
“© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.”

 1

Abstract—This paper proposes a fast navigation scheme for a

wheeled robot in unknown environments. The navigation scheme

consists of obstacle boundary following (OBF), target seeking (TS),

and vertex point seeking (VPS) behaviors and a behavior

supervisor. The OBF behavior is achieved by a fuzzy controller

(FC). This paper formulates the FC design problem as a new

constrained multiobjective optimization problem and finds a set

of nondominated FC solutions through the combination of expert

knowledge and data-driven multiobjective ant colony

optimization. The TS behavior is achieved by new fuzzy

proportional-integral-derivative (PID) and proportional-

derivative (PD) controllers that control the orientation and speed

of the robot, respectively. The VPS behavior is proposed to

shorten the navigation route by controlling the robot to move

toward a new subgoal determined from the vertex point of an

obstacle. A new behavior supervisor that manages the switching

among the OBF, TS, and VPS behaviors in unknown

environments is proposed. In the navigation of a real robot, a new

robot localization method through the fusion of encoders and an

infrared localization sensor using a particle filter is proposed.

Finally, this paper presents simulations and experiments to verify

the feasibility and advantages of the fast navigation scheme.

Keywords: Robot navigation, obstacle avoidance, multiobjective

optimization algorithms, evolutionary fuzzy control, data-driven

fuzzy systems.

I. INTRODUCTION

utomatic navigation of a wheeled robot in an environment

is an important task in robot applications. The navigation

of a robot can be performed in an environment with a

known map or in an unknown environment, where the latter is a

much more challenging task than the former. In an unknown

environment, the entire map of the environment is not given in

advance and a robot must online determine its local path based

on its sensor measurements. This paper considers navigation of

a robot in unknown environments. One important task in robot

navigation is obstacle avoidance. To complete this task, fuzzy

control of mobile robots has been widely studied [1]-[15].

Manuscript received April, 2020. This work was supported by the Ministry

of Science and Technology, Taiwan, under Grant MOST

106-2221-E-005-004-MY2 and MOST 108-2638-E-005-001-MY2.
 Chia-Feng Juang and Ching-Yu Chou are with the Department of Electrical

Engineering, National Chung Hsing University, Taichung 402, Taiwan, R.O.C.

(e-mail: cfjuang@ dragon.nchu.edu.tw; krad05181012@gmail.com).

Chin-Teng Lin is with the CIBCI Lab, Centre for AI, FEIT, University of

Technology Sydney, New South Wales, Australia (e-mail:
Chin-Teng.Lin@uts.edu.au).

To automate the design of FCs, learning of FCs through

neural learning [1], [12] or evolutionary computation

algorithms [2]-[7], [14], [15] for obstacle avoidance has been

proposed. For the later, various single-objective evolutionary

computation algorithms have been proposed [2]-[6], [11]. The

FCs in these algorithms consider only single-objective

optimization, such as minimization of the distance error

between a robot and an obstacle. Multiobjective ant colony

optimization (ACO) of a set of FCs that consider the trade-off

between robot-obstacle distance and the robot’s moving speed

has been proposed to control a robot to perform obstacle

boundary following (OBF) [7], [14], [15]. These studies use the

same objective functions in evaluating the OBF performance

and do not consider the navigation problem. In addition to

learning algorithms, the OBF performance depends heavily on

the definitions of objective functions. In contrast to these

studies, this paper formulates the robot OBF task as a new

constrained multiobjective optimization problem to improve

the OBF performance.

Another important task in navigating a robot is target

seeking (TS). Orientation and speed control of a TS robot using

proportional-integral-derivative (PID) [16], [17] or scheduled

PID [18] controllers has been proposed posed is a typical

approach in TS. In addition, the use of Mamdani-type fuzzy

rules to determine PID coefficients for robot locomotion

control has been proposed in [9], [13], [19], [20], where tens of

manually designed fuzzy rules were used. The determination of

PID coefficients using 25 type-2 fuzzy rules for robot

orientation control was proposed in [21]. These methods need a

large rule base, which increases the computational load, and the

determination of the large number of rule parameters is a

cumbersome task. For this problem, this paper proposes

Takagi-Sugeno-Kang (TSK)-type fuzzy PID and proportional-

-derivative (PD) controllers to simplify the controller design

task. Only two fuzzy rules with a single input variable are

designed in each fuzzy PID/PD controller set, which

significantly simplifies the design task.

For robot navigation in known environments, several

global path plaining approaches have been proposed to find an

optimal path in a given map [22]-[36]. Among them, one

popular approach is grid-based planning algorithms, such as

Dijkstra algorithm [22] and A*-based algorithms [23]-[25].

This approach runs on a grid-based structure with planning

graphs given by grid vertices and edges, which constrains the

headings of the paths. To release this constraint, theta*

algorithm [26] and sampling-based planning (SBP) approach

 Fast Navigation of a Fuzzy-controlled Wheeled

Robot Through the Combination of Expert

Knowledge and Data-driven Multiobjective

Evolutionary Learning

Chia-Feng Juang, Fellow, IEEE, Ching-Yu Chou, and Chin-Teng Lin, Fellow, IEEE

A

 2

[27] have been proposed. The SBP approach performs

randomized sampling in search space, where commonly used

algorithms include probabilistic roadmap method [28],

Rapidly-exploring Random Trees (RRT) [29], and variants of

RRT such as RRT* [30], [31]. Another path-planning approach

is evolutionary computation algorithms [32], [33], which finds

an optimal path through iterations of evolutions. The above

global path planning approaches are computationally expensive

and are most suitable for planning a path on a given map.

For navigation in unknown environments, the robot must

online determine its local path based on its sensor

measurements. Various navigation approaches in unknown

environments have been proposed. One popular approach is the

potential field approach [34], [35]. This approach shows the

inherent limitations of possible oscillations in the presence of

closely spaced obstacles or narrow passages, and the robot may

be trapped in a dead cycle [34]. Online path planning using the

dynamic window approach (DWA) that finds an optimal path in

a valid local search space considering robot dynamics and

collision avoidance has also been proposed [36], [37]. To apply

the global path planning approaches to unknown environments,

construction of a local map using the simultaneous localization

and mapping (SLAM) followed by a path planning algorithm

such as the A* algorithm in the map has been proposed [38],

[39]. To improve the navigation path, the incorporation of

DWA into SLAM-based A* [40], [41] or RTT* [42] algorithm

has been proposed. A package of the SLAM-based DWA-A*

algorithm is also available inside the ROS navigation stack

[43]. Another common approach is the straightforward

switching rule of performing either TS or bypassing an obstacle.

This is a map-free approach and different map-free methods

without [4], [7], [8]-[11] or with [1], [2], [18] the consideration

of the dead-cycle problem have been proposed. However, these

methods do not consider navigating the robot through a shorter

path. In contrast to these methods, this paper proposes a

map-free fast navigation scheme in which the robot can online

determine a shorter path to the target without being trapped in a

dead cycle.

In real navigation of a robot, localization is an essential

task regardless of whether the environment is known or

unknown. Localization using a laser range finder has been

proposed in many studies based on the SLAM algorithm

[38]-[44]. This approach is computationally expensive and

typically needs iterative computations in an environment to

construct an accurate environment map from laser scanning to

obtain accurate localization. The StarGazer sensor that

localizes a moving object based on markers on a ceiling and

infrared light emitted by the robot has been developed

(http://www.hagisonic.com). Determining the location of a

robot using the StarGazer sensor has been proposed [18], [45].

This paper proposes the fusion of the StarGazer sensor and

encoders using the particle filter to correct the Stargazer sensor

errors, especially in the overlapping areas covered by different

markers.

