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Method to Enhance Directional Propagation of
Circularly Polarized Antennas by Making
Near-Electric Field Phase More Uniform
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Abstract—A new approach to significantly increase the unifor-
mity in aperture phase distribution, through time synchronization
in near-electric field, of circularly polarized (CP) antennas is
presented. The method uses the phase of the CP electric field
vectors, obtained through full-wave numerical simulations, and
does not rely on any approximation such as ray tracing. The
near-field data is post-processed to extract the relative phase
difference that exist due to the unsynchronized rotations of the
electric field vectors in a plane parallel to the antenna aperture.
The phase delay is compensated with a thin time-synchronizing
metasurface (TSM) that has a 2D array of time-delay cells. The
method is demonstrated with a prototype made of two-port patch
antenna, which is fed through a hybrid junction, and a TSM that
is placed at one wavelength spacing above the patch. When TSM
is used with patch antenna, its uniform phase area increases
manyfold thus increasing far-field directivity from 6.8 dBic to
22 dBic.

Index Terms—Aperture field, non-uniform metasurface, patch
antennas, phase distribution, phase uniformity, synchronized
electric field, time synchronization.

I. INTRODUCTION

Circularly polarized (CP) radio-frequency (RF) front-end
antennas are preferred for wireless communication systems to
minimize losses due to polarization mismatch when at least one
of the two communicating terminals is not stationary [1]-[4].
For long-distance communication such as satellite connectivity,
additionally, high-gain antennas with extremely focused energy
beams are required to cater for free-space losses [5]-[10]. The
gain of an antenna is directly proportional to the effective
radiating aperture, which is an equivalent area that radiates a
plane wave [11]. Traditionally, the effective aperture size is
enhanced by arraying a large number of low-gain antennas such
as microstrip patch antennas [12], [13]. One of the practical
challenges associated with arrays is the additional losses of
the feed network used to distribute energy from the source to
individual antenna elements [14], [15]. Another commonly used
practice to increase gain is to transform the phase distribution
of low- to medium-gain antennas with an aim to improve phase
uniformity. The latter is of great interest because it alleviates
challenges associated with the feed network.

The phase transformation strategy has been used in the past

Muhammad Usman Afzal and Karu Esselle are with the School of Electrical
and Data Engineering, University of Technology Sydney, Sydney, NSW 2007,
Australia (e-mail:muhammad.u.afzal @ieee.org; karu@ieee.org). Ali Lalbakhsh
is with Macquarie University.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

XXX XX, 20XX; revised January XX, 20XX.

to design phase-correcting lenses, transmit and reflect arrays
[5], [6], [16]-[26]. The basis of all these designs is the ray-
tracing technique. In this approach, first the phase is calculated
by tracing a ray from the phase center of a primary feed
antenna to each point in a plane parallel to the feed. The
relative phase difference introduced because of the difference
in the length of rays is eliminated through lens geometry or
spatially distributed phase-shifting cells. Recently, electric near-
field phase-correction technique has been reported with great
success [27]-[29]. In the near-field method, the total height of
the system is much shorter because the gap required between a
phase-correcting metasurface and the base antenna is no more
than one wavelength. Nevertheless, due to this close proximity,
except in very special cases, approximate methods such as ray
optics cannot be used for the design; instead, phase of the
actual electric-field of the antenna in the near-field region is
used. The numerically probed near-field phase correction based
method has only been demonstrated with linearly polarized (LP)
electromagnetic (EM) field.

