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Abstract—As a developing trend of urbanization, massive amounts of urban statistical data with multiple views (e.g., views of
Population and Economy) are increasingly collected and benefited to diverse domains, including transportation service, regional
analysis, etc. Unfortunately, these statistical data that are divided into fine-grained regions usually suffer from missing value problem
during the acquisition and storage processes. It is mianly caused by some inevitable circumstances, e.g., the document defacement,
statistical difficulty in remote districts, and inaccurate information cleaning, etc. Those missing entries which make valuable information
invisible may distort the further urban analysis. To improve the quality of missing data imputation, we propose an improved spatial
multi-kernel learning method to guide the imputation process incorporating with the adaptive-weight non-negative matrix factorization
strategy. Our model takes into account the regional latent similarities and the real geographical positions as well as the correlations
among various views that are able to complete missing values precisely. We conduct intensive experiments to evaluate our method and
compare with other state-of-the-art approaches on real-world datasets. All the empirical results show that the proposed model
outperforms all the other state-of-the-art methods. Additionally, our model represents a strong generalization ability across multiple
cities.

Index Terms—Missing data imputation, Spatial data, Statistic data, Multi-view
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1 INTRODUCTION

1 U RBANIZATION’S rapid progress has currently mod-2

ernized many people’s lives. The generated statistic3

data play an irreplaceable role in a large number of city4

development and social services, e.g., regional planning,5

urban computing, failure detection, and transportation man-6

agement [1]–[5]. These statistical data record various types7

of information that usually contain multi-fold views (e.g.,8

views of Family, Income, Population and Business). Such9

statistics reveal the growth gaps among different adminis-10

trative regions from various perspectives. Fig. 1 gives an11

example of the regional statistics. The Business area r2 con-12

tains four views. Among them, the economy view records13

the key economic indicators for fine-grained regions1, such14

as employee statistics and the number of industries; and the15

family view consists of detailed family information of all16

living sizes.17

The statistic data provide key statistics to governments,18

business and the community on social science, for the19

benefit of many aspects of human life2. However, in some20

places, statistical data are hard to be entirely acquired due21

to document defacement, error recordings, and statistician22

misplay, resulting in data-missing and sparsity problem.23
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1. The fine-grained area partition is based on the Australian Bureau
of Statistics (ABS) standard. https://www.abs.gov.au/

2. https://www.abs.gov.au/about?OpenDocument&ref=topBar

Such missing values hide useful information which may 24

cause distorted results for further analysis. For example, in 25

the point of interest recommendation problem [6], economy 26

and population are two of the most important influence fac- 27

tors of determining area functions. A business area should 28

have a high-quality economy and a larger population. If 29

the economy attributes were missing, this area would be 30

grouped into the residential district because the solely con- 31

sideration of population. To the best of our knowledge, 32

to present, it is an under-studied field concerning on this 33

specific problem. Yet it is a real-world demand from the 34

national government. Accordingly, an effective missing-data 35

imputation method for urban statistical data should be de- 36

vised, which is important for the reliable urban computing 37

and government services. 38

In this paper, we explore the missing-data imputation 39

problem in urban statistical datasets collected from the 40

Australian Bureau of Statistics (ABS) and the New Zealand 41

Stats (NZS)3. Such a missing value imputation task for the 42

multi-view urban statistical data is much more difficult than 43

completing missing values for other datasets as this type of 44

problem has some unique challenges: 45

Spatial Correlation Mining. The statistical data focusing on 46

fine-grained regions may change over locations significantly 47

and non-linearly. Even though the First Law of Geography 48

emphasizes that everything is related to everything else, 49

but near things are more related than distant ones [7], the 50

potential similarities need to be considered when analyzing 51

the spatially related data [8], [9]. Therefore, to properly 52

recover the missing information of statistical data, we need 53

to consider the regional similarities. As illustrated in Fig. 1, 54

3. https://www.stats.govt.nz/
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Fig. 1: Urban statistical data illustration and the regional
similarity. First, the tabular data give an example of the property
of statistics; second, to properly recover the missing information
of statistical data, we need to consider the regional similarities, as
represented in the map figure.