The contributions of this paper are threefold. First, this

paper proposes new objective functions and constraints to

improve the control performance of an OBF robot. To improve

the learning performance of the FCs designed under this new

constrained optimization formulation, this paper also proposes

the combination of data-driven multiobjective ACO with expert

knowledge expressed by fuzzy rules, which takes advantage of

the interpretable property of a fuzzy control rule. Second, this

paper proposes a fast map-free navigation scheme consisting of

the fuzzy OBF and fuzzy PID/PD TS behaviors with a new

vertex point seeking (VPS) behavior proposed to shorten the

navigation path. Finally, the proposed fast navigation scheme

based on fuzzy control of the robot is applied to navigate a real

robot with a new localization approach. Experimental results

show the efficiency of the navigation scheme and high control

accuracy when the robot reaches a target.

This paper is organized as follows. Section II introduces

the rules in the FCs, learning of FCs in executing the OBF

behavior using a newly formulated constrained multiobjective

optimization problem, and the multiobjective ACO. Section III

introduces the speed and orientation control by fuzzy PID and

PD controllers during the TS behavior. Section IV introduces

the operation of the VPS behavior and the proposed fast

navigation scheme. Section V introduces the localization of a

real robot. Section VI and Section VII present simulations and

experimental results, respectively. Finally, Section VIII

summarizes conclusions.

II. MULTIOBJECTIVE FUZZY CONTROL OF AN

OBSTACLE BOUNDARY FOLLOWING ROBOT

This section introduces the FC, the wheeled mobile robot,

fuzzy control of the robot for OBF, and its multiobjective

learning configuration using the multiobjective front-guided

continuous ACO (MO-FCACO) [7].

A. Robot Fuzzy Control

This paper applies a zero-order TS-type FC to control the

robot to execute the OBF behavior. For the fuzzy set
i

jA in

input variable ()jx t of rule i , the following Gaussian

membership function is used:

() 
22 2

() exp () / ()i i i

j j j j j
x x m = − − (1)

where
i

jm and
i

j represent the center and width,

respectively. By using the product-based AND operation and

the weighted average defuzzification, the p th output py of

the FC is

1 1

1 1

()

()

r n

i i

j j p

i j

p r n

i

j j

i j

x a

y

x





= =

= =



=




 (2)

where
i

p
a is the consequent value of

p
y in rule i and r is the

number of fuzzy rules.

The controlled robot is the PIONEER 3-DX

(http://robots.mobilerobots.com/) with a laser SICK LMS-100

installed, as shown in Fig. 1. The maximum sensor

measurement fed to the FC is set to 1 m, with 1 degree of

 3

Fuzzy
controller

Multi-objective
functions

MO-FCACO

Robot

Sensor
values

Training environment
Optimization

Evaluation

Distance sensor values

StarGazer

Laser
sensor

Fig. 1. The robot and the data-driven multiobjective learning configuration of

FCs for an OBF robot starting from six different initial poses.

x

y

min ()L k

0

90−

90

45

70

25

25−

45−

70−

Front

Target

r
t

()boud k

Fig. 2. Four sensor ranges on each side of the robot, the minimum sensor

measurement
min

()L k , and the angle deviation between the directions of the

robot and the target.

angular resolution. For the right-side OBF, the right half of the

sensor range of laser measurements is divided into four ranges,

as shown in Fig. 2. The minimum sensor value ()
i

L k of range

i is fed as the FC input. The FC outputs two velocities

, [15.6,15.6] rad/s
left right

v v  − (1 rad/s= 0.098 m/s) to the left

and right wheels. In addition to the four laser sensor

measurements, the difference (1)v k − = (1)
left

v k − −

(1)
right

v k − that controls the robot at the last time step is also fed

as the FC input. Each fuzzy rule in the right OBF FC is

described by

1 1 2 2 3 3

4 4 5

1 2

: If () is and () is and () is

 and () is and (1) is

 then () is and () is

i i i

i i

i i

left right

i

right
R L k A L k A L k A

L k A v k A

v k a v k a

 − (3)

The FC parameters are all learned through a data-driven

approach introduced in Section II-B. In addition to learning

from scratch, one advantage of using the FC instead of other

nonlinear controllers is that a priori expert knowledge can be

expressed in the form of fuzzy if-then rules and incorporated

into the FC before learning. The incorporation of these control

rules helps improve learning performance. To take advantage

of this inherent property, this paper proposes a design that

combines expert knowledge and a data-driven MO-FCACO

learning approach. This paper incorporates the following two

human knowledge-based fuzzy control rules in the FC for the

OBF problem:

1 1 4
: If () is Short and () is Short

 then () is and () is

right

left right

R L k L k

v k v k −
 (4)

2 1 4
: If () is Far and () is Far

 Then () is and () is

right

left right

R L k L k

v k v k −
 (5)

The first and second control rules are assigned to control the

robot around inner and outer corners, respectively. When the

robot is around an inner corner, the distance values of
1
()L k

and
4
()L k are small, which accounts for the design of the

antecedent part in the first rule. In this condition, the robot

should make a left turn, which is accomplished by rotating the

right and left wheels forward and backward, respectively, as

inferred from the consequent part of the first rule. Similarly,

when the robot is around an outer corner, the distance values of

1
()L k and

4
 ()L k are large, which accounts for the design of

the antecedent part in the second rule. In this condition, the

robot should make a right turn, as inferred from the consequent

part of the second rule. The initial centers of the fuzzy sets

“Short” and “Far” are set to 0.3 m and 0.7 m, respectively. The

initial consequent parameter  is set to 5 rad/s . Similar to the

rules in (3), all the initial parameters in (4) and (5) are also

optimized by using the MO-FCACO algorithm. Based on the

left-right symmetry, the learned FC for the right OBF can be

directly modified to obtain the FC for the left OBF without

retraining.

B. Multiobjective Learning Configuration for Obstacle

Boundary Following

The evolutionary MO-FCACO algorithm is used to endow

the robot with the capability of learning multiobjective FCs by

itself. This self-learning technique is designed to resolve the

OBF problem that considers two conflicting objectives:

maintaining a proper robot-obstacle distance and moving at a

high speed. To address this problem, this paper applies a

multiobjective evolutionary learning configuration to find a set

of FCs showing trade-offs between the two objectives. Fig. 1

shows the self-learning configuration of the OBF robot. The FC

is learned through consecutive control trials and evolutionary

parameter optimization to accomplish the OBF task. The

training environment contains diverse concave and convex

boundaries, as shown in Fig. 1. Starting from point “A” in the

training process, the mobile robot should successfully execute

the OBF behavior with
total

T (=2000) time steps. In addition,

starting from another five different initial poses (positions “B”

to “F” in Fig. 1), the robot is required to successfully execute

the OBF behavior for 30 time steps, after which the robot

moves along the straight boundary.

The preparatory work for evolutionary learning is the

formulation of the control problem as a constrained

multiobjective optimization problem. In contrast to previous

papers on multiobjective evolutionary OBF robots [7], [14],

[15] this paper proposes the following new objective functions

and constraints to improve the OBF performance.

 4

Objective 1 (
1

f): The first control objective is that the

robot should maintain a constant distance from the followed

obstacle boundary. The objective function is defined as

1

1

min
()

1
()

100 ()

c

c

c

k

T

wall bou

L k

f
T

k
T

d d


=

−

=

+
+


 (6)

where
C

T is the time step at which the robot stops. The constant

wall
d (=0.15 m) is the desired distance between an obstacle

boundary and its nearest robot boundary in the right-side range

[0 ,90] . The measurement
min

()L k is the minimum sensor

measurement in the right-side range, as shown in Fig. 2. The

distance ()
bou

d k is the physical distance (the maximum is

maxbou
d

−
=0.2) between the laser center and the robot boundary in

the direction of
min

()L k , as shown in Fig. 2. The term ()  in

(6) is a penalty value with an initial value of (0) =0 and is

defined as follows:

() 1 , ()

(1)
(), otherwise

thk C k C
k

k






+ 
+ =





 (7)

where ()C k is a counter defined as follows:

min max

min max

() 1, () () +

() 1, () () +
(1)

 and () 0

0, otherwise

bou wall bou

bou wall bou

C k L k d k d d

C k L k d k d d
C k

C k

−

−

+ − 

− − 
+ =










. (8)

In contrast to the objective function defined in [7], [14], [15],
the new term ()k is included to avoid a large deviation from

the desired robot-obstacle distance, especially when the robot
moves along outer corners. If the robot is not close to the wall
(condition 1 in (8)), the counter ()C k will start being

increased by one at each time step. The penalty term ()k

increases when the robot is not close to the wall for more than

thC successive time steps, i.e., ()C k  thC in (7). The value

of thC is set to 10 because the robot typically takes around 10

time steps to move around a corner.

