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Abstract—This paper proposes a fast navigation scheme for a 

wheeled robot in unknown environments. The navigation scheme 

consists of obstacle boundary following (OBF), target seeking (TS), 

and vertex point seeking (VPS) behaviors and a behavior 

supervisor. The OBF behavior is achieved by a fuzzy controller 

(FC). This paper formulates the FC design problem as a new 

constrained multiobjective optimization problem and finds a set 

of nondominated FC solutions through the combination of expert 

knowledge and data-driven multiobjective ant colony 

optimization. The TS behavior is achieved by new fuzzy 

proportional-integral-derivative (PID) and proportional- 

derivative (PD) controllers that control the orientation and speed 

of the robot, respectively. The VPS behavior is proposed to 

shorten the navigation route by controlling the robot to move 

toward a new subgoal determined from the vertex point of an 

obstacle. A new behavior supervisor that manages the switching 

among the OBF, TS, and VPS behaviors in unknown 

environments is proposed. In the navigation of a real robot, a new 

robot localization method through the fusion of encoders and an 

infrared localization sensor using a particle filter is proposed. 

Finally, this paper presents simulations and experiments to verify 

the feasibility and advantages of the fast navigation scheme.  

Keywords: Robot navigation, obstacle avoidance, multiobjective 

optimization algorithms, evolutionary fuzzy control, data-driven 

fuzzy systems.  

 

I. INTRODUCTION 

utomatic navigation of a wheeled robot in an environment 

is an important task in robot applications. The navigation 

of a robot can be performed in an environment with a 

known map or in an unknown environment, where the latter is a 

much more challenging task than the former. In an unknown 

environment, the entire map of the environment is not given in 

advance and a robot must online determine its local path based 

on its sensor measurements. This paper considers navigation of 

a robot in unknown environments. One important task in robot 

navigation is obstacle avoidance. To complete this task, fuzzy 

control of mobile robots has been widely studied [1]-[15].  
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To automate the design of FCs, learning of FCs through 

neural learning [1], [12] or evolutionary computation 

algorithms [2]-[7], [14], [15] for obstacle avoidance has been 

proposed. For the later, various single-objective evolutionary 

computation algorithms have been proposed [2]-[6], [11]. The 

FCs in these algorithms consider only single-objective 

optimization, such as minimization of the distance error 

between a robot and an obstacle. Multiobjective ant colony 

optimization (ACO) of a set of FCs that consider the trade-off 

between robot-obstacle distance and the robot’s moving speed 

has been proposed to control a robot to perform obstacle 

boundary following (OBF) [7], [14], [15]. These studies use the 

same objective functions in evaluating the OBF performance 

and do not consider the navigation problem. In addition to 

learning algorithms, the OBF performance depends heavily on 

the definitions of objective functions. In contrast to these 

studies, this paper formulates the robot OBF task as a new 

constrained multiobjective optimization problem to improve 

the OBF performance.  

Another important task in navigating a robot is target 

seeking (TS). Orientation and speed control of a TS robot using 

proportional-integral-derivative (PID) [16], [17] or scheduled 

PID [18] controllers has been proposed posed is a typical 

approach in TS. In addition, the use of Mamdani-type fuzzy 

rules to determine PID coefficients for robot locomotion 

control has been proposed in [9], [13], [19], [20], where tens of 

manually designed fuzzy rules were used. The determination of 

PID coefficients using 25 type-2 fuzzy rules for robot 

orientation control was proposed in [21]. These methods need a 

large rule base, which increases the computational load, and the 

determination of the large number of rule parameters is a 

cumbersome task. For this problem, this paper proposes 

Takagi-Sugeno-Kang (TSK)-type fuzzy PID and proportional- 

-derivative (PD) controllers to simplify the controller design 

task. Only two fuzzy rules with a single input variable are 

designed in each fuzzy PID/PD controller set, which 

significantly simplifies the design task. 

For robot navigation in known environments, several 

global path plaining approaches have been proposed to find an 

optimal path in a given map [22]-[36]. Among them, one 

popular approach is grid-based planning algorithms, such as 

Dijkstra algorithm [22] and A*-based algorithms [23]-[25]. 

This approach runs on a grid-based structure with planning 

graphs given by grid vertices and edges, which constrains the 

headings of the paths. To release this constraint, theta* 

algorithm [26] and sampling-based planning (SBP) approach 
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[27] have been proposed. The SBP approach performs 

randomized sampling in search space, where commonly used 

algorithms include probabilistic roadmap method [28], 

Rapidly-exploring Random Trees (RRT) [29], and variants of 

RRT such as RRT* [30], [31]. Another path-planning approach 

is evolutionary computation algorithms [32], [33], which finds 

an optimal path through iterations of evolutions. The above 

global path planning approaches are computationally expensive 

and are most suitable for planning a path on a given map.  

For navigation in unknown environments, the robot must 

online determine its local path based on its sensor 

measurements. Various navigation approaches in unknown 

environments have been proposed. One popular approach is the 

potential field approach [34], [35]. This approach shows the 

inherent limitations of possible oscillations in the presence of 

closely spaced obstacles or narrow passages, and the robot may 

be trapped in a dead cycle [34]. Online path planning using the 

dynamic window approach (DWA) that finds an optimal path in 

a valid local search space considering robot dynamics and 

collision avoidance has also been proposed [36], [37]. To apply 

the global path planning approaches to unknown environments, 

construction of a local map using the simultaneous localization 

and mapping (SLAM) followed by a path planning algorithm 

such as the A* algorithm in the map has been proposed [38], 

[39]. To improve the navigation path, the incorporation of 

DWA into SLAM-based A* [40], [41] or RTT* [42] algorithm 

has been proposed. A package of the SLAM-based DWA-A* 

algorithm is also available inside the ROS navigation stack 

[43]. Another common approach is the straightforward 

switching rule of performing either TS or bypassing an obstacle. 

This is a map-free approach and different map-free methods 

without [4], [7], [8]-[11] or with [1], [2], [18] the consideration 

of the dead-cycle problem have been proposed. However, these 

methods do not consider navigating the robot through a shorter 

path. In contrast to these methods, this paper proposes a 

map-free fast navigation scheme in which the robot can online 

determine a shorter path to the target without being trapped in a 

dead cycle.  

In real navigation of a robot, localization is an essential 

task regardless of whether the environment is known or 

unknown. Localization using a laser range finder has been 

proposed in many studies based on the SLAM algorithm 

[38]-[44]. This approach is computationally expensive and 

typically needs iterative computations in an environment to 

construct an accurate environment map from laser scanning to 

obtain accurate localization. The StarGazer sensor that 

localizes a moving object based on markers on a ceiling and 

infrared light emitted by the robot has been developed 

(http://www.hagisonic.com). Determining the location of a 

robot using the StarGazer sensor has been proposed [18], [45]. 