the properties of business area b1 are similar to the ‘Sydney55

center’ because they are neighboring each other. However,56

although the business area r2 is closer to the park area57

in terms of the physical distance, the statistical data of r258

are more analogous to the ‘Sydney center’ than the ‘Park’59

because they have a similar functional property (business60

centre).61

Multi-view Problem. The complicated underlying interac-62

tions suggest that simply recovering the missing informa-63

tion without considering the correlations among attributes64

and multi-modes will end up with a poor performance [10].65

For example, the economy view has strong correlations with66

the income and population views, so that a high-quality67

economy in a region usually goes along with a better income68

and a larger population; and a low-level economy in a69

region has a high probability of being connected with a70

lower income and a smaller population. In this case, only71

considering per view separately does not utilize the rela-72

tionships between attributes and multi-modes. Therefore,73

how to integrate the whole views into a unified model is74

a principal challenge need to be solved.75

Missing Temporal Information. In this specific problem,76

almost all the missing statistic values in the current year77

were also missing in the past years, which may be caused by78

the region restriction and complicated human-made errors.79

Based on the real phenomenon, the temporal dimension80

is unavailable. Besides, this violates the basic assumption81

of matrix completion [11] that the unobserved entries are82

sampled uniformly at random. Thus matrix completion-83

based approaches may not work in this case. Note that,84

this challenge is not solely a matter for statistical data but85

appears in other fine-grained spatio-temporal data mining86

problems [12], [13], where the temporal information in some87

fine-grained areas cannot be collected at any time.88

In the current literature, the existing missing data impu-89

tation approaches, while yielding good estimations for miss- 90

ing values in the single view, are poor in terms of completing 91

missing data on multiviews, especially when associated 92

with the spatial characteristic. For example, numerous ap- 93

proaches can be applied in urban statistical data, e.g., mean- 94

filling (MF), k-nearest-neighbor (KNN) filling [14], and 95

collaborative filtering based methods [15]. Most of them, 96

however, have been proposed to focus on the single view 97

problem. Besides, although several spatiotemporal methods 98

can infer the missing information based on the knowledge 99

from both spatial and temporal domains [8], [16], [17], they 100

do not perform well when the missing temporal information 101

challenge appears. To handle all challenges well, we devise 102

a model via the spatial correlation learning. In detail, the 103

method integrates a spatial multi-kernel clustering method 104

and an adaptive-weight non-negative matrix factorization4
105

(NMF) method for solving the multi-view spatially related 106

tasks. We summarize the main contributions and innova- 107

tions of this paper as follows: 108

• To address the multi-view problem with spatial char- 109

acteristics, we design a Spatially related Multi-Kernel K- 110

Means (S-MKKM) approach to identify the underlying rela- 111

tionships among multi-fold views and capture the regional 112

similarities. 113

• We propose an adaptive-weight non-negative matrix 114

factorization method to leverage the information learned 115

above to tackle the multi-view missing data imputation 116

problem. Besides, the proposed method also takes guidance 117

from the single-view and the real geographic information 118

with KNN strategy into consideration. 119

• A multi-view missing data imputation method for 120

urban statistical data via spatial correlation learning named 121

SMV-NMF is proposed. SMV-NMF does not rely on the 122

temporal information but achieves a great performance by 123

only using the spatial information. 124

• We perform a collection of experiments on six real- 125

world datasets to prove the effectiveness of our method 126

compared with other state-of-the-art models. All the eval- 127

uation results show that the proposed method SMV-NMF 128

yields the best performance. Furthermore, SMV-NMF shows 129

the strong generalization ability that can transfer the con- 130

structed model from one urban dataset to another well. 131

This paper is an extended version of [18], the nov- 132

elty and improvements of this paper are: we leverage an 133

improved adaptive-weight matrix factorization strategy to 134

control the knowledge extraction, provide more detailed 135

theoretical analyses and conduct intensive experiments for 136

the comprehensively evaluation from many perspectives. 137

The remainder of this paper is organized as follows: Section 138

2 includes a literature review. Section 3 formally defines the 139

problem and shows the preliminary methods. Our model is 140

proposed in Section 4. All experimental results are shown in 141

Section 5. Finally, conclusions are drawn in Section 6. 142

2 RELATED WORK 143

In this section, we review the current studies on the spatio- 144

temporal missing data imputation. Then provide the multi- 145

view model discussions. 146

4. We add the non-negativity constraint since almost all the urban
statistic data are non-negative.
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2.1 Missing Data Imputation for Spatio-temporal Data147

Missing data imputation is a significant task for data anal-148

ysis [19]. It aims at filling out the data with estimation149

value. In the spatially related problem, neighborhood and150

collaborative filtering [8], [20] based methods are two kinds151

of dominant approaches in missing data filling. Although152

some classical methods (e.g., zero-filling, mean value filling,153

regression models) can be applied to the spatial missing data154

imputation, they have disadvantages in nature, i.e, they are155

not designed for this spatial problem. [21] used the inverse156

distance weighting (IDW) method to interpolate the spatial157

rainfall distribution. [22] utilized the spatial information as158

inputs in a residual kriging method to estimate the aver-159

age monthly temperature. Unlike the spatial model, some160

successful spatio-temporal models were proposed for use161

with time stream data [8], [9], [16], [17]. For example, [8] de-162

velops a spatio-temporal multi-view approach (ST-MVL) to163

collectively complete missing values in a collection of geo-164

sensory time series data. It considers that 1) the temporal165

correlations between readings at various time spans in the166

same series and 2) the spatial correlations between different167

time series. However, they focused on filling missing entries168

by considering both spatial and temporal properties, and169

would not perform well on the static spatial data with-170

out the temporal information. Furthermore, these discussed171

methods leveraged the spatial guidance but did not consider172

the problem on multi-view datasets.173

Here we also discuss other spatio-temporal missing data174

imputation methods used in the real-time applications. For175

a large city network, we are faced with a truth that data176

is not everywhere, especially in the real-time system, there177

may be not enough time to collect complete data.178

A naive way is to average the values near missing data.179

Research by [23] used the simple average method to impute180

the missing data. As they said, this was mainly because the181

missing ratios for the selected sensors are sufficiently low.182

However, when faced with large-scale traffic network, the183

number of missing data is probably huge, and the average184

method cannot be adopted.185

Many traffic prediction methods incorporate missing186

data completion into prediction steps. [24] dealt with miss-187

ing data by ‘expanded Bayesian network’. They made use188

of the causal relations in traffic network, and constructed189

the network by replacing the missing data with its causal190

variables. The main shortage for this method is that once191

the structures and parameters of the Bayesian network is192

trained, the relative position and time for missing data is193

also fixed. This is usually unreal, because data is likely to194

be missed at different time and sites. In other words, one195

model can only handle with one case of missing data. If we196

are facing a real traffic network, it is impossible for us to197

enumerate every condition and train for each condition a198

model.199

[25] proposed a data completion method by matrix200

factorization. The Traffic data were structured as matrix with201

each entry Xij denotes traffic speed between node i and202

node j. Based on the non-negative matrix tri-factorization203

framework, they got the latent attribute matrix of nodes and204

the attribute interaction matrix. By minimising the known205

error together with constraint using Laplacian matrix [26],206

missing data completion was accomplished by reconstruct- 207

ing data matrix with factor matrices. 208

Tensor decomposition [27] was used by [28] to com- 209

plete missing computer network traffic data. They used 210

a weighted optimization version of CP decomposition to 211

impute the missing data. [29] improve this method through 212

Tucker decomposition. They got a comparatively accurate 213

result even when the missing ratio of data was quite high 214

(up to 75%). These methods organised data as a three- 215

way tensor, with day mode, hour mode and interval mode. 216

[30] used this method to floating car data and get a better 217

coverage of traffic state. In this paper, data is organised as 218

a three-way tensor of link mode, interval mode and day 219

mode. Similar method was used in research of [31]. They 220

treated data to be predicted as missing data, and trained 221

the decomposition model with historical data as rough 222

prediction. There are two main problems of these tensor- 223

based methods. First, they can only deal with one road or 224

several road segments at a time, which is not enough for 225

a citywide traffic network. Second, they did not define a 226

rule for choosing the ranks for tensor decompositions, but 227

the rank is one of the most crucial parameters for tensor 228

decompositions. 229

2.2 Multi-view Learning 230

We discuss the multi-view studies because the missing-data 231

usually contain the multiply views. Multi-view learning 232

methods involved the diversity of different views that can 233

jointly optimize functions based on various feature subsets 234

[32], [33]. [34] proposed a matrix co-factorization based 235

method (MVL-IV) to embed different views into a shared 236

subspace, such that the incomplete views can be estimated 237

by the information on observed views. To connect multiple 238

views, MVL-IV assumes that different views have distinct 239

‘feature’ matrices (i.e., {Hi}di=1), but correspond to the same 240

coefficient matrix (i.e., W ). However, it does not exploit 241

the spatial correlations and may suffer from the imbalance 242

problem, i.e., if there is a substantial missing ratio gap 243

between views, the coefficient matrix W is mostly learned 244

from the dense view. The proposed method has addressed 245

this weakness by introducing guidance matrices. Another 246

widely used strategy for solving the multi-view problem 247

is tensor factorization [35], [36], but this restricts a regular 248

tensor that requires the number of dimensions per view 249

to be the same. Moreover, multiple kernel learning with 250

incomplete views [37], [38] only focuses on completing 251

missing kernels instead of filling missing values. To the best 252

of our knowledge, none of the above studies considered 253

both spatial and multi-view problems. Hence, this paper 254

proposes an effective missing value imputation model for 255

multi-view urban statistical data. 256

3 PROBLEM DESCRIPTION AND PRELIMINARIES 257

Before clarifying our model, we firstly introduce some basic 258

notations, operations and algorithms used in this paper. The 259

main symbols used in this paper are summarized in Table 1. 260

3.1 Problem Description 261

Focusing on the multi-view missing-value problem, each 262

set of urban statistical data includes multi-fold views, e.g., 263
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Fig. 2: The flowchart of our proposed method. In the learning process, given a set of multi-view urban statistical data,
we first use the muti-view NMF as a basic imputation method, then we propose a multi-view spatial similarity guidance
with adaptive-weight strategy to build guidance Xmv

p . Next, SMV-NMF also considers single-view and real geographic
locations. Finally, the target missing value can be inferred by Algorithm 1.