 Objective 2 (
2

f): The second control objective is that the

robot should move at high speed. The objective function is

defined as follows:

2

1

1

()
speedcT

k

c

f
V k

T
=

=



 (9)

where
speed

V is the moving speed of the robot.

 In the learning process, an FC is deemed to have failed if

one of the following four constraints is violated. These

constraints are imposed in the learning process to avoid the

convergence to failed FCs. When an FC fails, the robot stops,

and the time step is recorded as
C

T , as described above. The

first constraint is that the robot should not move far away

(greater than distance ()
f

W k) from the obstacle boundary for a

long duration (set to 2 thC =20). This constraint is formulated as

follows:

() 20
e

F k  (10)

where

min
(1) 1, () ()

()
0, otherwise

e f

e

F k L k W k
F k

− + 
=





 (11)

and

max

1
10 ,

4

2 1 3
() 2 ,

4 4

3
2 ,

4

wall total

f total total

total

bou wall total

d k T

k
W k T k T

T

d d k T
−

 

= −  

+ 











. (12)

The tolerable distance ()
f

W k decreases with time as shown in

(12). The motivation is that a looser distance constraint is

assigned at the initial control time period to allow the robot to

learn more flexibly in the early learning stage. A more

conservative distance constraint is assigned to the robot during

the final control time period to quickly distinguish the

performance of different FCs.

The second constraint is that the robot cannot too close to

the obstacle, i.e.,
min

() () 0.1
bou

L k d k m−  . The third

constraint is that the robot cannot move too slowly. The final

constraint is that the robot cannot move backward.

The two objective functions in (6) and (9) together with the

four constrains form a constrained multiobjective optimization

problem. To solve this problem, a penalty value p
T is defined

when one of the four constraints is violated; i.e., an FC fails.

The penalty value is defined as p
T =

total
T

C
T− , which is the total

number of uncompleted time steps. For a successful FC, p
T is

equal to zero. Based on the definition of p
T , the constrained

multiobjective optimization problem is reformulated as

follows:

 ˆ
i i P

f f T= + , 1,2i = . (13)

This paper sets the robot-obstacle distance
wall

d in (6) to

0.15 m, a shorter distance than the value of 0.5 m in [7], [14],

[15], [18], which induces a more challenging learning task. The

learning methods in these previous studies fail when they are

applied to control the robot with this stricter distance constraint.

The FCs designed under the new mathematical formulation and

the expert knowledge-leveraged data-driven approach show the

advantage of controlling the robot in moving along obstacle

boundaries with a smaller robot-obstacle clearance, which

reduces traveling path distance and enables the robot to pass

through narrow passages. When the assigned
wall

d value is

 5

smaller than 0.15 m, the robot may fail to perform the OBF

behavior due to different uncertainties. Therefore, this paper

conservatively sets the distance
wall

d to 0.15 m.

C. Multiobjective Front-guided Continuous Ant Colony

Optimization (MO-FCACO)

This section briefly describes the MO-FCACO algorithm

[7]. The MO-FCACO evolves with N solutions
1
, ,

N
S S and

the evolution operation consists of three phases. In the first

phase, 2L temporary solutions 1 2, , , ...,l LS S S are generated

using elite and tournament selection schemes based on the idea

of pheromone levels.

The second phase applies the Gaussian resampling

operation to each solution component ˆ j

i
s at the 2L temporary

solutions to mimic the ant wondering behavior along a path.

The mean of the Gaussian probability density function (PDF)

applied to the solution component ˆ j

i
s is set to ˆ j

i
s . After the

Gaussian resampling operation, the temporary solution vectors

generated from 1 2, ..., LS S are expressed as 1 2, , LS S .

In the final phase, each temporary solution lS

independently tracks a randomly and uniformly selected

non-dominated solution nonS . The final 2L new solutions are

given as follows:

, 1,...,() 2N l l non lS S lS LS+ = +  =− (14)

where  is a random vector whose entries are uniformly

distributed random variables in [0, 1].

 The original N solutions and the 2L new solutions are sorted

and only the top N solutions at the end of the iteration are

reserved.

III. TARGET SEEKING AND FUZZY CONTROL

This section introduces the TS behavior, which is

achieved by controlling the robot orientation and speed using

fuzzy PID and PD controllers, respectively. Details about

controllers are introduced as follows.

A. Robot Orientation Control

 Fig. 2 shows the angle deviation
TS

 , computed as follows:

TS t r
  = − , [180 ,180]

TS
  − , (15)

where
r

 and
t

 denote the orientations of the robot and

target, respectively. Depending on
TS

 , two orientation

control rules are assigned. For a large orientation deviation

TS
 , the main control objective is reducing the response time

so that the robot can quickly face the target. For a very small

TS
 , the main control objective is reducing overshoot when the

orientation deviation approaches zero. Based on this expert

knowledge,

1
Very Small Large

Fig. 3. Fuzzy sets for TS orientation control.

1
Small Very Large

Fig. 4. Fuzzy sets for TS speed control.

this paper manages the orientation control by using the

following two fuzzy control rules:
1

2

Rule 1: If | () | is Large then () is ()

Rule 2: If | ()| is Very Small then () is ()

TS ore PID

TS ore PID

k V k v k

k V k v k




(16)

where fuzzy sets “Large” and “Very Small” are described by

trapezoidal membership functions, as shown in Fig. 3. The

orientation control is achieved by applying the fuzzy PID

controller to change the left and right wheel velocities as

follows:

() () 0.5 ()

() () 0.5 ()

right f ore

left f ore

v k V k V k

v k V k V k

= + 

= − 
 (17)

where ()
f

V k is the forward moving speed of the robot and is

determined by the fuzzy PD controller detailed at Section III.B.

The consequent value ()
i

PID
v k is the output of a PID controller

and is described as follows:

1

[() (1)]
() () ()i i i

P I D

k
i TS TS
PID TS TS

t

k k
v k K k K t t K

t

 
 

=

− −
= +  +




(18)

where the units of ()
ore

V t ,
TS

 , and t are rad/s, degrees, and

seconds, respectively. The coefficients are set to
1 1 1

0.2, 0.05, and 0.02
P I D

K K K= = = in rule 1 and

2 1 1

, 0.01
P P I

K K K= = , and
2 1

D D
K K= in rule 2, where a smaller

1

I
K coefficient is assigned in rule 2 to reduce the overshoot.

B. Robot Speed Control

 This section introduces the fuzzy PD controller for the robot

speed control. Depending on
TS

 , two speed control rules are

assigned. First, if the deviation angle
TS

 is very large, then

the robot moves at a low speed slowv = 4 rad/s for a better

orientation control. If the deviation angle
TS

 is small, then

the robot moves at a higher speed toward the target using a PD

controller. Based on expert knowledge, this paper manages the

speed control by using the following two fuzzy control rules:

 6

If | () | is Very Large then () is

If | () | |is Small then () is ()

TS f slow

TS f PD

k V k v

k V k v k





(19)

where fuzzy sets “Very Large” and “Small” are described by

trapezoidal membership functions, as shown in Fig. 4, and

()
PD

v t is the output of a PD controller described as follows:

[() (1)]
() () T T

pd P T D

L k L k
v k K L k K

t

− −
= +



(20)

where ()
T

L k is the smaller of the distances between the robot

and the target or an obstacle. That is, the fuzzy PD controller

also controls the speed of the robot when it approaches an

obstacle located between the robot and the target. The units of

()
T

L k , and t are cm and seconds, respectively. The

coefficients are set to
P

K =10 and
D

K =2. The final control

outputs sent to the two robot wheels are determined by (17).

