Overall, these methods provide a way to start and
end in a pure state of the Hamiltonian for a given device length. We
explicitly show the z-dependence in all equations in this section for clarity.

3.1. Lewis-Riesenfeld invariants

The original work of Lewis and Riesenfeld [20] proposes to seek a Hermitian
invariant I(z) for a dynamic system driven by H(z) satisfying

dl_ol 1

=+ lI(2), H(z) =0, (1)

for all z. Assuming the basis set is complete since the invariant arises from
some observables, we can write

I(2) = ) _|$,(2))An(,(2)], (12)

with ‘¢n(z)> the orthonormal Eigenstates and A, the corresponding
Eigenvalues. By considering the z-derivative of this expression in conjunc-
tion with Equation (11), Lewis and Riesenfeld [20] show that A, must be
constant. In general, the method uses ‘reverse engineering,” with an assumed
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invariant, and then derives constraints on a Hamiltonian such that Equation
(11) is satisfied. In doing so, states can be represented by

G(2)) =Y ™|, (2)), (13)

where the ¢, are z-independent amplitudes and a,(z) is the Lewis-
Riesenfeld phase for state n. By requiring that the right hand side satisfies
the dynamics in Equation (2) for any choice of amplitudes, Lewis and
Riesenfeld [20] show that

= (0.0

We now turn to the particular case of a two waveguide coupler. Lai et al. [58]
derive a representation of the invariant for particular Hamiltonians, includ-
ing the Hamiltonian in Equation (2). It can be written as

0
i~ —H
l@z (2)

¢n(z)>. (14)

H(z) = 2A(z)Ko + x(z) (K4 + K_), (15)

1/1 0 0 1 0 0
KO:E(O —1)’ K+:(o 0)’ K‘:(l o>‘ (16)

Since [Ky, K| = +K4 and [K;, K_] = 2K, it satisfies the conditions of Lai
et al. [58], and the invariant is given by

with

I(z) = R(2)KoR(2)T, (17)

where
R(z) = exp <_ YLRT(Z) (K+eiﬁm(z) _ KeiﬂLR(Z))) . (18)

Here y,,(z) and f3;(z) are auxiliary real functions that parametrise the
possible invariants. The following development closely follows that of
Chen et al. [21] and was later applied to waveguides by Tseng [23].
Applying this procedure yields

1 Brr s
I— . ( _igos ViR efirsiny, ) . (19)
e Pirsiny, . —cosyp

Equation (19) has Eigenvalues Ay = +1/2, with Eigenstates

iBrr Yir s a VIR
ERE (e e ) ¢_) = ( S y) (20)

sin VLTR —e #ir cos iz
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Substituting Equation (19) into the invariance condition Equation (11)
yields a coupled system of differential equations

dyir

dz
B _
2t = 2Kcos P oty — 2A.

= 2Ksin B, (21)

We note that the expression here may differ from those in other publica-
tions by a factor 2, which arises from different definitions of H. The
method of Lewis-Riesenfeld is indirect, in that, once y,, and f3;, are
known, A and x can be found. The functions y,, and f3,, are arbitrary
except for their boundary conditions at z = 0 and z = €. At the ends of the
coupler, there should be no coupling and thus ¥ = 0. This gives

_ e
dz

z=0

dyir

I (22)

z=¢{

This also ensures that [I(0),H(0)] = [I(€),H(€)] =0, implying shared
Eigenstates between H and I. From the Eigenstates in Equation (20), we
observe that to start and finish in different pure states (i.e. to transfer power
from one waveguide to the other) requires

yLR(O) =T, YLR(K) =0, (23)

or vice versa without loss of generality. Equations (22) and (23) are the
boundary conditions that are necessary for a valid coupler that transfers
power from one waveguide to the other. To validate the performance at all
device lengths, Chen et al. [21] chose length-invariant boundary conditions
of the form

dPir
dz

_ dfir

20 dz

C
z={ ¢

with C>0 a constant. From a dimensional analysis perspective, we observe
that this is the only dependence on € that leads to identical behaviour at all
device lengths. Furthermore, in the interests of keeping the coupler realistic
by minimising the coupling coefficient x, Chen et al. [21] chose boundary
conditions on f3; , to maximise sin f3;, in Equation (21)

Brr(0) = Bip(€) = —m/2. (25)

One choice that satisfies the requirements in Equations (22)-(25) are third-
order polynomials for y, z(z) and f3;z(2z) [21].