TABLE 1: Symbol description.

Symbols Descriptions
X = [X1X2...Xd] original data matrix contains d views

W ; Hp latent space matrices, p indicates the p-th view

Yp; Ȳp
indication matrices for all complete

entries and missing entries of p-th view

k; l
the number of dimensions of

latent space; and the number of clusters

n; d ;mp

the number of regions;
and the number of views;

the dimension of attributes in the p-th view
Zp; Z

′
p weight matrices of the p-th view

L graph Laplacian matrix
V the clustering matrix

Xmv ;Xsv ;Xknn three guidance matrices
Kβ ; β the kernel matrix; the coefficients of kernels

λ1;λ2;λ3;α regularization parameters

Income, Population, Economy views, etc. As shown in Fig.264

3, given the incomplete statistic dataset with n regions265

(r1,...,rn) and d views, where the dimension of attributes in266

the p-th view is mp (1 ≤ p ≤ d), this paper aims to find the267

interactions among views and fill missing entries precisely.268

3.2 Non-negative Matrix Factorization (NMF)269

In the missing data imputation problem, the non-negative270

matrix factorization method decomposes the original matrix271

X ∈ Rn×m+ into two matrices W ∈ Rk×n+ and H ∈ Rk×m+ ,272

where W and H represent the latent spaces. In our problem,273

W indicates the latent features of the regions; H indi-274

cates the latent features of the data view. Each column275

in these matrices represents k attributes of corresponding276

regions and statistical fields. The interaction between these277

attributes determines the statistical value between the re-278

gions and statistic fields. Therefore, the basic missing data279

imputation model based on NMF can be described as the280

following optimization objective:281

min
W≥0,H≥0

||Y � (X −W>H)||2F (1)

where W> is the transposed matrix of W ; Y is an indicator 282

matrix whose entry (i, j) is one if X(i, j) has been recorded 283

(for observed values) and zero otherwise (for missing val- 284

ues); ||.||F is the Frobenius norm of matrix; and � is the 285

Hadamard product (entry-wise product) operator. 286

3.3 Multiple Kernel K-means (MKKM) 287

The original data X is combined by d data views (X = 288

[X1...Xd]) as shown in Fig. 3. Let {xi}ni=1 be a collection 289

of n samples (region), xi represents the statistical features of 290

the i-th region, and φp(·) be the p-th view mapping that 291

maps x onto the p-th reproducing kernel Hilbert space. 292

In this case, each sample has multiple feature representa- 293

tions defined by a group of feature mappings φβ(xi) = 294

[β1φ1(xi)
>
, · · · , βdφd(xi)>]

>
, where β = [β1, · · · , βd]> 295

consists of the coefficients of the d base kernels. These 296

coefficients will be optimized during learning. Based on the 297

definition of φβ(x), a kernel function can be expressed as 298

κβ(xi,xj) = φβ(xi)
>φβ(xj) =

∑d
p=1 β

2
pκp(xi,xj). And a 299

kernel matrix Kβ is then calculated by applying the kernel 300

function κβ(·, ·) to {xi}ni=1. Based on the kernel matrix Kβ , 301

the objective of MKKM can be written as: 302

min
V,β

Tr(Kβ(In − V V >))

s.t. V ∈ Rn×l, V >V =Il, β
>1d = 1, βp ≥ 0,∀p,

(2)

where V is the clustering matrix; 1d ∈ Rd is a column vector 303

with all 1 elements; In and Il are identity matrices with size 304

n and l; l is the number of clusters. 305

4 THE PROPOSED METHOD 306

In this section, we propose our missing data imputation 307

model SMV-NMF. We will describe how to address the 308

multi-view problem, and how to capture the spatial cor- 309

relation via the multiple kernel learning. Fig. 2 shows the 310

flowchart of our model. 311
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Fig. 3: Problem description. For an urban dataset containing n
regions (r1,...,rn), our method aims to impute the missing values
with a high accuracy. For example, the imputation process for
x2(1,3) will both consider the internal (feature similarities) and
external knowledge (view interactions) to fill the target entry.

4.1 Multi-view NMF312

The multi-view NMF is an effective method to handle the313

multi-view problem. In our problem, we aim to learn a314

latent subspace W ∈ Rn×k+ by multiple views {X1...Xd}315

through the multi-view generation matrices Hp ∈ Rk×mp

+ .316

In this case, the basic missing data imputation model can be317

described as the following optimization objective:318

min
W≥0,Hp≥0

N =
d∑
p=1

||Yp � (Xp −WHp)||2F , (3)

where Yp are indicator matrices for the p-th view whose en-319

try Yp(i, j) is one if Xp(i, j) has been recorded (for observed320

values).321

We utilize the multi-view NMF method to find the322

potential connections among views. One of the advantages323

of non-negative constraint is the reasonable assumptions of324

latent characters and interpretability of the results [39]–[41].325

Furthermore, due to the fact of urban statistical data, the326

missing values must be non-negative, thusW andH should327

be constrained into non-negative field.328

4.2 Multi-view Spatial Similarity Guidance329

In general, the multi-view matrix factorization based meth-330

ods usually suffer from the imbalance problem as discussed331

in Section 2.2. To address this problem, we propose the332

similarity guidance Xmv
p for the p-th view Xp in this333

paper. To extract associations among different views of334

spatially related data, we devise a method to capture re-335

gional similarities via the spatial multiple kernel learning,336

named S-MKKM. The basic idea is that the development337

of a city gradually fosters different functional groups, such338

as educational and business districts, where the regions339

belonging to the same group would have strong connections340

with each other [3]. S-MKKM leverages the multi-kernel341

k-means (MKKM) clustering algorithm combined with a342

graph Laplacian dynamics strategy (an effective smoothing343

approach for finding spatial structure similarity [25], [41]–344

[43]) to cluster regions into the functional groups. Specifi-345

cally, we construct a graph Laplacian matrix L, defined as346

Fig. 4: An example of generating Xmv
1 and Xmv

d . Assume
that regions x1 and x3 are falling into one cluster with the blue
background, and x2 and x4 belong to another cluster with green
background. x2 and x3 are the centroid regions of two clusters,
respectively. For a missing entry x12, its corresponding value x32
is used as an imputation guide. Moreover, if the value in centroid
region is missing, then a greedy strategy is implemented to find
the nearest observed value (use x49 to fill x29).