Finally, considering the moving inertia of a real robot, when

the robot is approaching an obstacle or a target (i.e.,

() 0.5
T

L k m), the moving speeds of the two wheels

determined in (18) are reduced to

() 0.5 () 0.5 ()

() 0.5 () 0.5 ()

right f ore

left f ore

v k V k V k

v k V k V k

=  + 

=  − 

(21)

The change reduces the forward moving speed so that the robot

has enough time to reorient itself to face the correct direction

when it is very close to the target/obstacle.

IV. FAST NAVIGATION IN UNKNOWN

ENVIRONMENTS

The general navigation scheme consists of three parts: TS,

OBF, and a behavior supervisor. To reduce the robot navigation

time in unknown environments, this paper proposes a fast

navigation scheme consisting of four parts, with the additional

VPS behavior proposed to reduce the robot navigation time.

The VPS behavior first finds convex vertex points, if any, of an

obstacle when the robot is executing the OBF/TS behavior and

then selects one as a subgoal to reach. The details of the VPS in

TS and OBF behaviors and the behavior supervisor are

introduced below.

A. Vertex Point Seeking During Target Seeking

While the robot is executing the TS behavior, the laser

sensor helps sense the existence of an obstacle located far away

in the direction of movement. Let (
0

x ,
0

y) denote the 2D

coordinates of the robot. The distance between the robot and the

target is denoted by T
d . In the scanning region from 5− to

5 , as shown in Fig. 5, the maximum considered distance VPS
D

is set to 6 m, which is sufficiently large in indoor environments.

In this range, if the minimum sensor measurement is smaller

than the robot-target distance, indicating an obstacle between

the robot front and the target, then the robot starts to find vertex

5 5

6m

vertex
point

TS

Target

D1 D2

vertex
point

OBF

TS

ds1
ds2

(1)  −

() 

+−

Fig. 5. Searching for two TS convex vertex points D1 and D2: as ds1< ds2, D1

is selected as the subgoal.

y

x

gap_min

Target

Check space



D



Fig. 6. The space defined to check if a convex vertex point is qualified as a

subgoal candidate.

points in the obstacle. Starting from the robot’s front direction

at zero degrees, the laser searches for possible convex vertex

points in both the clockwise and counterclockwise directions.

Consider the counterclockwise laser scanning direction: if

(1) ()
th

    − −  , (90 , 0]
o

  − (22)

where ()  is the laser measurement at degree  and
th

 (=

1.5 m) is a threshold, then the coordinates of point D at which

the distance ()  is measured are recorded as
2 2

(,)x y . The

included angle between the robot’s forward direction and the

vertex point is denoted by
1

 , as shown in Fig. 6. To determine

whether point D can be selected as a subgoal candidate, the next

step is checking if there is an enough space near this point for

the robot to pass by the obstacle. Let
1 1

(,)x y denote the

coordinates of the obstacle scanned at laser distance (0) and

3 3
(,)x y denote a point in the direction from

1 1
(,)x y to

2 2
(,)x y at distance th from

2 2
(,)x y , as shown in Fig. 6. The

included angle between the directions from 0 0
(,)x y to

2 2
(,)x y

and 3 3
(,)x y is denoted by  , as shown in Fig. 6. The distance

between 0 0
(,)x y and 3 3

(,)x y is denoted by 1
()  − − . To

define the space area, at the laser sensor direction at the angle of

 7

1 1− − , a new point
4 4

(,)x y with the distance of

1
()

th
  − + to

0 0
(,)x y is defined. The area formed by

0 0
(,)x y ,

3 3
(,)x y , and

4 4
(,)x y should contain no obstacles, as

shown in Fig. 6, which is confirmed by

1 1
() () , 1, ...,

s
i i i    − −  − − = (23)

where
1

()
s

i − − is the distance from the laser to the space

boundary at angle
1

i− − .

If both (22) and (23) are satisfied, then point D is regarded

as a subgoal candidate, and the counterclockwise laser scanning

stops. In the clockwise scanning direction, another subgoal

candidate, if any, is found by the same approach. During the

scanning process, if two subgoal candidates are found in the

two scanning directions, such as 1D and 2D in Fig. 5, then

the candidate with the minimum distance to the target (1D in

Fig. 5) is identified as a subgoal. Once a subgoal is found, the

robot moves to the subgoal using the fuzzy PID/PD controller

Described in Section III. The robot continues the original TS

behavior at each time step if no subgoal is found.

B. Vertex Point Seeking During Obstacle Boundary Following

 The robot begins the OBF convex vertex point scanning

process once the distance measurement in the front direction is

smaller than 4 m ; this condition indicates the presence of an

obstacle ahead. The search for a vertex point is constrained to

only the boundary the robot is following to avoid the dead cycle

problem of repeatedly switching between vertex points. To

satisfy this constraint, the vertex scanning process starts only if

45()
meet

o
D −  , (24)

where
meet

D is the distance that the robot encounters an

obstacle, as stated in Section IV-C. In addition, the separation

distance SD between two neighboring laser scanning

directions, as shown in Fig. 7, should satisfy

((1) ()) cos
SD

SD d     − + −  . (25)

This inequality is imposed because SD is generally a small

value (
SD

d is conservatively set to 0. 5 m), except at the convex

vertex point, for the same obstacle being followed. If (25) is not

satisfied, then the vertex search process stops, and the robot

continues the OBF behavior.

In the left OBF behavior, if (24) and (25) are satisfied, a

possible OBF-vertex point is found in the right side, i.e.,

[0 , 90)  . Similar to the VPS during TS, if

(1) () , [0 , 90)
th

     + −   (26)

then the search stops. The point on the obstacle boundary with

the distance of ()  is identified as an OBF-vertex point as

well as a subgoal, as shown in Fig. 7. The original OBF

behavior is switched to the VPS behavior.

C. Behavior Supervisor

The behavior supervisor determines the switching among

the TS, OBF, and VPS behaviors. Fig. 8 shows the flowchart of

Vertex
point

The range of search

The range of inspection



() 

(1)  +

(0)

(45) −

SD

Fig. 7. Vertex point checking and searching ranges and the OBF-vertex point

chosen as a subgoal while the robot is executing the OBF behavior.

Meet an obstacle

in the TS region Oi?

Original

Behavior is

OBF? Behavior is OBF.

(store d1 and set Cstep = 0

when switched from TS (VPS)

Yes

Yes

No

No

Yes

No

No

No

No

Yes

Behavior is VPS

Yes
No

Start

Dead cycle

constraint

satisfied?

Meet an obstacle?

Behavior is TS

Find a

TS vertex point?

Yes

End
Reach the

target ?

Reach the

sub-goal?

Yes

Yes

No

Find an OBF

vertex point?

Fig. 8. Flowchart of the behavior supervisor with the VPS behavior in the fast
navigation scheme.

the fast navigation scheme. The initial behavior of the robot is

set to TS. The surroundings of the robot are divided into three

overlapped regions:
1

[30 , 30]O = − ,
2

[0 ,180]O = , and

3
[0 , 180]O = − . If the target is located in a region

i
O in

which the robot encounters an obstacle, i.e., the minimum

distance sensor measurement is smaller than
meet

D =1 m, then

the robot switches to the OBF behavior. The avoidance of the

dead-cycle problem is considered in the fast navigation scheme.

The criteria of the robot-target distance and the time step

counter, as proposed in [2], used in deciding to switch from the

OBF to TS behavior are incorporated into the fast navigation

scheme. In the proposed fast navigation scheme, when the

supervisor switches the robot behavior from TS or TS-based

VPS to OBF, the distance 1
d between the robot and the target is

recorded, and the step counter step
c is set to zero. At the

position where the robot does not meet an obstacle in the target

region, the robot-target distance 2
d is determined, and counter

step
c starts to be increased. If 2

d < 1
d or the robot senses that

there is no obstacle between the robot and the target within the

 8

sensing region, then after step
c (=5) steps of satisfying the

constraint, the robot switches from the OBF to TS behavior.