This paper proposes the fusion of the StarGazer sensor and 

encoders using the particle filter to correct the Stargazer sensor 

errors, especially in the overlapping areas covered by different 

markers.  

The contributions of this paper are threefold. First, this 

paper proposes new objective functions and constraints to 

improve the control performance of an OBF robot. To improve 

the learning performance of the FCs designed under this new 

constrained optimization formulation, this paper also proposes 

the combination of data-driven multiobjective ACO with expert 

knowledge expressed by fuzzy rules, which takes advantage of 

the interpretable property of a fuzzy control rule. Second, this 

paper proposes a fast map-free navigation scheme consisting of 

the fuzzy OBF and fuzzy PID/PD TS behaviors with a new 

vertex point seeking (VPS) behavior proposed to shorten the 

navigation path. Finally, the proposed fast navigation scheme 

based on fuzzy control of the robot is applied to navigate a real 

robot with a new localization approach. Experimental results 

show the efficiency of the navigation scheme and high control 

accuracy when the robot reaches a target.  

This paper is organized as follows. Section II introduces 

the rules in the FCs, learning of FCs in executing the OBF 

behavior using a newly formulated constrained multiobjective 

optimization problem, and the multiobjective ACO. Section III 

introduces the speed and orientation control by fuzzy PID and 

PD controllers during the TS behavior. Section IV introduces 

the operation of the VPS behavior and the proposed fast 

navigation scheme. Section V introduces the localization of a 

real robot. Section VI and Section VII present simulations and 

experimental results, respectively. Finally, Section VIII 

summarizes conclusions. 

II.  MULTIOBJECTIVE FUZZY CONTROL OF AN 

OBSTACLE BOUNDARY FOLLOWING ROBOT 

This section introduces the FC, the wheeled mobile robot, 

fuzzy control of the robot for OBF, and its multiobjective 

learning configuration using the multiobjective front-guided 

continuous ACO (MO-FCACO) [7].  

A. Robot Fuzzy Control 

This paper applies a zero-order TS-type FC to control the 

robot to execute the OBF behavior. For the fuzzy set 
i

jA  in 

input variable ( )jx t  of rule i , the following Gaussian 

membership function is used:  

( ) 
22 2

( ) exp ( ) / ( )i i i

j j j j j
x x m = − −             (1) 

where 
i

jm  and 
i

j  represent the center and width, 

respectively. By using the product-based AND operation and 

the weighted average defuzzification, the p th output py  of 

the FC is  
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where 
i

p
a  is the consequent  value of 

p
y  in rule i  and r  is the 

number of fuzzy rules.  

The controlled robot is the PIONEER 3-DX 

(http://robots.mobilerobots.com/) with a laser SICK LMS-100 

installed, as shown in Fig. 1. The maximum sensor 

measurement fed to the FC is set to 1 m, with 1 degree of 
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Fig. 1. The robot and the data-driven multiobjective learning configuration of 

FCs for an OBF robot starting from six different initial poses.   
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Fig. 2. Four sensor ranges on each side of the robot, the minimum sensor 

measurement 
min

( )L k , and the angle deviation between the directions of the 

robot and the target.  

 

angular resolution. For the right-side OBF, the right half of the 

sensor range of laser measurements is divided into four ranges, 

as shown in Fig. 2. The minimum sensor value ( )
i

L k  of range 

i  is fed as the FC input. The FC outputs two velocities 

, [ 15.6,15.6] rad/s
left right

v v  −  (1 rad/s= 0.098 m/s) to the left  

and right wheels. In addition to the four laser sensor 

measurements, the difference ( 1)v k − = ( 1)
left

v k − −  

( 1)
right

v k − that controls the robot at the last time step is also fed 

as the FC input. Each fuzzy rule in the right OBF FC is 

described by 

1 1 2 2 3 3

4 4 5

1 2

: If ( ) is  and ( ) is  and ( ) is  

           and ( ) is  and ( 1) is  

           then ( ) is  and ( ) is 

i i i

i i

i i

left right

i

right
R L k A L k A L k A

L k A v k A

v k a v k a

 −        (3) 

The FC parameters are all learned through a data-driven 

approach introduced in Section II-B. In addition to learning 

from scratch, one advantage of using the FC instead of other 

nonlinear controllers is that a priori expert knowledge can be 

expressed in the form of fuzzy if-then rules and incorporated 

into the FC before learning. The incorporation of these control 

rules helps improve learning performance. To take advantage 

of this inherent property, this paper proposes a design that 

combines expert knowledge and a data-driven MO-FCACO 

learning approach. This paper incorporates the following two 

human knowledge-based fuzzy control rules in the FC for the 

OBF problem:  

1 1 4
: If ( ) is Short and ( ) is Short

          then ( ) is  and ( ) is 

right

left right

R L k L k

v k v k −
          (4) 

2 1 4
: If ( ) is Far and ( ) is Far  

          Then ( ) is  and ( ) is 

right

left right

R L k L k

v k v k −
          (5) 

The first and second control rules are assigned to control the 

robot around inner and outer corners, respectively. When the 

robot is around an inner corner, the distance values of 
1
( )L k  

and 
4
( )L k are small, which accounts for the design of the 

antecedent part in the first rule. In this condition, the robot 

should make a left turn, which is accomplished by rotating the 

right and left wheels forward and backward, respectively, as 

inferred from the consequent part of the first rule. Similarly, 

when the robot is around an outer corner, the distance values of 

1
( )L k  and 

4
 ( )L k are large, which accounts for the design of 

the antecedent part in the second rule. In this condition, the 

robot should make a right turn, as inferred from the consequent 

part of the second rule. The initial centers of the fuzzy sets 

“Short” and “Far” are set to 0.3 m and 0.7 m, respectively. The 

initial consequent parameter   is set to 5 rad/s . Similar to the 

rules in (3), all the initial parameters in (4) and (5) are also 

optimized by using the MO-FCACO algorithm. Based on the 

left-right symmetry, the learned FC for the right OBF can be 

directly modified to obtain the FC for the left OBF without 

retraining.  

B. Multiobjective Learning Configuration for Obstacle 

Boundary Following 

The evolutionary MO-FCACO algorithm is used to endow 

the robot with the capability of learning multiobjective FCs by 

itself. This self-learning technique is designed to resolve the 

OBF problem that considers two conflicting objectives: 

maintaining a proper robot-obstacle distance and moving at a 

high speed. To address this problem, this paper applies a 

multiobjective evolutionary learning configuration to find a set 

of FCs showing trade-offs between the two objectives. Fig. 1 

shows the self-learning configuration of the OBF robot. The FC 

is learned through consecutive control trials and evolutionary 

parameter optimization to accomplish the OBF task. The 

training environment contains diverse concave and convex 

boundaries, as shown in Fig. 1. Starting from point “A” in the 

training process, the mobile robot should successfully execute 

the OBF behavior with 
total

T  (=2000) time steps. In addition, 

starting from another five different initial poses (positions “B” 

to “F” in Fig. 1), the robot is required to successfully execute 

the OBF behavior for 30 time steps, after which the robot 

moves along the straight boundary.  