L = D −M , where M is a graph proximity matrix that is 347

constructed from the regional physical topology, i.e., M(i,j) 348

= 1 if and only if the region xi is contiguous to xj , and D is 349

a diagonal matrix D(i,i) =
∑
j(M(i,j)). With this constraint, 350

the S-MKKM model can be formulated as follows: 351

min
V,β

Tr(Kβ(In − V V >)) + αTr(V >LV )

s.t. V ∈ Rn×l, V >V = Il,β
>1d = 1, βp ≥ 0,∀p,

(4)

where α is the regularization parameter; V is the consensus 352

clustering matrix. 353

To get the complete kernels, we initially impute the miss- 354

ing data for each view by a simple method, such as KNN 355

or MF (the effects of different initializations are illustrated 356

in Section 5.7). Therefore, this problem can be solved by 357

alternately updating V and β [38]: 358

i) Optimizing V with fixed β. With the kernel coeffi- 359

cients β fixed, V can be obtained by the following strategy: 360

V ← choose the l smallest eigenvectors of (−Kβ + αL)
(5)

ii) Optimizing β with fixed V . With V fixed, β can 361

be optimized via solving the quadratic programming with 362

linear constraints: 363

βp =
tr(Kp(I − V V >))−1∑d

p=1(tr(Kp(I − V V >))−1)
(6)

The objective of the S-MKKM method is to discover 364

the regions with similar properties and build the guidance 365

matrices Xmv
p . We employ the clustering result to build a 366

matrix Xmv
p , that is after having gotten V , Xmv

p can be built. 367

Fig. 4 illustrates an example of this process. The construction 368

process of Xmv
p is that i) for the unknown entry xij , and 369

the region xi ∈ c-th cluster, we use its corresponding value 370

xc(i),j from the centroid region to impute xij ; ii) if the 371

corresponding value of centroid region is also missed, a 372
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greedy strategy will be used to find the nearest observed373

value for imputation.374

4.3 Adaptive-Weight NMF375

To learn the knowledge fromXmv
p more reliably, we propose376

an adaptive weighting strategy in the NMF imputation377

process. The adaptive-weight matrix of the p-th view is378

denoted as Zp ∈ Rn×mp

+ , which is built by an exponential379

function as shown in Equation (7) and (8).380

zp(i) = e−Dist(vi,vc(i)), (7)

Zp = zp1
>
mp
, (8)

where Dist(·, ·) is the Euclidean distance calculating from381

the geo-location (vi) and its corresponding centroid region382

(vc(i)), here we use the latent embedding vi to represent the383

geo-location of region i, and vc(i) represents the centroid384

of the c-th cluster which contains region vi; zp ∈ Rn+ is385

a column vector and 1mp is all-ones vector with size mp.386

It is not a straight way for imputation, but the adaptive-387

weight matrix Zp controls how much information can be388

extracted. Zp adjusts the penalty of each estimated entry.389

As emphasised in the First Law of Geography [7], the near390

things have more spatial correlations than distant things. If391

the distance between xi and xc(i) is small, we want a high392

penalty to guide the imputation process.393

To this stage, the adaptive-weight NMF can be described394

as the following optimization function:395

min
W≥0,Hp≥0

M =
d∑
p=1

||Ȳp � Zp � (Xmv
p −WHp)||2F , (9)

where Ȳp = 1− Yp, 1 is an all one matrix that has the same396

size as Yp; Xmv
p is a homomorphic matrix of Xp.397

We consider the adaptive-weight NMF jointly, then we398

can get:399

min
W≥0,Hp≥0

J1 = N + λ1M, (10)

where λ1 is the regularization parameter to control the400

learning rate of Xmv
p .401

4.4 Improved by Single-view and KNN Guidances402

S-MKKM aims to find the regional groups by consider-403

ing multiple views simultaneously. However, it is obvious404

that each view has its characteristics, and the relationships405

between regions in one specific view are also critical for406

imputing missing entries. To consider the above knowledge,407

we apply the spatially related kernel k-means (S-KKM) to408

capture the similarities among regions of each view. It is409

essentially analogous to the learning process of S-MKKM as410

discussed in Section 4.2, but considering each view, respec-411

tively. For one view Xp, the S-KKM model is expressed as412

follows:413

min
Vp

Tr(Kp(In − VpVp>)) + αTr(V >p LVp)

s.t. Vp ∈ Rn×l, Vp>Vp = Il,
(11)

where Kp is one separate kernel and Vp represents the p-th 414

clustering matrix based on Xp. 415

In fact, to reduce the complexity of our model, we 416

assume that the physical location affects the clustering per- 417

formance with the same degree and the number of clusters 418

is the same as that in S-MKKM, i.e., l and α are the same 419

as used in Equation (4). The reason behind this assumption 420

is that most cities have the same functional regions, such 421

as the residential region and business region. Thus, it is 422

reasonable that we choose the same α and l in this practical 423

task. Besides, α and l are very stable due to the intrinsic 424

property of the urban statistical data, and we fixed them in 425

the experiments. The single view guidance matrix Xsv
p and 426

adaptive-weight matrix Z
′

p can be constructed by the same 427

strategy of building Xmv
p and Zp. 428

Furthermore, for each region, its k-nearest spatial neigh- 429

bors imply rich information that should be considered in 430

our model. Even though the regional physical topology is 431

already involved in multi-view and single-view learning 432

processes, the KNN is a more flexible method. After struc- 433

turing Xknn
p which is an imputed matrix with the average 434

value of k-nearest neighbors, our optimization functions of 435

single view and KNN are expressed as: 436

min
W≥0,Hp≥0

S =
d∑
p=1

||Ȳp �Z
′

p �(Xsv
p −WHp)||2F , (12)

min
W≥0,Hp≥0

K =
d∑
p=1

||Ȳp � (Xknn
p −WHp)||2F , (13)

Taking all the above techniques into consideration, our 437

final jointly loss function is shown as follows: 438

min
W≥0,Hp≥0

J = N + λ1M+ λ2S + λ3K, (14)

where λ2 and λ3 are the regularization parameters to control 439

the learning rate of Xsv
p and Xknn

p , respectively. 440

After solving Equation 14, the learned matrices W and 441

Hp can be used to do the missing data imputation. The filled 442

data are estimated by: 443

X̂p = Yp �Xp + Ȳp � (WHp) (15)

4.5 Learning Process 444

As Equation (14) is a non-convex problem, we use the 445

multiplicative update strategy [44] to discover the local op- 446

timization. Additionally, to generate the complete kernels, 447

we need to initialize the missing values in data matrices 448

{X1...Xd}, shown in the Section 5.7. The update rules for 449

W and Hp are presented in Equation (16) - (17). 450

Theorem 1. J is non-increasing under the following update 451

rules in Equation 16-17 by optimizing W and Hp alternatively: 452

W = W�
d∑
p=1

(Yp�Xp+Ȳp�(λ1Zp�Xmv
p +λ2Z

′

p�Xsv
p +λ3X

knn
p ))H>p

d∑
p=1

((Yp + Ȳp � (λ1Zp + λ2Z
′
p + λ31))� (W>Hp)H>p )