V. ROBOT LOCALIZATION

This section introduces the proposed localization method

for localizing the position and orientation of a real robot. The

method consists of three parts: two wheel encoders, a StarGazer

sensor (http://www.hagisonic.com) at the top of the robot, as

shown in Fig. 1, and the particle filter algorithm. The StarGazer

sensor localizes a robot based on markers on a ceiling and

infrared light emitted by the robot.

The rotary encoder feeds back both the changes in the 2D

position, ()x k and ()y k , and the orientation ()
r

k of the

robot with respect to its previous state at each control time step

k . The StarGazer sensor functions as an observer that

measures the state () ((), (), ())
r

k x k y k k=z containing the

position ((), ())x k y k and orientation ()
r

k of the robot. The

particle filter fuses the information from the encoder and the

StarGazer sensor to provide the estimated state

() ((), (), ())
r

k x k y k k=x of the robot. The 3D state

ˆ ()i kx = ˆˆ ˆ((), (), ())
i i i

r
x k y k k of particle i contains the 2D

position and orientation of the robot. Initially, a group of
S

P

(=50) particles are randomly generated around the initial

observed state. In the Bayes prediction step, the next state

ˆ ()
i

kx of particle i is predicted as follows:

2

2

2

ˆ ˆ() (1) () (0,)

ˆ ˆ() (1) () (0,), 1, ...,

ˆ ˆ() (1) () (0,)

i i

x

i i

y S

i i

r r r

x k x k x k G

y k y k y k G i P

k k k G






   

= − +  +

= − +  + =

= − +  +

 (27)

where (0,)G  represents a normal distribution with zero mean,

and
x

 (=5 cm),
y

 (= 5 cm), and


 (= / 36 rad= 5
o

) are

standard deviations.

In the Bayes update step, the posterior probability

(() | (1:))p k kx z at time k is represented by the
S

P particles

ˆ ()
i

kx and their associated weights ()
i

w k computed as

follows:

3/2

2 2 2

2 2 2

ˆˆ ˆ(() ()) (() ()) (() ())

ˆ ˆ ˆ

1{ }
21

()
ˆ ˆ ˆ (2)

x y

i i i i

x yi

x k x k y k y k k k

w k e





 

  

   

− − −
− +

=

+
(28)

where the standard deviations are set to be ˆ 2
x x

 = ,

ˆ 2
y y

 = , and ˆ 2
 

 = .

Given the weights ()
i

w k , the next step performs
S

P

samplings of the particles based on their weights. The

tournament selection technique is used in the resampling

operation. In this selection, five particles are randomly and

uniformly selected regardless of their weights, and the one with

the highest weight is retained. Finally, the state ()kx is

TABLE I. AVERAGE ROBOT-OBSTACLE DISTANCE ERROR AND

MOVING SPEED OF DIFFERENT FCS IN THE TRAINING

ENVIRONMENT.

Metrics Speed (m/s) Error (m)

best-location FC 0.50 0.016

best-speed FC 0.57 0.026

Single-Objective FC [2] 0.50 0.190

(a) (b)

Fig. 9. Trajectories of the robot in an unknown, test environment using (a) the

best-location and (b) the best-speed FCs, where each square measures 0.5

m 0.5 m.

estimated from the average of the
S

P selected particles.

VI. SIMULATIONS

This section presents simulation results of the proposed

OBF, TS, and fast navigation methods, as well as comparisons

with various methods.

A. Simulation results of the OBF control

Example 1 (fuzzy control for OBF). Fig. 1 shows the

training environment created to learn the right OBF behavior.

In the MO-FCACO algorithm, the population size N was set to

40 and / 4L N= . The maximum number of learning iterations

was set to 250. The total number of rules was set to ten, with

two of them based on the expert knowledge in (4) and (5). The

other eight were in the form of (3) and were learned from

scratch. A total of 30 runs were performed for statistical

performance evaluation. To evaluate the learning result, the

two extreme FCs among the nondominated FCs in a run were

selected. They were the best-location and best-speed FCs that

achieved the minimum
1

f and
2

f values, respectively. Table I

shows the average robot-obstacle absolute distance error and

moving speed of the two FCs in the training environment.

To see the test result of these FCs in a new, unknown

environment, Fig. 9 shows the trajectories of the FCs in a test

environment for a total of 1200 time steps, where the FCs

successfully controlled the robot in executing the OBF in the

unknown environment. It was observed that the best-location

FC showed smaller turning overshoots at the corners than did

the best-speed FC. In contrast, the best-speed FC resulted in a

longer moving distance than that of the best-position FC.

To see the advantage of the combination of expert

knowledge and data-driven learning approach proposed in this

paper, comparisons with the data-driven MO-FCACO

algorithm and nondominated sorting GA II (NSGA-II) [46]

algorithm without the expert knowledge were performed. For

the two data-driven methods, the number of rules was also set

to ten, with all rules in the form of (3). Table II shows the

computation algorithm was applied to the same training
TABLE II. COVERAGE BETWEEN LEARNING THROUGH THE

 9

PROPOSED COMBINATION METHOD AND THE DATA-DRIVEN

METHODS USING VARIOUS OPTIMIZATION ALGORITHMS.

Data-driven algorithms MO-FCACO [7] NSGA II [46]

C(Proposed, B) 0.782 0.831

C(B, Proposed) 0.133 0.075

TABLE III. COVERAGE BETWEEN LEARNING THROIUGH THE

PROPOSED OBJECTIVE FUNCTION AND THOSE PROPOSED IN

VARIOUS STUDIES.

Objective function Study [14] Study [18]

C(Proposed, B) 0.595 0.569

C(B, Proposed) 0.352 0.331

TABLE IV. COVERAGE BETWEEN LEARNING THROIUGH THE

PROPOSED OBJECTIVE FUNCTION AND THOSE PROPOSED IN

VARIOUS STUDIES.

Objective function Scheduled PID Proposed

Average time step 110.1 49.6

Fig. 10. TS trajectories and the total number of control time steps required to
reach the target using the proposed control (green lines and boxes) and the

control approach in [18] (blue lines and boxes).

coverage metric [47] between the combination method and

each of the methods used for comparison (denoted by “B”). The

result showed that C(Proposed, B) was greater than C(B,

Proposed) for each of the algorithms used for comparison,

indicating that the proposed combination method has better

coverage and the advantage of incorporating the expert

knowledge to improve learning performance.

To observe the advantage of including the penalty term

()
c

T in (6) to improve the learning performance, the

objective functions for evaluating the position performance in

[14], [18] were also applied to the same two-objective OBF

learning problem. For ease of comparison, the robot started

only from point “A” in the OBF learning problem, and the ten

fuzzy rules were all learned through the data-driven

MO-FCACO algorithm, i.e., without using the expert

knowledge. For comparison of the FCs learned through these

different objective functions, all learned FCs were reevaluated

using the same objective function in [14], i.e., without the term

()
c

T in (6). Table III shows the coverage metric between the

proposed approach and each of the methods used for

comparison (denoted by “B”). The result showed that

C(proposed, B) was greater than C(B, proposed) for any of the

algorithms used for comparison, indicating that the proposed

objective function has better coverage.

For comparison, the single-objective learning configuration

proposed in [2] that optimized an FC using the evolutionary

TS

OBF

OBF

TS

VPS

(a) (b)

Fig. 11. Navigation trajectories of the robot using the proposed fast navigation

scheme in environments (a) one and (b) two in Example 3, where each square

measures 0.5m  0.5 m.

TABLE V. NAVIGATION TIME AND TRAVELLED DISTANCES OF
DIFFERENT SCHEMES FOR THE TWO ENVIRONMENTS IN EXAMPLE

3, WHERE THE NAVIGATION TIME OF A FAILED FC IS THE TIME THE

ROBOT COLLIDES WITH AN OBSTACLE.