The parameterization from {x, A} to {y,,,f;z} may provide additional
other benefits for waveguide couplers. Tseng [23,24], leveraging the work
from quantum population transfer of Ruschhaupt et al. [59], uses these
parameters in the Lewis-Riesenfeld phase a,, to describe the robustness of
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the device to constant deviations in Hamiltonian elements. The error
sensitivity as a function of invariant parameters was optimized, producing
couplers that are resilient to changes in either x¥ or A. This is discussed
turther in Section 5.

3.2. Counter-diabatic method

The method proposed by Demirplak and Rice [33] approaches the problem
from a different perspective. The central observation of this approach is that
an evolving non-adiabatic Hamiltonian Hy(z) leads to transitions between
states. These transitions arise from off-diagonal terms in the Hamiltonian,
and can be countered by adding a counter-diabatic term Hcp(z) to the
Hamiltonian. Under the dynamics of the new, ‘corrected” Hamiltonian
H(z) = Hy(z) + Hcp(z) the system remains in the initial Eigenstate of the
non-corrected Hamiltonian [57], as shown in Figure 4.

To find the appropriate counter-diabatic Hamiltonian, we transform the
ket |G(z)) appearing in Equation (2) to a basis set that evolves together with
the Eigenstates of the uncorrected Hamiltonian Hy(z). These Eigenstates

|n(z)) satisfy
Ho(2)[n(z)) = En(2)|n(2))- (26)

with Eigenvalues E,(z). A basis transformation must be unitary, and can
generally be written as

—-=-[(n|Gy)I? ' o~
0.020 } 7N §
[{ncp |G0+c02>|2 I/' \
0015 — (N Ggscp) / \

YaREN

power [a.u.]

0.0 0.2 0.4 0.6 0.8 1.0
S

Figure 4. Fractional power in the unwanted Eigenmode versus distance for a coupler designed
with the counter-diabatic method. Dashed curve: power variation in the supermodes of the
uncorrected Hamlitonian Hy(z). Solid black curve: evolution of the corrected Hamiltonian
Ho(z) + Hcp(2) projected onto its Eigenstates. Red curve: same evolution, but projected onto
the Eigenstates of the original Hamiltonian |n(z)).
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[¥(2)) = Ucp(2)|G(2)), (27)

and the evolution of the transformed system is then given by the
Schrodinger Equation (2)

L 15(2)) = ~iH ()i (2), 28)

for a new Hamiltonian H(z). To avoid transitions, this transformed
Hamiltonian should be diagonal in the basis of Eigenstates |n(0)). H(z)
depends on the particular choice of Ucp(z) via

H(z) = Ucp(2) Ho(2)Ucn(2) — iUcp (2) % Ucp ()]

+ Ucn(2)Hen(2) Uen (2). (29)

The first term can be made diagonal by choosing Ucp(z) such that its row
vectors are the transposed Eigenstates (n(z)|, and so

Uen(2) = ) _[n(0))(n(z2)] (30)
The remaining off-diagonal terms can be made to vanish by choosing
_6UCD (Z)T . 0
Hep(2) = i——" Ucn(2) = zzn: 5, 1n@) )(n(2)~ 6D

For any given non-adiabatic Hamiltonian, we therefore have
H(z) = Ho(z) + Hep(2)

DI CIACTCIRE) o () ICTRES

where the first (diagonal) term evolves the states to match the Eigenstates at
position z, and Hcp(z) cancels out transitions resulting from the evolution.
For a reference Hamiltonian Hy(z) (Equation (2)) we explicitly find that
Equation (32) reduces to a Hamiltonian of the form

ido
H(z)=< Ai.ﬁ HW) (33)

where 0 is defined as in Equation (4). In this form, we see that the counter-
diabatic Hamiltonian intuitively manifests as a correction to the coupling
term x, and this correction is related to the adiabaticity criterion 7
(Equation (7)).
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3.3. Transitionless-tracking algorithm

Berry’s transitionless tracking algorithm [34] takes a similar approach to
suppressing transitions between states. Instead of changing the basis of the
Hamiltonian to one in which the elements are diagonal in the basis of initial
states, the approach seeks to find a unitary operator that preserves adiabatic
states under evolution. These adiabatic states correspond to the states
traversed by the system if the change in the Hamiltonian is performed
adiabatically, and are, to within a phase factor, the same as the instantaneous
Eigenstates |n(z))

v,(2)) = €?|n(z)) (34)

where ¢,(z) incorporates the integrated phase accumulation from the
energy E,(z) of the state, together with the geometric phase. A unitary
transformation that preserves the probability distributions of states under
evolution from 0 to z is

UTT Z €l¢ |ﬂ ( )’ (35)

The Hamiltonian that performs such a transformation can then be found.
Substituting the relation |G(z)) = Urr(z)|y(0