(16)

Authorized licensed use limited to: University of Technology Sydney. Downloaded on April 27,2021 at 05:54:45 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3072642, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, AUGUST 2019 7

Hp = Hp�
W (Yp �Xp+Ȳp � (λ1Zp �Xmv

p +λ2Z
′

p �Xsv
p +λ3X

knn
p ))

W (Yp + Ȳp � (λ1Zp + λ2Z
′
p + λ31))� (W>Hp)

(17)

The prove of Theorem 1 is given in Section 4.6.1. The453

above two multiplicative update rules guarantee to be non-454

negative if the initialization is positive. Without this con-455

straint, the matrices W and Hp could be negative, thus456

the imputation results could be negative too, which is a457

contradiction to the facts. We now derive the update rule458

of W as an example, other variables can be solved with a459

similar process. The objective of J could be rewritten as460

follows:461

J = L0 + L1 + L2 + L3 , where:462

L0 =
d∑
p=1

||Yp � (Xp −WHp)||2F ,

L1 = λ1

d∑
p=1

||Ȳp � Zp � (Xmv
p −WHp)||2F ,

L2 = λ2

d∑
p=1

||Ȳp � Z
′

p � (Xsv
p −WHp)||2F ,

L3 = λ3

d∑
p=1

||Ȳp � (Xknn
p −WHp)||2F

(18)

We provide the derivative of L0 respect to W as an463

example, the other components can be derived in the same464

way. L0 could also be rewritten as follows:465

L0 = 〈Yp � (Xp −WHp), Yp � (Xp −WHp)〉 (19)

where 〈, 〉 presents the inner product of matrix. Then:466

dL0(W ) = −2
d∑
p=1

〈dWHp, Yp � (Xp −WHp)〉

= −2
d∑
p=1

〈
dW, Yp � (Xp −WHp)H

>
p

〉

⇒ ∂L0

∂W
= −2

d∑
p=1

Yp � (Xp −WHp)H
>
p

(20)

Analogously, we can get:467

∂L1

∂W
= −2λ1

d∑
p=1

Ȳp � Zp � (Xmv
p −WHp)H

>
p (21)

∂L2

∂W
= −2λ2

d∑
p=1

Ȳp � Z
′

p � (Xsv
p −WHp)H

>
p (22)

∂L3

∂W
= −2λ3

d∑
p=1

Ȳp � (Xknn
p −WHp)H

>
p (23)

As discussed in [44], the traditional gradient descent 468

method is expressed as: Wt = Wt - γg(Wt) = Wt - 469

γ(Pitem+Nitem), where Pitem andNitem denote all positive 470

and negative items in g(Wt), respectively (e.g., Pitem = 471

d∑
p=1

((Yp + Ȳp � (λ1Zp + λ2Z
′

p + λ31))� (W>Hp)H
>
p )). We 472

can set the step γ to: 473

γ =
Wt

Pitem
(24)

then, we got the update rule of W as shown in Equation 16. 474

Algorithm 1 summarizes our learning and estimation 475

process of SMV-NMF. 476

Algorithm 1: SMV-NMF

Input: original data {Xp }; graph Laplacian matrix
L.

Output: complete data {X̂p}.
1 Impute Xp by KNN for an initialization.
2 Initialize W and Hp by decomposing Xp.
3 Construct Xmv

p , Xsv
p and Xknn

p by S-MKKM,
S-KKM, and KNN respectively.

4 for Epoch = 1 to T do
5 if |Jt − Jt+1| / Jt ≥ ε then
6 update W By Equation (16)
7 update H By Equation (17)
8 else
9 Break

10 Return X̂p By Equation (15).

4.6 Time complexity and convergence 477

We discuss the time complexity and convergence of SMV- 478

NMF here. The time complexity of guidance matrices Xmv
p 479

and Xsv
p is mainly affected by MKKM. Even though MKKM 480

has a high computational complexity (O(n3)), it is not in- 481

volved in updating loop of variables (W and Hp). Equation 482

(16) and Equation (17) present that the time complexity 483

of our final function is governed by matrix multiplication 484

operations in each iteration. Therefore, the time complexity 485

per iteration is dominated by O(nk2). Due to the pursuing 486

of pinpoint accuracy, we sacrifice efficiency to some degree 487

in this real-world problem. In terms of convergence, we give 488

the strict convergence proof of W because other variables 489

can similarly be proofed. 490

4.6.1 Proof of Theorem 1 491

To prove Theorem 1, we need to find an auxiliary function 492

for SMV-NMF objective function as expressed in Equation 493

(14). 494

Definition 1. G(h, h
′
) is an auxiliary function for our final 495

function J (h) if the following conditions are satisfied: 496

G (h′, h) ≥ J (h) and G(h, h) = J (h). (25)

Lemma 1 If G is an auxiliary function, then J is non- 497

increasing under the update: 498

ht+1 = arg min
h
G
(
h, ht

)
, (26)
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consequently, we have:499

J
(
ht+1

)
≤ G

(
ht+1, ht

)
≤ G

(
ht, ht

)
= J

(
ht
)
. (27)

The proof of Lemma 1 is given by [44]. Lemma 1 illus-500

trates that J
(
ht+1

)
≤ J (ht) when exits Q (h, ht).501

Lemma 2. If K(ht) is a diagonal matrix under the following502

definition,503

K(ht) = diag(Wdiag(v)WTh./h), (28)

where v is a column vector of V = Yp + Y p �504 (
λ1Zp + λ2Z

′
p + λ31

)
then,505

G
(
h, ht

)
=J

(
ht
)

+
(
h− ht

)T ∇J (ht)
+

1

2

(
h− ht

)T
K
(
ht
) (
h− ht

)
,

(29)

is an auxiliary function for J (h).506

Proof: Since G(h, h) = J (h) is obvious, we need only507

show that G(h, ht) ≥ J (h). To do this, we compare508

J (h) =J
(
ht
)

+
(
h− ht

)T ∇J (ht)
+

1

2

(
h− ht

)T (
Wdiag(v)WT

) (
h− ht

) (30)

with Equation (29) to find that G(h, ht) ≥ J (h) is equiva-509

lent to510

0 ≤
(
h− ht

)T [
K
(
ht
)
−Wdiag(v)WT

] (
h− ht

)
(31)

The next step is to prove
[
K (ht)−W diag(v)WT

]
511

is positive semi-definite. Let Q = Wdiag(v)WT ,512

then
[
K (ht)−W diag(v)WT

]
can be expressed as513

[diag(Qh./h) − Q]. As the Lemma 1 provided in [45], if514

Q is a symmetric non-negative matrix and h be a positive515

vector, then the matrix Q̂ = diag(Qh./h)−Q � 0.516

Replacing G(h, ht) in Equation (26) by Equation (29)517

results in the update rule:518

ht+1 = ht −K
(
ht
)−1∇J (ht) (32)