Design Methods
Expert

[11]

Naïve

[11]

GA

[11]

PSO

[11]
Proposed

Env.

one

time (s) 17 25 27.1 25.4 8.8

distance (cm) 528 Failed 531 542 487

Env.

two

time (s) 45 25 32 21 16.9

distance (cm) 1025 Failed Failed Failed 821

environment. In this comparison, ten rules without a priori

knowledge were learned using the proposed method and [2].

Table I shows that the two FCs designed using the proposed

method achieved nearly one-tenth of the distance error, and

reached the speed that was higher than or equal to that in [2].

B. Simulation results of the TS control

Example 2 (TS control performance). This example shows

the control performance of the fuzzy PID/PD controller in the

TS. Fig. 10 shows the robot trajectories in executing the TS

behavior using the proposed controllers, where the robot starts

from different positions and orientations and reaches the same

target. For comparison, Fig. 10 also shows the robot trajectories

sing the scheduled PID control approach in [18]. Like most

previous studies [16], [17], the approach in [18] used a single

PID controller to control the speed of the robot. For the

orientation control, a scheduled PID controller was proposed in

[18] to improve control performance. Table IV shows the

average number of control steps to reach the target using

different methods. The average total number of control times of

the proposed fuzzy PID/PD control approach was smaller than

half of that in [18], which shows the superiority of the fuzzy

PID/PD controller over PID controller.

C. Simulation results of the fast navigation scheme

Example 3 (fast navigation in convex maps). This example

shows the performance of the fast navigation scheme in two

unknown environments containing only convex obstacles, as

shown in Fig. 11, studied in [11]. The location-speed FC that

achieved the minimum
1 2

f f+ (achieving a compromise of the

best-position and best-speed FCs) in Example 1 was selected

for executing the OBF behavior. Fig. 11 shows the successful

navigation trajectories using the proposed scheme. In this and

the following figures, the TS, OBF, and VPS behaviors were

represented by green, blue, and orange lines, respectively.

Table IV shows the total navigation time and travelled distance.

For comparison, Table V also shows the navigation result of

the approach reported in [11]. The approach consists of two

fuzzy modules: a navigation behavior module and an avoiding

 10

obstacles module. Four different methods in designing the FCs

in the two modules are proposed, including the naive FCs, and

their enhancements using GA, PSO, or expert knowledge [11].

Table V shows that in environment 1, the proposed navigation

scheme achieved shorter navigation time and smaller travelled

distance. In environment 2, among the methods used for

comparison, only the FC-expert succeeded in navigating the

robot. The navigation time of the proposed method was only

approximately one-third of that in the FC-expert. For the GA

and PSO enhanced methods in [11], the FC in the avoiding

obstacles module was trained to avoid obstacles in certain TS

directions instead of following obstacle boundaries. Therefore,

the trained FC may fail to bypass new obstacles in a new

environment, as shown in Table V.

Example 4 (fast navigation in concave maps). This

example shows the performance of the fast navigation scheme

in an unknown environment with concave obstacles (as shown

in Fig. 12) and an unknown maze environment (as shown in

Fig. 13). Fig. 12 and Fig. 13 (a) show the navigation trajectories

in these environments using the proposed navigation scheme,

where the robot successfully reached the target in these

simulations without becoming stuck in dead cycles. In Fig.

13(a), the robot passed the same point “c” twice and performed

different behaviors because the criterion
2

d <
1

d introduced in

Section IV-C for dead-cycle avoidance was satisfied only when

the robot first passed the point.

For the purpose of comparison, the online navigation

schemes for local path planning proposed in [10] and [18] were

also applied to the same environment in Fig. 12 by using the

same FCs. Fig. 12 shows the trajectories of the two navigation

schemes used for comparison. The navigation scheme in [10]

faced the dead-cycle problem around U-shaped obstacles, as

shown in Fig. 12. The scheme in [18] successfully navigated to

the robot to the target, but the total number of navigation time

steps was 256 and was longer than 182 obtained using the

proposed scheme. The result showed the significant effect of

the proposed VPS behavior in reducing the time needed to

reach the target.

In another comparison, the online local path planning

scheme using the SLAM-based DWA-A* algorithm, available

as a navigation package in the ROS [43], was also applied to the

unknown environment in Fig. 13(a). Fig. 13(b) shows the

trajectory of the navigation scheme, where the robot moved

back to a visited space around area “A” instead of passing

through the passage around area “B”. As a result, the travelled

distance using the DWA-A* algorithm was much larger than

that using the proposed navigation scheme. In the ROS

simulation environment, a 360
o

laser range scanner was

mounted on the robot for SLAM. This scanner helped to sense

the whole surrounding environment and avoid going deeper to a

U-shaped environment. The proposed scheme considered the

scanner covering only 180
o
 sensing range in simulations and

experiments. Therefore, the robot may move with a larger local

distance to escape a U-shaped environment. The proposed fast

navigation scheme can be further modified for

256
182

Start

End

Failed

OBF
TS

OBF
TS

TS

VPS OBF

Fig. 12. Navigation trajectories of the robot using the proposed fast navigation

scheme (in green, orange, and blue colors) and navigation schemes of [18] (in
black and gray) and [10] (in red and purple colors) in an unknown environment

in Example 4.

(old)1d

c

1d 2d

12
3

1

4

3

2

Start

Target

A
B

(a) (b)

Fig. 13. Navigation trajectories of the robot using the (a) proposed (b)
DWA-SLAM navigation schemes in Example 4, where the number indicates

the time order of trajectories.

performance improvement if a 360
o

laser range scanner is used

instead.

VII. EXPERIMENTS

This section presents experimental results of localizing and

navigating the robot in real environments with static and

moving obstacles to show the accuracy of the localization

approach and the performance of the fast navigation scheme.

Considering the differences between real and simulation

robots, such as the inertia of movement and the additionally

carried objects on the real robot, the moving speed of the FC in

the OBF behavior in the experiments was set to be half of that

in the simulations.

Example 5 (navigation with static obstacles). This example

considers navigating the real robot using the proposed fast

navigation scheme in an unknown environment with static

obstacles. Fig. 14 shows screenshots of the navigation result in

the environment. Fig. 15(a) shows the navigation trajectory of

the robot, where the trajectory was recorded using the proposed

localization approach. The result showed that the robot moved

toward the subgoals found in the two obstacles to shorten the

navigation path, where the first and second VPS behaviors were

switched from the OBF and TS behaviors, respectively. Fig. 15

shows that interruptions or distortions of the StarGazer sensor

measurements happened at some control time steps and that the

proposed localization method corrected those failed

measurements. The average root-mean-squared errors

(RMSEs) of the localization and control accuracy of the final

robot position were determined over ten experimental runs, and

the

 11

target

Fig. 14. Screenshots of navigating the real robot in an unknown test

environment using the proposed fast navigation scheme in Example 5.

(a)

(b)

Fig. 15. Stargazer sensor measurements (×), the predicted positions using the

encoder when interruptions in the sensor occur (+), and the localized positions

(□) determined using the proposed particle filter-based localization method in

(a) Example 5 and (b) Example 6, where the person walking trajectory is

denoted as a dotted line.

target

target
Fig. 16. Screenshots of the navigation result when the robot continuously met a

moving obstacle (a person) while executing the TS behavior in Example 6.

ground truth was obtained from manual measurement. For the

localization of the robot, the result showed a small average

RMSE of 3.6 cm (STD=2.8 cm) between the localized and

actual positions. For the control of the robot, the result also

showed a small average RMSE of 4.5 cm (STD=2.1) between

the actual robot position and the target.

Example 6 (navigation with moving obstacles). This example

presents the experimental result of navigating the robot in an

unknown environment with a moving obstacle, where a person

continued to walk toward the front of the robot after it detoured

around the person. Fig. 16 shows screenshots of the navigation

result in the environment. Fig. 15(b) shows the navigation

trajectory of the robot. In this experiment, the robot initially

switched from the TS behavior to the VPS behavior to shorten

the route and detoured around a sofa. When the robot was

executing the TS behavior, a person walked toward the moving

robot and stopped in front of it. When the robot met the person

at different locations, it switched the original TS behavior to the

OBF behavior and successfully detoured around the person.