The preparatory work for evolutionary learning is the 

formulation of the control problem as a constrained 

multiobjective optimization problem. In contrast to previous 

papers on multiobjective evolutionary OBF robots [7], [14], 

[15] this paper proposes the following new objective functions 

and constraints to improve the OBF performance.  
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Objective 1 (
1

f ): The first control objective is that the 

robot should maintain a constant distance from the followed 

obstacle boundary. The objective function is defined as  

1

1

min
( )

1
( )

100 ( )

c

c

c

k

T

wall bou

L k

f
T

k
T

d d


=

−

=

+
+


          (6) 

where 
C

T  is the time step at which the robot stops. The constant 

wall
d (=0.15 m) is the desired distance between an obstacle 

boundary and its nearest robot boundary in the right-side range 

[0 ,90 ] . The measurement 
min

( )L k  is the minimum sensor 

measurement in the right-side range, as shown in Fig. 2. The 

distance ( )
bou

d k  is the physical distance (the maximum is 

maxbou
d

−
=0.2) between the laser center and the robot boundary in 

the direction of 
min

( )L k , as shown in Fig. 2. The term ( )   in 

(6) is a penalty value with an initial value of (0) =0 and is 

defined as follows: 

 
( ) 1 , ( )

( 1)
( ),      otherwise

thk C k C
k

k






+ 
+ =





                    (7) 

where ( )C k  is a counter defined as follows: 

min max

min max

( ) 1, ( ) ( ) +

( ) 1, ( ) ( ) +  
( 1)

                 and ( ) 0

0,         otherwise

bou wall bou

bou wall bou

C k L k d k d d

C k L k d k d d
C k

C k

−

−

+ − 

− − 
+ =










.    (8) 

In contrast to the objective function defined in [7], [14], [15], 
the new term ( )k  is included to avoid a large deviation from 

the desired robot-obstacle distance, especially when the robot 
moves along outer corners. If the robot is not close to the wall 
(condition 1 in (8)), the counter ( )C k  will start being 

increased by one at each time step. The penalty term ( )k  

increases when the robot is not close to the wall for more than 

thC  successive time steps, i.e., ( )C k  thC  in (7). The value 

of  thC is set to 10 because the robot typically takes around 10 

time steps to move around a corner.  

    Objective 2 (
2

f ): The second control objective is that the 

robot should move at high speed. The objective function is 

defined as follows: 

2

1

1

( )
speedcT

k

c

f
V k

T
=

=



                            (9) 

where 
speed

V  is the moving speed of the robot.  

   In the learning process, an FC is deemed to have failed if 

one of the following four constraints is violated. These 

constraints are imposed in the learning process to avoid the 

convergence to failed FCs. When an FC fails, the robot stops, 

and the time step is recorded as 
C

T , as described above. The 

first constraint is that the robot should not move far away 

(greater than distance ( )
f

W k ) from the obstacle boundary for a 

long duration (set to 2 thC =20). This constraint is formulated as 

follows: 

( ) 20
e

F k                              (10) 

where 

min
( 1) 1,  ( ) ( )

( )
0,  otherwise

e f

e

F k L k W k
F k

− + 
=





                 (11) 

and 

max

1
10 ,            

4

2 1 3
( ) 2 ,           

4 4

3
2 ,    

4

wall total

f total total

total

bou wall total

d k T

k
W k T k T

T

d d k T
−

 

= −  

+ 











.        (12) 

The tolerable distance ( )
f

W k  decreases with time as shown in 

(12). The motivation is that a looser distance constraint is 

assigned at the initial control time period to allow the robot to 

learn more flexibly in the early learning stage. A more 

conservative distance constraint is assigned to the robot during 

the final control time period to quickly distinguish the 

performance of different FCs. 

The second constraint is that the robot cannot too close to 

the obstacle, i.e., 
min

( ) ( ) 0.1 
bou

L k d k m−  . The third 

constraint is that the robot cannot move too slowly. The final 

constraint is that the robot cannot move backward. 

The two objective functions in (6) and (9) together with the 

four constrains form a constrained multiobjective optimization 

problem. To solve this problem, a penalty value p
T  is defined 

when one of the four constraints is violated; i.e., an FC fails. 

The penalty value is defined as p
T =

total
T

C
T− , which is the total 

number of uncompleted time steps. For a successful FC, p
T  is 

equal to zero. Based on the definition of p
T , the constrained 

multiobjective optimization problem is reformulated as 

follows: 

                    ˆ
i i P

f f T= + , 1,2i = .                             (13) 

This paper sets the robot-obstacle distance 
wall

d  in (6) to 

0.15 m, a shorter distance than the value of 0.5 m in [7], [14], 

[15], [18], which induces a more challenging learning task. The 

learning methods in these previous studies fail when they are 

applied to control the robot with this stricter distance constraint. 

The FCs designed under the new mathematical formulation and 

the expert knowledge-leveraged data-driven approach show the 

advantage of controlling the robot in moving along obstacle 

boundaries with a smaller robot-obstacle clearance, which 

reduces traveling path distance and enables the robot to pass 

through narrow passages. When the assigned 
wall

d  value is 
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smaller than 0.15 m, the robot may fail to perform the OBF 

behavior due to different uncertainties. Therefore, this paper 

conservatively sets the distance 
wall

d  to 0.15 m.  

C. Multiobjective Front-guided Continuous Ant Colony 

Optimization (MO-FCACO) 

This section briefly describes the MO-FCACO algorithm 

[7]. The MO-FCACO evolves with N solutions 
1
, ,

N
S S and 

the evolution operation consists of three phases. In the first 

phase, 2L  temporary solutions 1 2, , , ...,l LS S S  are generated 

using elite and tournament selection schemes based on the idea 

of pheromone levels.  

The second phase applies the Gaussian resampling 

operation to each solution component ˆ j

i
s  at the  2L  temporary 

solutions to mimic the ant wondering behavior along a path. 

The mean of the Gaussian probability density function (PDF) 

applied to the solution component ˆ j

i
s  is set to ˆ j

i
s . After the 

Gaussian resampling operation, the temporary solution vectors 

generated from 1 2, ..., LS S  are expressed as 1 2, , LS S .  

In the final phase, each temporary solution lS  

independently tracks a randomly and uniformly selected 

non-dominated solution  nonS . The final 2L  new solutions are 

given as follows:  

,  1,...,( ) 2N l l non lS S lS LS+ = +  =−              (14) 

where   is a random vector whose entries are uniformly 

distributed random variables in [0, 1].  