Since Equation (29) is an auxiliary function, J is non-519

increasing under this update rule, according to Lemma520

1. Writing the components of this equation explicitly, we521

obtain522

ht+1
a = hta

(Wx)a
(W (v �WTh))a

(33)

where x is the column vector of X =523 (
Y �X + Y �

(
λ1Z �Xmv + λ2Z

′ �Xsv + λ3X
knn
))

.524

By reversing the roles of W and H in Lemma 1 and525

Lemma 2, J can similarly be shown to be nonincreasing526

under the update rules for W .527

5 EXPERIMENTS528

In this chapter, we have conducted comprehensive experi-529

ments to demonstrate the effectiveness of our method. The530

source code has been released at https://github.com/SMV-531

NMF.532

5.1 Datasets 533

We use eight real-world urban statistical datasets collected 534

from the Australian Bureau of Statistics 2017 (ABS) and the 535

New Zealand Stats 2018 (NZS), i.e., Sydney, Melbourne, 536

Brisbane, Perth, SYD-large and MEL-large are collected 537

from the ABS, and Auckland and Northland are collected 538

from NZS. -large datasets contains much more fine-grained 539

regions. In ABS datasets, each one contains four views, 540

i.e., Economy, Family, Income, and Population; the size 541

(number of fine-grained areas) of the first six datasets are 542

174, 284, 220, 130, 2230, 1985 respectively, and the numbers 543

of attributes of the four views are 43, 44, 50, 97. The last 544

two datasets are provided by NZS, which includes 563 areas 545

with eleven views, and the average number of the view’s 546

dimension is six. Notably, due to the fact that the NZS 547

geography map is inaccessible to us, we tested our method 548

without any geography guidance on these datasets. And 549

for the ABS data, the designation of regions is based on 550

the Statistical Geography Standard5 for the best practical 551

value. The scales of different views are normalized into 552

the same range [0,10] so that we can evaluate the results 553

together. Besides, to guarantee the diversity of testing, for 554

each missing ratio, we randomly select the test columns and 555

repeat the experiment 20 times and report average results. 556

5.2 Baselines & Measures 557

5.2.1 Baselines 558

We compare the proposed method SMV-NMF with the fol- 559

lowing 13 baselines. All parameters of the proposed method 560

and baselines are optimized by the grid search method. 561

sKNN: A classical method that uses the average values 562

of its k nearest spatial neighbors as an estimate (k=5). 563

MKKMIKa: A MKKM based method to handle the in- 564

complete views [38]. We modified it to adapt to the spatially 565

related data, then interpolated a missing value by its k 566

nearest spatial neighbors (k=5); 567

MKKMIKb: Similar to MKKMIKa but utilize the mean 568

value of each cluster to fill the missing data. 569

NMF: Fill the missing data by NMF. 570

IDW: A global spatial learning method compared in 571

many works [16], [21]. 572

UCF: The Local spatial learning method based on collab- 573

orative filtering [8], [20]. 574

IDW+UCF: Fill missing entries by the average result of 575

IDW and UCF. 576

MVL-IV: A state-of-the-art multi-view learning method 577

based on matrix co-factorization, which learns a same coef- 578

ficient matrix to connect multiple views [34]. 579

ST-MVL: A state-of-the-art method to impute spatio- 580

temporal missing data [8]. We only use its spatial part due 581

to the problem of missing temporal information. 582

SMV-MF: We remove the non-negativity constraint in 583

SMV-NMF to test the effects of this constraint. 584

MV-NMFa: Remove the graph Laplacian dynamics strat- 585

egy in SMV-NMF when building the Xmv
p and Xsv

p ; 586

MV-NMFb: Remove the KNN guidance in SMV-NMF. 587

MV-NMFc: Remove all the geography guidance that can 588

be used in the NZS datasets. 589

5. https://www.abs.gov.au/geography
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Fig. 5: Average RMSE with the variation of missing ratios.