Finally, the robot successfully reached the target.

Example 7 (navigation with SLAM). This example considers

navigating the real robot in two unknown environments using

the proposed navigation scheme with two different localization

methods and the SLAM-based DWA-A* navigation package in

the ROS [43]. Figs. 17(a) and 18(a) show the two

environments, where the later contains a narrow pathway. For

the proposed navigation scheme in each environment, two

experiments using the proposed Stargazer-based and SLAM

localization methods were performed. For the SLAM

localization, a 360
o

 laser range scanner RPLIDAR A2 was

mounted on the robot and the SLAM package in the ROS was

used. Figs. 17 (a) and 18(a) show screenshots of the navigation

results in the two environments using the proposed localization

and navigation scheme. Figs. 17(b) and 18(b) show the

navigation trajectories of the robot using the proposed

navigation scheme with the two localization methods. The

results showed that the robot successfully reached the target in

all experiments. Fig. 18 also shows that the robot successfully

moved through the narrow pathway to reach the target. Table

VI shows the average path length, navigation time, and

localization error (RMSE) using the proposed navigation

scheme with the two localization methods, where the average

was determined over five experimental runs. The result showed

that under the same

 12

TABLE VI. NAVIGATION PERFORMANCES USING DIFFERENT

LOCALIZATION AND NAVIGATION METHODS IN EXAMPLE 7.

Localization Methods SLAM Stargazer

Navigation Scheme DWA-A* Proposed Proposed

Environment

1

Time (s) 39 28 26

Path Distance (cm) 771 537 528

Localization error (cm) 27.5 6.5

Environment

2

Time (s) 66.8 32.6 29.6

Path Distance 1256 714 693

Localization error (cm) 24.9 4.6

(a)

Proposed(stargazer)

Proposed(SLAM)

DWA-A*(SLAM)

m

m

Start
Target

(b)

Fig. 17. (a) Screenshots of navigating the robot using the proposed localization
method and navigation scheme in the first environment in Example 7. (b)

Trajectories of the robot using different localization methods and navigation

schemes in the map built through SLAM.

Target

Start

Start

Target

(a)

m

m

Proposed(stargazer)

Proposed(SLAM)

DWA-A*(SLAM)

Start Target

B

C
D

(b)

Fig. 18. (a) Screenshots of navigating the robot using the proposed localization
method and navigation scheme in the second environment in Example 7. (b)

Trajectories of the robot using different localization methods and navigation

schemes in the map built through SLAM.

navigation scheme, the Stargazer-based localization achieved

smaller localization error than the SLAM localization method.

For the purpose of comparison, the SLAM-based DWA-A*

navigation scheme was also applied to navigate the robot in the

two environments. In this scheme, the parameters such as the

inflation radius [43] for robot-obstacle clearance setting was

selected so that the robot can move along an obstacle boundary

as close as possible. Fig. 17 (b) and Fig. 18(b) show the

navigation trajectories in the two environments. In contrast to

the proposed navigation scheme, Fig. 17(b) shows that the

robot moved along the obstacle with a larger robot-obstacle

distance when the DWA-A* was used. Fig. 18 (b) shows that

the robot turned around at point “B” and moved backward at

points “C” and “D” and finally the DWA-A* navigated the

robot in bypassing the sofa to reach the target instead of moving

through the narrow pathway, which caused a longer navigation

path. Table VI shows the navigation performances in the two

environments. The DWA-A* navigation scheme showed

longer navigation time and larger travelled distance than the

proposed navigation scheme when the same SLAM localization

method was used in the two environments.

VIII. CONCLUSION

A new navigation scheme of a wheeled robot controlled by

a new fuzzy control approach in unknown environments is

proposed in this paper. The FC is used because of the

explainable fuzzy rule expression ability in it. To take

advantage of this ability, this paper proposes the automatic

learning of an FC based on the combination of human expert

rules and a data-driven multiobjective learning approach to

control a real robot in executing the OBF behavior. New

objective functions and constraints are proposed to improve the

OBF learning performance. In comparison with the previous

single-objective learning approach, the multiobjective

architecture at the same time provides more diverse selections

of FCs and a better control performance. For the TS, this paper

proposes fuzzy PID and PD controllers that successfully

control the robot to quickly move toward the target with a

smooth trajectory. Based on the fuzzy controlled OBF and TS

behaviors, this paper proposes a fast map-free navigation

scheme, including a new VPS behavior to reduce superfluous

routes, and a new behavior supervisor that successfully

supervises various robot behaviors. The advantages of the

proposed approaches have been verified by simulations,

comparison with various methods, and experiments. In

particular, high localization and control accuracies have been

achieved in the experiments. The proposed navigation system

can be applied to navigating robots in various environments,

such as object-carrying robots in factories and home service

robots.

REFERENCES

[1] A. Zhu and S. X. Yang, “Neurofuzzy-based approach to mobile robot

navigation in unknown environments,” IEEE Trans. Syst., Man, Cybern. C,
Appl. Rev., vol. 37, no. 4, pp. 610–621, Jul. 2007.

[2] C. F. Juang and Y. C. Chang, “Evolutionary-group-based

particle-swarm-optimized fuzzy controller with application to mobile-robot

navigation in unknown environments,” IEEE Trans. Fuzzy Systems, vol. 19,

no. 2, pp. 379-392, April 2011.
[3] C. H. Hsu and C. F. Juang, “Evolutionary robot wall-following control

using type-2 fuzzy controller with species-DE-activated continuous ACO,”

IEEE Trans. Fuzzy Systems, vol. 21, no. 1, pp. 100-112, Feb. 2013.

 13

[4] M. Algabri, H. Ramdane, H. Mathkour, K. Al-Mutib, and M. Alsulaiman,

“Optimization of fuzzy logic controller using PSO for mobile robot

navigation in an unknown environment,” Applied Mechanics and

Materials, vols. 541-542, pp. 1053-1061, 2014

[5] R. Zhao, D. H. Lee, and H. K. Lee, “Mobile robot navigation using
optimized fuzzy controller by genetic algorithm,” Int. J. Fuzzy Logic and

Intelligent Systems, vol. 15, no. 1, pp. 12-19, March 2015.

[6] C. Kim and D. Chwa, “Obstacle avoidance method for wheeled mobile

robots using interval type-2 fuzzy neural network,” IEEE Trans. Fuzzy

Systems, vol. 23, no. 3, pp. 677-687, June 2015.
[7] C. F. Juang, T. L. Jeng and Y. C. Chang, “An interpretable fuzzy system

learned through online rule generation and multiobjective ACO with a

mobile robot control application,” IEEE Tran. Cyber., vol. 46, no. 12, pp.

2706-2718, Dec. 2016.

[8] H. Omrane, M. S. Masmoudi, and M. Masmoudi, “Fuzzy logic based
control for autonomous mobile robot navigation,” Computational

Intelligence and Neuroscience, vol. 2016, Article ID 9548482, pp. 1-10,

2016.

[9] M. S. Masmoudi, N. Krichen, M. Masmoudi, nd N. Derbel, “Fuzzy logic

controllers design for omnidirectional mobile robot navigation,” Applied
Soft Computing, vol. 49, pp. 901–919, 2016.

[10] K. Al-Mutib and F. Abdessemed, “Indoor mobile robot navigation in

unknown environment using fuzzy logic based behaviors,” Advances in

Science, Technology and Engineering Systems Journal, vol. 2, no. 3, pp.

327-337, 2017.
[11] M. Faisal, M. Algabri, B. M. Abdelkader, H. Dhahri, M. M. A. Rahhal,

“Human expertise in mobile robot navigation,” IEEE Access, vol. 6, pp.

1694-1705, 2018.

[12] L. Kong, W. He, C. Yang, Z. Li, and C. Sun, “Adaptive fuzzy control for

coordinated multiple robots with constraint using impedance learning,”
IEEE Trans. Cyber., vol. 49, no. 8, pp. 2052-3063, Aug. 2019.