    The original N solutions and the 2L  new solutions are sorted 

and only the top N solutions at the end of the iteration are 

reserved.  

III. TARGET SEEKING AND FUZZY CONTROL  

This section introduces the TS behavior, which is 

achieved by controlling the robot orientation and speed using 

fuzzy PID and PD controllers, respectively. Details about 

controllers are introduced as follows.  

A. Robot Orientation Control 

 Fig. 2 shows the angle deviation 
TS

 , computed as follows: 

TS t r
  = − ,  [ 180 ,180 ]

TS
  − ,                (15) 

where 
r

  and 
t

  denote the orientations of the robot and 

target, respectively. Depending on 
TS

 , two orientation 

control rules are assigned. For a large orientation deviation 

TS
 , the main control objective is reducing the response time 

so that the robot can quickly face the target. For a very small 

TS
 , the main control objective is reducing overshoot when the 

orientation deviation approaches zero. Based on this expert 

knowledge,  
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Fig. 3. Fuzzy sets for TS orientation control. 
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Fig. 4. Fuzzy sets for TS speed control. 

 

this paper manages the orientation control by using the 

following two fuzzy control rules: 
1

2

Rule 1: If | ( ) |  is  Large  then ( ) is ( )

Rule 2: If | ( )| is  Very Small  then ( ) is  ( )

TS ore PID

TS ore PID

k V k v k

k V k v k




(16) 

where fuzzy sets “Large” and “Very Small” are described by 

trapezoidal membership functions, as shown in Fig. 3. The 

orientation control is achieved by applying the fuzzy PID 

controller to change the left and right wheel velocities as 

follows: 

( ) ( ) 0.5 ( )

( ) ( ) 0.5 ( )

right f ore

left f ore

v k V k V k

v k V k V k

= + 

= − 
                    (17) 

where ( )
f

V k  is the forward moving speed of the robot and is 

determined by the fuzzy PD controller detailed at Section III.B. 

The consequent value ( )
i

PID
v k  is the output of a PID controller 

and is described as follows: 

1

[ ( ) ( 1)]
( ) ( ) ( )i i i

P I D

k
i TS TS
PID TS TS

t

k k
v k K k K t t K

t

 
 

=

− −
= +  +




 

(18) 

where the units of ( )
ore

V t , 
TS

 , and t  are rad/s, degrees, and 

seconds, respectively. The coefficients are set to 
1 1 1

0.2,  0.05,   and 0.02
P I D

K K K= = =  in rule 1 and 

2 1 1

,  0.01
P P I

K K K= = , and 
2 1

D D
K K=  in rule 2, where a smaller 

1

I
K  coefficient is assigned in rule 2 to reduce the overshoot.  

B. Robot Speed Control  

 This section introduces the fuzzy PD controller for the robot 

speed control. Depending on 
TS

 , two speed control rules are 

assigned. First, if the deviation angle 
TS

  is very large, then 

the robot moves at a low speed slowv = 4 rad/s for a better 

orientation control. If the deviation angle 
TS

  is small, then 

the robot moves at a higher speed toward the target using a PD 

controller. Based on expert knowledge, this paper manages the 

speed control by using the following two fuzzy control rules: 
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If | ( ) |  is  Very Large  then ( ) is 

If  | ( ) | |is  Small   then ( ) is  ( )

TS f slow

TS f PD

k V k v

k V k v k




       

(19) 

where fuzzy sets “Very Large” and “Small” are described by 

trapezoidal membership functions, as shown in Fig. 4, and 

( )
PD

v t  is the output of a PD controller described as follows: 

[ ( ) ( 1)]
( ) ( ) T T

pd P T D

L k L k
v k K L k K

t

− −
= +

        

(20) 

where ( )
T

L k  is the smaller of the distances between the robot 

and the target or an obstacle. That is, the fuzzy PD controller 

also controls the speed of the robot when it approaches an 

obstacle located between the robot and the target. The units of 

( )
T

L k , and t  are cm and seconds, respectively. The 

coefficients are set to 
P

K =10 and 
D

K =2. The final control 

outputs sent to the two robot wheels are determined by (17).    

Finally, considering the moving inertia of a real robot, when 

the robot is approaching an obstacle or a target (i.e., 

( ) 0.5 
T

L k m ), the moving speeds of the two wheels 

determined in (18) are reduced to 

( ) 0.5 ( ) 0.5 ( )

( ) 0.5 ( ) 0.5 ( )

right f ore

left f ore

v k V k V k

v k V k V k

=  + 

=  − 
               

(21) 

The change reduces the forward moving speed so that the robot 

has enough time to reorient itself to face the correct direction 

when it is very close to the target/obstacle.  

IV. FAST NAVIGATION IN UNKNOWN 

ENVIRONMENTS  

The general navigation scheme consists of three parts: TS, 

OBF, and a behavior supervisor. To reduce the robot navigation 

time in unknown environments, this paper proposes a fast 

navigation scheme consisting of four parts, with the additional 

VPS behavior proposed to reduce the robot navigation time. 

The VPS behavior first finds convex vertex points, if any, of an 

obstacle when the robot is executing the OBF/TS behavior and 

then selects one as a subgoal to reach. The details of the VPS in 

TS and OBF behaviors and the behavior supervisor are 

introduced below. 

A. Vertex Point Seeking During Target Seeking 

While the robot is executing the TS behavior, the laser 

sensor helps sense the existence of an obstacle located far away 

in the direction of movement. Let (
0

x , 
0

y ) denote the 2D 

coordinates of the robot. The distance between the robot and the 

target is denoted by T
d . In the scanning region from 5−  to 

5 , as shown in Fig. 5, the maximum considered distance VPS
D  

is set to 6 m, which is sufficiently large in indoor environments. 

In this range, if the minimum sensor measurement is smaller 

than the robot-target distance, indicating an obstacle between 

the robot front and the target, then the robot starts to find vertex  
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Fig. 5. Searching for two TS convex vertex points D1 and D2: as ds1< ds2, D1 

is selected as the subgoal.  
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Fig. 6. The space defined to check if a convex vertex point is qualified as a 

subgoal candidate.  

 

points in the obstacle. Starting from the robot’s front direction 

at zero degrees, the laser searches for possible convex vertex 

points in both the clockwise and counterclockwise directions. 