Measures. We utilized the most widely used evaluation590

metrics in this chapter, namely Mean Relative Error (MRE)591

and Root Mean Square Error (RMSE).592

MRE =

∑Q
i=1 |ui − ûi|∑Q

i=1 ui
, RMSE =

√∑Q
i=1(ui − ûi)2

Q
,

where ûi is a prediction for missing value, and ui is the593

ground truth; Q is the number of prediction values.594

5.3 Performance Results and Analysis595

The first set of experiments is designed to assess per-596

formance on each dataset. We pick up 1/3 of statistical597

fields (properties) in each urban dataset randomly as the598

validation set, and the other set as the test set. In the test599

set, we randomly select missing ratios from 10% to 70% to600

evaluate the imputation accuracy. As mentioned in Section601

5.1, NZS data do not provide geography knowledge that602

some methods and baselines cannot be used.603

Because of the page width limitation, we partition our604

main results into two tables, i.e., Table 2 and Table 3.605

These two tables report the average errors of all missing606

ratios across different compared algorithms. In this test, it607

is apparent that the series of proposed approaches (SMV-608

MF, MV-NMFa, MV-NMFb, MV-NMFc, SMV-NMF) achieve609

the better results on eight real-world datasets. The SMV-610

NMF method which corporates both geography and latent611

spatial guidances that performs almost most through all612

experiments. MVL-IV yields better results than ST-MVL,613

MKKMIKa, IDW+UCF, and NMF becuase it considers the614

multi-view problem. Compared with the best baseline MVL-615

IV, our method learned the similarities from latent spaces616

instead of clustering in the original data; second, we have617

added prior knowledge (adaptive weights) to each missing618

entries and observed entries. Such prior knowledge also619

considered the spatial correlation which is significant for620

the spatially correlated data [2], [21]. Although ST-MVL621

is a great method of filling spatio-temporal missing data,622

it would not perform well when the missing temporal623

information challenge appears.624

To represent the error change with the varying missing625

ratios, we draw the top eight methods with different missing626

ratios on the Sydney and Melbourne datasets, which is627

shown in Fig. 5. The results drawn in Fig. 5 demonstrate628

the results of Table 2-3 and the discussions aforementioned.629

For the methods NMF, MV-NMFa, they are sensitive to630

the missing ratios, which could get good results under the631

lower level missing ratios, but performs worse when the632

missing ratio increases. To evaluate the improvement of our 633

model, we also report the T-test results (p-value 1) compared 634

with the best baseline MVL-IV, the result is significant at 635

p < 0.05. Our methods, (SMV-MF, MV-NMFa, MV-NMFb, 636

SMV-NMF) have significant improvements compared with 637

current baselines. 638

Ablation Study. To analyses the contribution of each 639

component of the final method SMV-NMF, we analyze the 640

ablation study here. All the results are shown in Tables 2 641

and 3. Table 4 illustrates the different strategies used in pro- 642

posed models. n-constraint represents the non-negativity 643

constraint; Laplacian means whether the model considers 644

the graph Laplacian dynamics when building Xmv
p and 645

Xsv
p ; knn indicates the KNN guidance is used or not. 646

As the results shown in Tables 2 and 3, we can see that 647

without the non-negativity constraint, SMV-MF performs 648

worse than SMV-NMF, which demonstrates the effective- 649

ness of this constraint. Two models (MV-NMFa and MV- 650

NMFb) will perform worse when casting off the graph 651

Laplacian dynamics strategy. If we only consider the non- 652

negativity constraint but without any geography guidance, 653

our model, MV-NMFc cannot achieve a good result. But it is 654

still better than other baselines. We have provided the T-test 655

(p-value 2) between the best model MV-NMF and the second 656

best MV-NMFb to present the improvements, the result is 657

significant at p < 0.05. 658

Overall, SMV-NMF outperforms the other baselines be- 659

cause it integrates both multi-view and spatial problems 660

to address the specified missing data imputation task. MV- 661

NMFa MV-NMFb and MV-NMFc remove a part of the spa- 662

tial guidance which results in slightly worse performances 663

than SMV-NMF. 664

5.4 Experiments on Generalization Ability 665

In this section, we try to explore the generalization ability 666

of our method. The test process is that the dataset Sydney 667

is chosen as the validation set and two urban datasets 668

(Melbourne and Brisbane) are chosenas the test sets. Fig. 669

6 reports the performances among eight outstanding ap- 670

proaches. We clearly see that the SMV-NMF achieves the 671

best performance. 672

Our method represents strong generalization ability 673

which can transfer the constructed model from one urban 674

dataset to another. This is because there are high correlations 675

among cities. For example, the number of functional regions 676

of each city is mostly the same, resulting in the same 677

amount of clusters. The gap between SMV-NMF and MVL- 678

IV narrows as the missing ratio increases, but the former 679

is more robust than the latter because SMV-NMF achieves 680

the best results across all missing ratios. Table 5 reveals the 681

average errors using two evaluation metrics. The generality 682

test demonstrates that our model SMV-NMF is a universal 683

model that performs well crossing different urban statistical 684

datasets. 685

5.5 View Correlation Analysis 686

To evaluate the correlations between views, we represent 687

the view weight changes with varying missing ratios. Fig. 688

7 shows the results on the Sydney dataset. As we can see 689

that the view of Economy occupies the highest priority in 690
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Methods Sydney Melbourne Brisbane Perth
MRE RMSE MRE RMSE MRE RMSE MRE RMSE

sKNN 0.332 ± 0.011 1.530 ± 0.097 0.310 ± 0.014 1.372 ± 0.079 0.355 ± 0.006 1.518 ± 0.065 0.381 ± 0.010 1.575 ± 0.083
MKKMIKb 0.329 ± 0.015 1.550 ± 0.089 0.346 ± 0.011 1.462 ± 0.076 0.377 ± 0.009 1.593 ± 0.070 0.398 ± 0.018 1.699 ± 0.064

IDW 0.332 ± 0.009 1.518 ± 0.077 0.318 ± 0.010 1.318 ± 0.089 0.351 ± 0.008 1.466 ± 0.090 0.372 ± 0.009 1.557 ± 0.081
UCF 0.356 ± 0.008 1.663 ± 0.083 0.338 ± 0.009 1.463 ± 0.079 0.362 ± 0.007 1.592 ± 0.072 0.375 ± 0.008 1.655 ± 0.080

IDW+UCF 0.330 ± 0.007 1.460 ± 0.056 0.314 ± 0.006 1.304 ± 0.064 0.340 ± 0.008 1.397 ± 0.070 0.361 ± 0.007 1.495 ± 0.069
MKKMIKa 0.308 ± 0.011 1.439± 0.105 0.288 ± 0.009 1.226 ± 0.092 0.316 ± 0.010 1.347± 0.097 0.354 ± 0.008 1.506 ± 0.083

NMF 0.221 ± 0.014 1.384 ± 0.111 0.199 ± 0.009 1.155 ± 0.093 0.225 ± 0.010 1.304 ± 0.108 0.248 ± 0.013 1.288 ± 0.127
ST-MVL 0.294 ± 0.007 1.313 ± 0.069 0.283 ± 0.007 1.179 ± 0.077 0.311 ± 0.006 1.295 ± 0.067 0.332 ± 0.006 1.394 ± 0.077
MVL-IV 0.198 ± 0.005 1.063 ± 0.032 0.174 ± 0.004 0.818 ± 0.029 0.197 ± 0.004 0.969 ± 0.041 0.225 ± 0.005 1.067 ± 0.044
SMV-MF 0.191 ± 0.004 0.960 ± 0.031 0.181 ± 0.004 0.800 ± 0.027 0.183 ± 0.005 0.854 ± 0.021 0.219 ± 0.004 1.002 ± 0.029

MV-NMFa 0.185 ± 0.005 0.925 ± 0.020 0.177 ± 0.004 0.815 ± 0.022 0.163 ± 0.003 0.757 ± 0.015 0.223 ± 0.004 0.976 ± 0.022
MV-NMFb 0.180 ± 0.003 0.927 ± 0.013 0.173 ± 0.002 0.804 ± 0.015 0.164 ± 0.003 0.770 ± 0.014 0.217 ± 0.004 0.972 ± 0.021
MV-NMFc 0.195 ± 0.005 0.957 ± 0.033 0.182 ± 0.004 0.853 ± 0.030 0.190 ± 0.005 0.860 ± 0.035 0.228 ± 0.005 1.064 ± 0.042
MV-NMF 0.175 ± 0.002 0.901 ± 0.012 0.168 ± 0.002 0.747 ± 0.011 0.157 ± 0.002 0.705 ± 0.009 0.208 ± 0.003 0.933 ± 0.014
p-value 1 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
p-value 2 = 0.14 < 0.01 = 0.02 < 0.01 < 0.01 < 0.01 < 0.02 < 0.03

TABLE 2: The average MRE, RMSE, std and p-value on real-world urban statistical datasets (Part I). Best results are bold.

Methods SYD-large MEL-large Auckland Northland
MRE RMSE MRE RMSE MRE RMSE MRE RMSE

sKNN 0.297 ± 0.010 1.256 ± 0.088 0.310 ± 0.012 1.313 ± 0.070 – – – –
MKKMIKb 0.348 ± 0.013 1.611 ± 0.094 0.306 ± 0.011 1.456 ± 0.068 0.527 ± 0.027 2.139 ± 0.156 0.570 ± 0.034 2.575 ± 0.201

IDW 0.327 ± 0.008 1.499 ± 0.065 0.308 ± 0.009 1.258 ± 0.072 – – – –
UCF 0.332 ± 0.009 1.423 ± 0.068 0.332 ± 0.009 1.509 ± 0.070 – – – –

IDW+UCF 0.304 ± 0.006 1.223 ± 0.047 0.297 ± 0.007 1.211 ± 0.055 – – – –
MKKMIKa 0.291 ± 0.012 1.288 ± 0.080 0.301 ± 0.014 1.230 ± 0.101 0.496 ± 0.022 1.957 ± 0.123 0.512 ± 0.028 2.200 ± 0.104