[13] R. H. Abiyev, N. Akkaya, I. Gunsel, “Control of omnidirectional robot

using Z-number-based fuzzy system,” IEEE Trans. Systems, Man, and

Cybernetics: Systems, vol. 49, no. 1, Jan. 2019.

[14] C. F. Juang, C. H. Lin, and T. B. Bui, “Multiobjective rule-based
cooperative continuous ant colony optimized fuzzy systems with a robot

control application,” IEEE Trans. Cyber., vol. 50, no. 2, pp. 650-663, Feb.

2020.

[15] C. F. Juang and T. B. Bui, “Reinforcement neural fuzzy surrogate-assisted

multiobjective evolutionary fuzzy systems with robot learning control
application,” IEEE Trans. Fuzzy Systems, vol. 28, no. 3, pp. 434-446,

March 2020.

[16] H. Xiaoqian, H. Karki, A. Shukla, and Z. Xiaoxiong, “Variant PID

controller design for autonomous visual tracking of oil and gas pipelines

via an unmanned aerial vehicle,” Proc. 17th Int. Conf. Control,
Automation and Systems, Jeju, Korea, 2017, pp. 368-372.

[17] A. Aouf, L. Boussaid and A. Sakly, "A PSO algorithm applied to a PID

controller for motion mobile robot in a complex dynamic

environment," Proc. Int. Conf. Engineering & MIS, Monastir, 2017, pp.

1-7.
[18] C. Y. Chou and C. F. Juang, “Navigation of an autonomous wheeled robot

in unknown environments based on evolutionary fuzzy

control,” Inventions, vol. 3, no. 1, pp. 1-14, Jan. 2018.

[19] V. Sood, “Autonomous robot motion control using fuzzy PID

controller,” Proc. Int. Conf. High Performance Architecture and Grid
Computing, pp. 385-390, 2011.

[20] Q. Xu, J. Kan, S. Chen, and S. Yan, “Fuzzy PID based trajectory tracking

control of mobile robot and its simulation in Simulink,” Int. J. Control

and Automation, vol. 9, no. 11, pp. 203-214, 2016.

[21] M. S. Jie and W. H. Choi, “Type-2 fuzzy PID controller design for
mobile robot,” Int. J. Control and Automation, vol. 9, no. 11, pp.

203-214, 2016.

[22] H. Wang, Y. Yu, and Q. Yuan, “Application of Dijkstra algorithm in

robot path-planning,” in Proc. 2nd Int. Conf. Mechanic Automation and

Control Eng., pp. 1067-1069, China, July 2011.
[23] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic

determination of minimum cost paths,” IEEE Trans. Syst. Science and

Cyber., vol. 4, no. 2, pp. 100–107, July 1968.

[24] C. Zhong, S. Liu, Q. Lu, B. Zhang, and S. X. Yang, “An efficient

fine-to-coarse wayfinding strategy for robot navigation in regionalized
environments,” IEEE Trans. Cyber., vol. 46, no. 12, pp. 3157-3170, Dec.

2016.

[25] M. Kusuma, Riyanto, and C. Machbub, “Humanoid robot path planning

and rerouting using A-star search algorithm,” in Proc. IEEE Int. Con.

Signals and Systems, pp. 110-115, Indonesia, July 2019.

[26] K. Daniel, A. Nash, S. Koenig, and A. Felner, “Theta*: Any-angle path

planning on grids,” J. Artificial Intelligence Research, vol. 39, pp.

533-579, 2010.

[27] M. Elbanhawi and M. Simic, “Sampling-based robot motion planning: a

review survey,” IEEE Access, vol. 2, pp. 56-77, 2014.
[28] L. Kavraki, P. Svestka, J. Latombe, and M. Overmars, “Probabilistic

roadmaps for path planning in high-dimensional configuration spaces,”

IEEE Trans. Robotics and Automation, vol. 12, no. 4, pp. 566–580,

1996.

[29] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
Int. J. Robotics Research, vol. 20, no. 5, pp. 378–400, May 2001.

[30] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal

motion planning,” Int. J. Robot. Res., vol. 30, pp. 846–894, 2011.

[31] D. Connell and D. Connell, “Extended rapidly exploring random

tree–based dynamic path planning and replanning for mobile robots,” Int.
J. Advanced Robotic Systems, pp. 1-15, May-June 2018.

[32] A. Bakdi, A. Hentout, H. Boutami, A. Maoudj, O. Hachour, and B.

Bouzouia, “Optimal path planning and execution for mobile robots using

genetic algorithm and adaptive fuzzy-logic control,” Robotics and

Autonomous Systems, vol. 89, no. 1, pp. 95-109, March 2017.
[33] B. Y, Q. Tang, J. Yao, and W. Gao, “Collision-free path planning and

delivery sequence optimization in noncoplanar radiation therapy,” IEEE

Trans. Cyber., vol. 49, no. 1, pp. 42-55, Jan. 2019.

[34] Y. Koren and J. Borenstein, “Potential field methods and their inherent

limitations for mobile robot navigation,” Proc. IEEE Int. Conf. Robotics
and Automation, Sacramento, CA, USA, vol. 2, 1991, pp. 1398-1404.

[35] A. Azzabi and K. Nouri, “Path planning for autonomous mobile robot

using the potential field method,” in Proc. Int. Conf. Advanced Systems

and Electric Technologies, Tunisia, Jan. 2017, pp. 389-394.

[36] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robot. Autom. Mag., vol. 4, pp. 23-33,

March 1997.

[37] T. Liu, R. Yan, G. Wei, and L. Sun, “Local path planning algorithm for

blind-guiding robot based on improved DWA algorithm,” in Proc.

Chinese Control And Decision Conference, pp. 6169-6173, China, June
2019.

[38] S. Zuo, O. Yongsheng, and X. Zhu, “A path planning framework for

indoor low-cost mobile robots,” in Proc. IEEE Int. Con. Information and

Automation, pp. 18-23, China, July, 2017.

[39] S. Kuswadi, J. W. Santoso, M. N. Tamara, and M. Nuh, “Application
SLAM and path planning using A-star algorithm for mobile robot in

indoor disaster area, “ in Proc. Int. Electronics Symp. Eng. Tech. and

Applications, pp. 270-274, Indonesia, Oct. 2018.

[40] M. Muhtadin, R. M. Zanuar, I. K. E. Purnama, and M. H. Purnomo,

“Autonomous navigation and obstacle avoidance for service robot,” in
Proc. Int. Conf. Computer Engineering, Network, and Intelligent

Multimedia, pp. 1-8, Indonesia, Nov. 2019.

[41] A. Koubaa, Robot Operating System (ROS): The Complete Reference

(Volume 1), Cham: Springer International Publishing, 2016.

[42] T. Zeng and B. Si, “Mobile robot exploration based on rapidly-exploring
random trees and dynamic window approach,” in Proc. Int. Conf. on

Control, Automation and Robotics, pp. 51-57, China, April 2019.

[43] K. Zheng, “ROS Navigation Tuning Guide,” arXiv:1706.09068, pp. 1-23,

April 2019

[44] J. Kim and W. Chung, “Localization of a mobile robot using a laser range
finder in a glass-walled environment,” IEEE Trans. Industrial

Electronics, vol. 63, no. 6, pp. 3616-3627, June 2016.

[45] S. Yoon, S. Park, and J. Kim, “Kalman filter sensor fusion for Mecanum

wheeled automated guided vehicle localization,” Journal of Sensors, vol.

2015, Article ID 347379, 7 pages, Jan. 2015.
[46] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, “A fast and elitist

multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evolutionary

Computation, vol. 6, no. 2, pp. 182-197, Apr 2002.

[47] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: a

comparative case study and the strength Pareto approach,” IEEE Trans.
Evolutionary Computation, vol. 3, no. 4, pp. 257-271, Nov. 1999.

http://www.mdpi.com/search?authors=Ching-Yu%20Chou&orcid=

	Clipboard Data(1)
	Paper 20200407.pdf
	A. Vertex Point Seeking During Target Seeking