Consider the counterclockwise laser scanning direction: if  

( 1) ( )
th

    − −  ,  ( 90 , 0]
o

  −              (22) 

where ( )   is the laser measurement at degree   and 
th

 (= 

1.5 m) is a threshold, then the coordinates of point D  at which 

the distance ( )   is measured are recorded as 
2 2

( , )x y .  The 

included angle between the robot’s forward direction and the 

vertex point is denoted by 
1

 , as shown in Fig. 6. To determine 

whether point D can be selected as a subgoal candidate, the next 

step is checking if there is an enough space near this point for 

the robot to pass by the obstacle. Let 
1 1

( , )x y  denote the 

coordinates of the obstacle scanned at laser distance (0)  and 

3 3
( , )x y  denote a point in the direction from 

1 1
( , )x y  to 

2 2
( , )x y  at distance th  from 

2 2
( , )x y , as shown in Fig. 6. The 

included angle between the directions from 0 0
( , )x y  to 

2 2
( , )x y  

and 3 3
( , )x y  is denoted by  , as shown in Fig. 6. The distance 

between 0 0
( , )x y  and 3 3

( , )x y  is denoted by 1
( )  − − . To 

define the space area, at the laser sensor direction at the angle of 
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1 1− − , a new point 
4 4

( , )x y  with the distance of 

1
( )

th
  − +  to 

0 0
( , )x y  is defined. The area formed by 

0 0
( , )x y , 

3 3
( , )x y , and 

4 4
( , )x y  should contain no obstacles, as 

shown in Fig. 6, which is confirmed by  

1 1
( ) ( ) , 1, ...,

s
i i i    − −  − − =                (23) 

where 
1

( )
s

i − −  is the distance from the laser to the space 

boundary at angle 
1

i− − .  

If both (22) and (23) are satisfied, then point D is regarded 

as a subgoal candidate, and the counterclockwise laser scanning 

stops. In the clockwise scanning direction, another subgoal 

candidate, if any, is found by the same approach. During the 

scanning process, if two subgoal candidates are found in the 

two scanning directions, such as 1D  and 2D  in Fig. 5, then 

the candidate with the minimum distance to the target ( 1D  in 

Fig. 5) is identified as a subgoal. Once a subgoal is found, the 

robot moves to the subgoal using the fuzzy PID/PD controller 

Described in Section III. The robot continues the original TS 

behavior at each time step if no subgoal is found. 

B. Vertex Point Seeking During Obstacle Boundary Following 

 The robot begins the OBF convex vertex point scanning 

process once the distance measurement in the front direction is 

smaller than 4 m ; this condition indicates the presence of an 

obstacle ahead. The search for a vertex point is constrained to 

only the boundary the robot is following to avoid the dead cycle 

problem of repeatedly switching between vertex points. To 

satisfy this constraint, the vertex scanning process starts only if  

45( )
meet

o
D −  ,                             (24) 

where 
meet

D  is the distance that the robot encounters an 

obstacle, as stated in Section IV-C. In addition, the separation 

distance SD between two neighboring laser scanning 

directions, as shown in Fig. 7, should satisfy  

( ( 1) ( )) cos
SD

SD d     − + −  .            (25) 

This inequality is imposed because SD is generally a small 

value (
SD

d  is conservatively set to 0. 5 m), except at the convex 

vertex point, for the same obstacle being followed. If (25) is not 

satisfied, then the vertex search process stops, and the robot 

continues the OBF behavior.  

In the left OBF behavior, if (24) and (25) are satisfied, a 

possible OBF-vertex point is found in the right side, i.e., 

[0 , 90 )  . Similar to the VPS during TS, if 

( 1) ( )  ,  [0 , 90 )
th

     + −              (26) 

then the search stops. The point on the obstacle boundary with 

the distance of ( )   is identified as an OBF-vertex point as 

well as a subgoal, as shown in Fig. 7. The original OBF 

behavior is switched to the VPS behavior.  

C. Behavior Supervisor 

The behavior supervisor determines the switching among 

the TS, OBF, and VPS behaviors. Fig. 8 shows the flowchart of  

Vertex
point

   
The range of search

The range of inspection



( ) 

( 1)  +

(0)

( 45) −

SD

 
Fig. 7. Vertex point checking and searching ranges and the OBF-vertex point 

chosen as a subgoal while the robot is executing the OBF behavior. 
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Fig. 8. Flowchart of the behavior supervisor with the VPS behavior in the fast 
navigation scheme. 

 

the fast navigation scheme. The initial behavior of the robot is 

set to TS. The surroundings of the robot are divided into three 

overlapped regions: 
1

[ 30 , 30 ]O = − , 
2

[0 ,180 ]O = , and 

3
[0 , 180 ]O = − . If the target is located in a region 

i
O  in 

which the robot encounters an obstacle, i.e., the minimum 

distance sensor measurement is smaller than 
meet

D =1 m, then 

the robot switches to the OBF behavior. The avoidance of the 

dead-cycle problem is considered in the fast navigation scheme. 

The criteria of the robot-target distance and the time step 

counter, as proposed in [2], used in deciding to switch from the 

OBF to TS behavior are incorporated into the fast navigation 

scheme. In the proposed fast navigation scheme, when the 

supervisor switches the robot behavior from TS or TS-based 

VPS to OBF, the distance 1
d  between the robot and the target is 

recorded, and the step counter step
c  is set to zero. At the 

position where the robot does not meet an obstacle in the target 

region, the robot-target distance 2
d  is determined, and counter 

step
c  starts to be increased. If 2

d  < 1
d  or the robot senses that 

there is no obstacle between the robot and the target within the 
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sensing region, then after step
c  (=5) steps of satisfying the 

constraint, the robot switches from the OBF to TS behavior.  

V.  ROBOT LOCALIZATION  

This section introduces the proposed localization method 

for localizing the position and orientation of a real robot. The 

method consists of three parts: two wheel encoders, a StarGazer 

sensor (http://www.hagisonic.com) at the top of the robot, as 

shown in Fig. 1, and the particle filter algorithm. The StarGazer 

sensor localizes a robot based on markers on a ceiling and 

infrared light emitted by the robot.  

The rotary encoder feeds back both the changes in the 2D 

position, ( )x k  and ( )y k , and the orientation ( )
r

k  of the 

robot with respect to its previous state at each control time step 

k . The StarGazer sensor functions as an observer that 

measures the state ( ) ( ( ), ( ), ( ))
r

k x k y k k=z  containing the 

position ( ( ), ( ))x k y k  and orientation ( )
r

k  of the robot. The 

particle filter fuses the information from the encoder and the 

StarGazer sensor to provide the estimated state 

( ) ( ( ), ( ), ( ))
r

k x k y k k=x  of the robot. The 3D state 

ˆ ( )i kx = ˆˆ ˆ( ( ), ( ), ( ))
i i i

r
x k y k k  of particle i  contains the 2D 

position and orientation of the robot. Initially, a group of 
S

P  

(=50) particles are randomly generated around the initial 

observed state. In the Bayes prediction step, the next state 

ˆ ( )
i

kx  of particle i  is predicted as follows: 

2

2

2

ˆ ˆ( ) ( 1) ( ) (0, )

ˆ ˆ( ) ( 1) ( ) (0, ),  1, ...,

ˆ ˆ( ) ( 1) ( ) (0, )

i i

x

i i

y S

i i

r r r

x k x k x k G

y k y k y k G i P

k k k G






   

= − +  +

= − +  + =

= − +  +

   (27) 

where (0, )G   represents a normal distribution with zero mean, 

and 
x

  (=5 cm), 
y

 (= 5 cm), and 


  (= / 36  rad= 5
o

) are 

standard deviations.  