NMF 0.238 ± 0.009 1.199 ± 0.092 0.203 ± 0.011 1.066 ± 0.073 0.406 ± 0.017 1.580 ± 0.092 0.444 ± 0.016 1.787 ± 0.099
ST-MVL 0.294 ± 0.006 1.077 ± 0.077 0.282 ± 0.008 1.145 ± 0.071 – – – –
MVL-IV 0.179 ± 0.004 0.895 ± 0.059 0.184 ± 0.003 0.922 ± 0.046 0.327 ± 0.012 1.226 ± 0.066 0.322 ± 0.010 1.467 ± 0.039
SMV-MF 0.177 ± 0.003 0.835 ± 0.024 0.192 ± 0.004 0.901 ± 0.031 – – – –

MV-NMFa 0.171 ± 0.005 0.822 ± 0.017 0.185 ± 0.003 0.861 ± 0.020 – – – –
MV-NMFb 0.168 ± 0.002 0.804± 0.014 0.176 ± 0.004 0.812 ± 0.017 – – – –
MV-NMFc 0.182 ± 0.005 0.960 ± 0.034 0.193 ± 0.004 0.915 ± 0.035 0.317 ± 0.009 1.208 ± 0.061 0.341 ± 0.009 1.405 ± 0.032
SMV-NMF 0.166 ± 0.001 0.774 ± 0.007 0.169 ± 0.002 0.791 ± 0.008 – – – –
p-value 1 < 0.01 < 0.01 < 0.01 < 0.01 =0.09 = 0.35 < 0.01 < 0.01
p-value 2 = 0.34 < 0.05 < 0.04 < 0.03 – – – –

TABLE 3: The average MRE, RMSE, std and p-value on real-world urban statistical datasets (Part II). Best results are bold.

TABLE 4: Ablation Studies. The strategies used in different
models.

n-constraint Laplacian knn Method
X X MV-NMFa

X X MV-NMFb

X MV-NMFc

X X SMV-MF
X X X SMV-NMF
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(b) Test dataset Brisbane.

Fig. 6: The average RMSE in generalization ability tests.

the similarity learning process when the missing ratio is691

below (or equal to) 50%. When data is relatively adequate,692

Methods
Dataset Melbourne Dataset Brisbane

MRE RMSE MRE RMSE
UCF 0.331 ± 0.009 1.405 ± 0.096 0.368 ± 0.008 1.560 ± 0.089
IDW 0.333 ± 0.010 1.339 ± 0.070 0.369 ± 0.006 1.496 ± 0.071

IDW+UCF 0.320 ± 0.007 1.306 ± 0.047 0.351 ± 0.005 1.455 ± 0.072
MKKMIKa 0.282 ± 0.010 1.201 ± 0.103 0.313 ± 0.009 1.302 ± 0.086

ST-MVL 0.279 ± 0.006 1.139 ± 0.077 0.312 ± 0.006 1.269 ± 0.038
NMF 0.183 ± 0.017 0.955 ± 0.126 0.199 ± 0.015 0.989 ± 0.093

MVL-IV 0.152 ± 0.003 0.787 ± 0.022 0.163 ± 0.004 0.808 ± 0.029
SMV-NMF 0.148 ± 0.002 0.720 ± 0.006 0.149 ± 0.001 0.671 ± 0.010

TABLE 5: Generalizability test. We report the average MRE
and RMSE of all missing ratios and best results are bold.

the attributes of economy are the most important factor that 693

influences the imputation method. With increasing missing 694

ratio, the weight of Economy view decreases significantly 695

because the data from other views are more considered to 696

utilize the observed data comprehensively. 697

5.6 The Sensitivity of Parameters 698

This section evaluates the performances of SMV-NMF by 699

varying the critical parameters (k, λ1, λ2, and λ3). We here 700
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The view weight changes with different missing ratios 
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Fig. 7: View correlation analysis on the Sydney dataset.
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Fig. 8: Effect of Parameters.

show the experimental results for the Sydney validation701

dataset. We discuss them separately but pick them up by702

the grid search method because four parameters have high703

dimensional correlations that are hard to visualize. Our704

illustration approach that discusses parameters separately705

has been widely used in many other research papers [25],706

[43].707

Fig. 8 (a) shows the different performances with a vary-708

ing setting for k. When we increase k from 5 to 15, the709

results improve significantly. However, the performance710

tends to stay stable at 15 ≤ k ≤ 35. In particular, SMV-711

NMF achieves the best result when k = 30, while it can712

get good performance if the k is set between 15 and 35.713

This indicates that a low-rank latent space representation714

can already capture the attributes of the urban statistical715

data.716

Fig. 8 (b) reveals the effect of varying λ1, λ2, and717

λ3. These three parameters determine the strength of the718

three guidance matrices Xmv , Xsv , and Xknn, respectively.719

λ1=2−7, λ2=2−8 and λ3=2−6 yield the best results for SMV-720

NMF. We observe that the performance is stable when these721

three parameters are ranged between 2−8 and 2−6.722

In summary, both parameters used in this chapter bring723

benefits to the improvement of our models. Furthermore,724

our model is stable and easy fine-tuning because it is insen-725

sitive to these parameters.726

5.7 Initialization and Convergence727

To get the complete kernels, we first impute the missing data728

for each view by an efficient method, such as KNN and MF.729
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Fig. 9: Convergence rate.

TABLE 6: Effects of different initialization methods.

Zero-init Random-init Mean-init KNN-init
RMSE 1.173 1.134 0.949 0.908

The effects of different initializations are reported in Table 730

6. Based on the results, we easily find that the initialization 731

method KNN could achieve the great performance for SMV- 732

NMF. Accordingly, we choose the KNN method for a good 733

balance between time-consuming and accuracy. 734

Figs. 9 (a) and (b) show the convergence trends of iter- 735

ative model SMV-NMF on both the Melbourne and Perth 736

datasets. It illustrates that our algorithm can converge into 737

a local solution in terms of the objective value in a small 738

number of iterations. 739

6 CONCLUSION 740

Due to some inevitable issues, urban statistical data usually 741

suffer from the missing data problem. To overcome it, we 742

propose a missing data imputation model for multi-view 743

urban statistical data via the spatial correlation learning, 744

which called SMV-NMF in this paper. To handle the multi- 745

view problem, we develop an improved spatial multi-kernel 746

method to guide the imputation process based on the NMF 747

strategy. Furthermore, the spatial correlations among differ- 748

ent regions are taken into consideration from two aspects. 749

First, the latent similarities are discovered by S-MKKN and 750

S-KKM based on the idea of finding functional regions, and 751

secondly, KNN is used for capturing the information of real 752

geographical positions. We conduct intensive experiments 753

on eight real-world datasets to compare the performance 754

of our model and other state-of-the-art approaches. The 755

results not only show that our approach outperforms all 756

other methods, but also represent strong generalizabilities 757

crossing different urban datasets. 758
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