In the Bayes update step, the posterior probability 

( ( ) | (1: ))p k kx z  at time k is represented by the 
S

P  particles 

ˆ ( )
i

kx and their associated weights ( )
i

w k  computed as 

follows: 

3/2

2 2 2

2 2 2

ˆˆ ˆ( ( ) ( )) ( ( ) ( )) ( ( ) ( ))

ˆ ˆ ˆ

1{ }
21

( )
ˆ ˆ ˆ (2 )

x y

i i i i

x yi

x k x k y k y k k k

w k e





 

  

   

− − −
− +

=

+
(28)  

where the standard deviations are set to be ˆ 2
x x

 = , 

ˆ 2
y y

 = , and ˆ 2
 

 = .  

Given the weights ( )
i

w k , the next step performs 
S

P  

samplings of the particles based on their weights. The 

tournament selection technique is used in the resampling 

operation. In this selection, five particles are randomly and 

uniformly selected regardless of their weights, and the one with 

the highest weight is retained. Finally, the state ( )kx  is 

TABLE I. AVERAGE ROBOT-OBSTACLE DISTANCE ERROR AND 

MOVING SPEED OF DIFFERENT FCS IN THE TRAINING 

ENVIRONMENT.  

Metrics Speed (m/s) Error (m) 

best-location FC 0.50 0.016 

best-speed FC 0.57 0.026 

Single-Objective FC [2] 0.50 0.190 

 

    
(a)                                                (b) 

Fig. 9. Trajectories of the robot in an unknown, test environment using (a) the 

best-location and (b) the best-speed FCs, where each square measures 0.5 

m 0.5 m. 

 

estimated from the average of the 
S

P  selected particles.  

VI. SIMULATIONS 

This section presents simulation results of the proposed 

OBF, TS, and fast navigation methods, as well as comparisons 

with various methods.  

A. Simulation results of the OBF control 

Example 1 (fuzzy control for OBF). Fig. 1 shows the 

training environment created to learn the right OBF behavior. 

In the MO-FCACO algorithm, the population size N was set to 

40 and / 4L N= . The maximum number of learning iterations 

was set to 250. The total number of rules was set to ten, with 

two of them based on the expert knowledge in (4) and (5). The 

other eight were in the form of (3) and were learned from 

scratch. A total of 30 runs were performed for statistical 

performance evaluation. To evaluate the learning result, the 

two extreme FCs among the nondominated FCs in a run were 

selected. They were the best-location and best-speed FCs that 

achieved the minimum 
1

f  and 
2

f  values, respectively. Table I 

shows the average robot-obstacle absolute distance error and 

moving speed of the two FCs in the training environment.   

To see the test result of these FCs in a new, unknown 

environment, Fig. 9 shows the trajectories of the FCs in a test 

environment for a total of 1200 time steps, where the FCs 

successfully controlled the robot in executing the OBF in the 

unknown environment. It was observed that the best-location 

FC showed smaller turning overshoots at the corners than did 

the best-speed FC. In contrast, the best-speed FC resulted in a 

longer moving distance than that of the best-position FC. 

To see the advantage of the combination of expert 

knowledge and data-driven learning approach proposed in this 

paper, comparisons with the data-driven MO-FCACO 

algorithm and nondominated sorting GA II (NSGA-II) [46] 

algorithm without the expert knowledge were performed. For 

the two data-driven methods, the number of rules was also set 

to ten, with all rules in the form of (3). Table II shows the 

computation algorithm was applied to the same training 
TABLE II. COVERAGE BETWEEN LEARNING THROUGH THE 
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PROPOSED COMBINATION METHOD AND THE DATA-DRIVEN 

METHODS USING VARIOUS OPTIMIZATION ALGORITHMS.  

Data-driven algorithms MO-FCACO [7] NSGA II [46] 

C(Proposed, B) 0.782 0.831 

C(B, Proposed) 0.133 0.075 

 
TABLE III. COVERAGE BETWEEN LEARNING THROIUGH THE 

PROPOSED OBJECTIVE FUNCTION AND THOSE PROPOSED IN 

VARIOUS STUDIES. 

Objective function Study [14] Study [18] 

C(Proposed, B) 0.595 0.569 

C(B, Proposed) 0.352 0.331 

 
TABLE IV. COVERAGE BETWEEN LEARNING THROIUGH THE 

PROPOSED OBJECTIVE FUNCTION AND THOSE PROPOSED IN 

VARIOUS STUDIES. 

Objective function Scheduled PID Proposed  

Average time step 110.1 49.6 

 

 
Fig. 10. TS trajectories and the total number of control time steps required to 
reach the target using the proposed control (green lines and boxes) and the 

control approach in [18] (blue lines and boxes). 

 

coverage metric [47] between the combination method and 

each of the methods used for comparison (denoted by “B”). The 

result showed that C(Proposed, B) was greater than C(B, 

Proposed) for each of the algorithms used for comparison, 

indicating that the proposed combination method has better 

coverage and the advantage of incorporating the expert 

knowledge to improve learning performance.  

To observe the advantage of including the penalty term 

( )
c

T  in (6) to improve the learning performance, the 

objective functions for evaluating the position performance in 

[14], [18] were also applied to the same two-objective OBF 

learning problem. For ease of comparison, the robot started 

only from point “A” in the OBF learning problem, and the ten 

fuzzy rules were all learned through the data-driven 

MO-FCACO algorithm, i.e., without using the expert 

knowledge. For comparison of the FCs learned through these 

different objective functions, all learned FCs were reevaluated 

using the same objective function in [14], i.e., without the term 

( )
c

T  in (6). Table III shows the coverage metric between the 

proposed approach and each of the methods used for 

comparison (denoted by “B”). The result showed that 

C(proposed, B) was greater than C(B, proposed) for any of the 

algorithms used for comparison, indicating that the proposed 

objective function has better coverage.  

For comparison, the single-objective learning configuration 

proposed in [2] that optimized an FC using the evolutionary  

TS

OBF

    

OBF

TS

VPS

 
(a)                                                    (b) 

Fig. 11. Navigation trajectories of the robot using the proposed fast navigation 

scheme in environments (a) one and (b) two in Example 3, where each square 

measures 0.5m  0.5 m. 

 

TABLE V. NAVIGATION TIME AND TRAVELLED DISTANCES OF 
DIFFERENT SCHEMES FOR THE TWO ENVIRONMENTS IN EXAMPLE 

3, WHERE THE NAVIGATION TIME OF A FAILED FC IS THE TIME THE 

ROBOT COLLIDES WITH AN OBSTACLE.   

Design Methods 
Expert 

[11] 

Naïve  

[11] 

GA  

[11] 

PSO 

[11]  
Proposed 

Env.  

one 

time (s) 17 25 27.1 25.4 8.8 

distance (cm) 528 Failed 531 542 487 

Env.  

two 

time (s) 45 25 32 21 16.9 

distance (cm) 1025 Failed Failed Failed 821 

 

environment. In this comparison, ten rules without a priori 

knowledge were learned using the proposed method and [2]. 

Table I shows that the two FCs designed using the proposed 

method achieved nearly one-tenth of the distance error, and 

reached the speed that was higher than or equal to that in [2].  

B. Simulation results of the TS control  

Example 2 (TS control performance). This example shows 

the control performance of the fuzzy PID/PD controller in the 

TS. Fig. 10 shows the robot trajectories in executing the TS 

behavior using the proposed controllers, where the robot starts 

from different positions and orientations and reaches the same 

target. For comparison, Fig. 10 also shows the robot trajectories 

sing the scheduled PID control approach in [18]. Like most 

previous studies [16], [17], the approach in [18] used a single 

PID controller to control the speed of the robot. For the 

orientation control, a scheduled PID controller was proposed in 

[18] to improve control performance. Table IV shows the 

average number of control steps to reach the target using 

different methods. The average total number of control times of 

the proposed fuzzy PID/PD control approach was smaller than 

half of that in [18], which shows the superiority of the fuzzy 

PID/PD controller over PID controller.  

C. Simulation results of the fast navigation scheme 

Example 3 (fast navigation in convex maps). This example 

shows the performance of the fast navigation scheme in two 

unknown environments containing only convex obstacles, as 

shown in Fig. 11, studied in [11]. The location-speed FC that 

achieved the minimum 
1 2

f f+  (achieving a compromise of the 

best-position and best-speed FCs) in Example 1 was selected 

for executing the OBF behavior. Fig. 11 shows the successful 

navigation trajectories using the proposed scheme. In this and 

the following figures, the TS, OBF, and VPS behaviors were 

represented by green, blue, and orange lines, respectively. 

Table IV shows the total navigation time and travelled distance.  

For comparison, Table V also shows the navigation result of 

the approach reported in [11]. The approach consists of two 

fuzzy modules: a navigation behavior module and an avoiding 
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obstacles module. Four different methods in designing the FCs 

in the two modules are proposed, including the naive FCs, and 

their enhancements using GA, PSO, or expert knowledge [11]. 

Table V shows that in environment 1, the proposed navigation 

scheme achieved shorter navigation time and smaller travelled 

distance. In environment 2, among the methods used for 

comparison, only the FC-expert succeeded in navigating the 

robot. The navigation time of the proposed method was only 

approximately one-third of that in the FC-expert. For the GA 

and PSO enhanced methods in [11], the FC in the avoiding 

obstacles module was trained to avoid obstacles in certain TS 

directions instead of following obstacle boundaries. Therefore, 

the trained FC may fail to bypass new obstacles in a new 

environment, as shown in Table V.  

Example 4 (fast navigation in concave maps). This 

example shows the performance of the fast navigation scheme 

in an unknown environment with concave obstacles (as shown 

in Fig. 12) and an unknown maze environment (as shown in 

Fig. 13). Fig. 12 and Fig. 13 (a) show the navigation trajectories 

in these environments using the proposed navigation scheme, 

where the robot successfully reached the target in these 

simulations without becoming stuck in dead cycles. In Fig. 

13(a), the robot passed the same point “c” twice and performed 

different behaviors because the criterion 
2

d  < 
1

d  introduced in 

Section IV-C for dead-cycle avoidance was satisfied only when 

the robot first passed the point.  

For the purpose of comparison, the online navigation 

schemes for local path planning proposed in [10] and [18] were 

also applied to the same environment in Fig. 12 by using the 

same FCs. Fig. 12 shows the trajectories of the two navigation 

schemes used for comparison. The navigation scheme in [10] 

faced the dead-cycle problem around U-shaped obstacles, as 

shown in Fig. 12. The scheme in [18] successfully navigated to 

the robot to the target, but the total number of navigation time 

steps was 256 and was longer than 182 obtained using the 

proposed scheme. The result showed the significant effect of 

the proposed VPS behavior in reducing the time needed to 

reach the target.  

In another comparison, the online local path planning 

scheme using the SLAM-based DWA-A* algorithm, available 

as a navigation package in the ROS [43], was also applied to the 

unknown environment in Fig. 13(a). Fig. 13(b) shows the 

trajectory of the navigation scheme, where the robot moved 

back to a visited space around area “A” instead of passing 

through the passage around area “B”. As a result, the travelled 

distance using the DWA-A* algorithm was much larger than 

that using the proposed navigation scheme. In the ROS 

simulation environment, a 360
o

laser range scanner was 

mounted on the robot for SLAM. This scanner helped to sense 

the whole surrounding environment and avoid going deeper to a 

U-shaped environment. The proposed scheme considered the 

scanner covering only 180
o
 sensing range in simulations and 

experiments. Therefore, the robot may move with a larger local 

distance to escape a U-shaped environment. The proposed fast 

navigation scheme can be further modified for  

 

256
182

Start

End

Failed

OBF
TS

OBF
TS

TS

VPS OBF

 
Fig. 12. Navigation trajectories of the robot using the proposed fast navigation 

scheme (in green, orange, and blue colors) and navigation schemes of [18] (in 
black and gray) and [10] (in red and purple colors) in an unknown environment 

in Example 4.  
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(a)                                                      (b) 

Fig. 13. Navigation trajectories of the robot using the (a) proposed (b) 
DWA-SLAM navigation schemes in Example 4, where the number indicates 

the time order of trajectories.  
 

performance improvement if a 360
o

laser range scanner is used 

instead. 

VII. EXPERIMENTS 

This section presents experimental results of localizing and 

navigating the robot in real environments with static and 

moving obstacles to show the accuracy of the localization 

approach and the performance of the fast navigation scheme. 

Considering the differences between real and simulation 

robots, such as the inertia of movement and the additionally 

carried objects on the real robot, the moving speed of the FC in 

the OBF behavior in the experiments was set to be half of that 

in the simulations. 

Example 5 (navigation with static obstacles). This example 

considers navigating the real robot using the proposed fast 

navigation scheme in an unknown environment with static 

obstacles. Fig. 14 shows screenshots of the navigation result in 

the environment. Fig. 15(a) shows the navigation trajectory of 

the robot, where the trajectory was recorded using the proposed 

localization approach. The result showed that the robot moved 

toward the subgoals found in the two obstacles to shorten the 

navigation path, where the first and second VPS behaviors were 

switched from the OBF and TS behaviors, respectively. Fig. 15 

shows that interruptions or distortions of the StarGazer sensor 

measurements happened at some control time steps and that the 

proposed localization method corrected those failed 

measurements. The average root-mean-squared errors 

(RMSEs) of the localization and control accuracy of the final 

robot position were determined over ten experimental runs, and 

the  
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target

 
Fig. 14. Screenshots of navigating the real robot in an unknown test 

environment using the proposed fast navigation scheme in Example 5. 
 

   
(a) 

       
(b) 

Fig. 15. Stargazer sensor measurements (×), the predicted positions using the 

encoder when interruptions in the sensor occur (+), and the localized positions 

(□) determined using the proposed particle filter-based localization method in 

(a) Example 5 and (b) Example 6, where the person walking trajectory is 

denoted as a dotted line.  

target

target  
Fig. 16. Screenshots of the navigation result when the robot continuously met a 

moving obstacle (a person) while executing the TS behavior in Example 6.  

 

ground truth was obtained from manual measurement. For the 

localization of the robot, the result showed a small average 

RMSE of 3.6 cm (STD=2.8 cm) between the localized and 

actual positions. For the control of the robot, the result also 

showed a small average RMSE of 4.5 cm (STD=2.1) between 

the actual robot position and the target. 

Example 6 (navigation with moving obstacles). This example 

presents the experimental result of navigating the robot in an 

unknown environment with a moving obstacle, where a person 

continued to walk toward the front of the robot after it detoured 

around the person. Fig. 16 shows screenshots of the navigation 

result in the environment. Fig. 15(b) shows the navigation 

trajectory of the robot. In this experiment, the robot initially 

switched from the TS behavior to the VPS behavior to shorten 

the route and detoured around a sofa. When the robot was 

executing the TS behavior, a person walked toward the moving 

robot and stopped in front of it. When the robot met the person 

at different locations, it switched the original TS behavior to the 

OBF behavior and successfully detoured around the person. 

Finally, the robot successfully reached the target. 

Example 7 (navigation with SLAM). This example considers 

navigating the real robot in two unknown environments using 

the proposed navigation scheme with two different localization 

methods and the SLAM-based DWA-A* navigation package in 

the ROS [43]. Figs. 17(a) and 18(a) show the two 

environments, where the later contains a narrow pathway. For 

the proposed navigation scheme in each environment, two 

experiments using the proposed Stargazer-based and SLAM 

localization methods were performed. For the SLAM 

localization, a  360
o

 laser range scanner RPLIDAR A2 was 

mounted on the robot and the SLAM package in the ROS was 

used. Figs. 17 (a) and 18(a) show screenshots of the navigation 

results in the two environments using the proposed localization 

and navigation scheme. Figs. 17(b) and 18(b) show the 

navigation trajectories of the robot using the proposed 

navigation scheme with the two localization methods. The 

results showed that the robot successfully reached the target in 

all experiments. Fig. 18 also shows that the robot successfully 

moved through the narrow pathway to reach the target. Table 

VI shows the average path length, navigation time, and 

localization error (RMSE) using the proposed navigation 

scheme with the two localization methods, where the average 

was determined over five experimental runs. The result showed 

that under the same  
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TABLE VI. NAVIGATION PERFORMANCES USING DIFFERENT 

LOCALIZATION AND NAVIGATION METHODS IN EXAMPLE 7.  

Localization Methods SLAM Stargazer 

Navigation Scheme DWA-A* Proposed Proposed 

Environment  

1 

Time (s) 39 28 26 

Path Distance (cm) 771 537 528 

Localization  error (cm) 27.5 6.5 

Environment  

2  

Time (s) 66.8 32.6 29.6 

Path Distance 1256 714 693 

Localization  error (cm) 24.9 4.6 

 

 

 
(a) 

Proposed(stargazer)

Proposed(SLAM)

DWA-A*(SLAM)

m

m

Start
Target

 
(b) 

Fig. 17. (a) Screenshots of navigating the robot using the proposed localization 
method and navigation scheme in the first environment in Example 7. (b) 

Trajectories of the robot using different localization methods and navigation 

schemes in the map built through SLAM.  

 

Target
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Start

Target
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m

m
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DWA-A*(SLAM)

Start Target

B

C
D

 
(b) 

Fig. 18. (a) Screenshots of navigating the robot using the proposed localization 
method and navigation scheme in the second environment in Example 7. (b) 

Trajectories of the robot using different localization methods and navigation 

schemes in the map built through SLAM. 

navigation scheme, the Stargazer-based localization achieved 

smaller localization error than the SLAM localization method. 

For the purpose of comparison, the SLAM-based DWA-A* 

navigation scheme was also applied to navigate the robot in the 

two environments. In this scheme, the parameters such as the 

inflation radius [43] for robot-obstacle clearance setting was 

selected so that the robot can move along an obstacle boundary 

as close as possible. Fig. 17 (b) and Fig. 18(b) show the 

navigation trajectories in the two environments. In contrast to 

the proposed navigation scheme, Fig. 17(b) shows that the 

robot moved along the obstacle with a larger robot-obstacle 

distance when the DWA-A* was used. Fig. 18 (b) shows that 

the robot turned around at point “B” and moved backward at 

points “C” and “D” and finally the DWA-A* navigated the 

robot in bypassing the sofa to reach the target instead of moving 

through the narrow pathway, which caused a longer navigation 

path. Table VI shows the navigation performances in the two 

environments. The DWA-A* navigation scheme showed 

longer navigation time and larger travelled distance than the 

proposed navigation scheme when the same SLAM localization 

method was used in the two environments.  

VIII.  CONCLUSION 

A new navigation scheme of a wheeled robot controlled by 

a new fuzzy control approach in unknown environments is 

proposed in this paper. The FC is used because of the 

explainable fuzzy rule expression ability in it. To take 

advantage of this ability, this paper proposes the automatic 

learning of an FC based on the combination of human expert 

rules and a data-driven multiobjective learning approach to 

control a real robot in executing the OBF behavior. New 

objective functions and constraints are proposed to improve the 

OBF learning performance. In comparison with the previous 

single-objective learning approach, the multiobjective 

architecture at the same time provides more diverse selections 

of FCs and a better control performance. For the TS, this paper 

proposes fuzzy PID and PD controllers that successfully 

control the robot to quickly move toward the target with a 

smooth trajectory. Based on the fuzzy controlled OBF and TS 

behaviors, this paper proposes a fast map-free navigation 

scheme, including a new VPS behavior to reduce superfluous 

routes, and a new behavior supervisor that successfully 

supervises various robot behaviors. The advantages of the 

proposed approaches have been verified by simulations, 

comparison with various methods, and experiments. In 

particular, high localization and control accuracies have been 

achieved in the experiments. The proposed navigation system 

can be applied to navigating robots in various environments, 

such as object-carrying robots in factories and home service 

robots.  
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