On the other hand, upcoming satellite applications such as space
internet use circularly polarized (CP) beams of EM energy
to provide broadband internet through low-earth-orbit (LEO)
or medium-earth-orbit (MEO) satellite constellations [30].
This paper presents a method to improve the aperture phase
distribution of CP antennas. First, the phase and magnitude
of two orthogonal LP field components are obtained through
numerical simulations. The data is post-processed to obtain
two CP near-electric field vectors, which otherwise cannot
be directly obtained from numerical simulations. A thin time
synchronizing metasurface (TSM) is designed to improve the
phase non-uniformity of the dominant CP field component
through improved time synchronization of the field vectors.
The TSM is made of only a single layer of a dielectric
material. On the other hand, all previously reported near-
field phase-correcting surfaces used at least two dielectric
layers and a bonding prepreg [28], [29]. The TSM can thus be
fabricated through primitive manufacturing set up and does not
rely on sophisticated facilities needed in previously reported
multilayered near-field metasurfaces. The design methodology
of the TSM is based on the near-field phase transformation
strategy that considers the actual phase of the near-electric field
data obtained through numerical simulations. This is totally
different than ray-tracing based thin lenses [17], [31]-[33]
designed for CP antennas. The ray-tracing based approximation,
when used for antenna applications, fails to consider non-
symmetries in radiating base antennas.
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Fig. 1: A snapshot of an unsynchronized circularly polarized (CP)
electric field on an hypothetical aperture. The polarization sense
(field rotation) is marked with small circles whereas the electric field
magnitude is indicated by the length of arrow.
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The method, for the proof of concept, has been demonstrated
for a simple microstrip patch antenna, which is used as the base
antenna. The rest of the paper is organized such that Section II
give a brief overview of the design method. A design example
is discussed in Section IV and measured results are presented
in Section IV of the paper.

II. DESIGN METHODOLOGY

The design methodology of the TSM for a base antenna can
be summarized in three steps. Firstly, the near-field distribution
of a base antenna is obtained in a plane parallel to the antenna
aperture through numerical simulations. Secondly, the phase
of the co-polarized CP field component is calculated in this
plane using analytical equations. Thirdly, a TSM is designed
to improve the uniformity in the aperture phase distribution
of the co-polar CP field component. These steps are briefly
elaborated here to explain the methodology.

The base antenna is simulated using a commercial EM
simulator and its near-field data is computed in an extended
region around the antenna. An aperture plane is defined in a
plane parallel to the base antenna and within the near-field
region. The plane is divided into a finite number of 2D grid
elements, as shown in Fig. 1. A fixed-time snapshot of the
CP field vectors is obtained at the center of these grid points
indirectly using the magnitude and phases of the Cartesian
electric field components. It is known that a CP electric-field
vector rotates with time, as the EM field propagates, and
completes one cycle in a period “T’. The rotating vector can
be resolved into two orthogonal Cartesian field components Ex
and Ey, where Ex and Ey are both complex numbers having
magnitudes and phases:

E= |Ex| %%+ [Ey| e?§. 1)

For CP electric field, the two Cartesian components ideally
have equal magnitudes. Their phase difference ¢y — ¢y is +90°

and —90° for left-hand circularly polarized (LHCP) and right-
hand circularly polarized (RHCP) electric fields, respectively.
The two Cartesian components are thus used to calculate the
magnitude and phase of the CP electric field vectors [34]:

Erncp(x, Y)Z% (Ex(x,y)—jE,(x,y)) (2

Brncr(x.9)=— (B ) 4By (xy) O

where E; and E, are complex numbers representing the
magnitudes and phases of the two Cartesian field vectors.
Unsynchronized CP electric field vectors in the plane parallel
to the base antenna, as depicted in Fig. 1, lead to a non-uniform
aperture phase distribution. It is to be mentioned here that it is
the phase of the dominant CP field component that affects the
co-polar far-field directivity of the antenna. The phase (¢) of
the dominant CP field (Er,gcp or Erucp) is transformed into
the time scale using t = ¢/w (where w = %’T is the angular
frequency) to quantify lack of synchronization within electric
field in the aperture plane.
The CP field vectors are relatively time delayed in each grid
cell to time synchronize the electric field in the aperture plane.
For this purpose, the relative time delay is calculated in the
aperture plane using:

tq (X7 y) = max(t(x, Y)) - t(X7 y)' 4)

where t4(x,y) is the relative time delay, t(x,y) is the time
scale of electric on the aperture plane, and max(t(x,y)) is the
maximum value of the aperture plane time scale. The relative
time delay is introduced by inserting a 2D printed surface made
of spatial time-delay cells.

III. DESIGN EXAMPLE

The proposed methodology of time-synchronizing electric
field on an aperture was verified by demonstrating the working
principle with a proof-of-concept design. For this demonstra-
tion, we used a microstrip patch antenna as the EM field source
that was modeled and simulated with CST Microwave Studio.
The patch antenna was placed in xy-plane and radiated the CP
EM field at 11 GHz along +z-axis. The antenna was printed on
0.787 mm thick Rogers 5880 substrate [35] and was optimized
to have a square shape with two orthogonal feeding points as
shown in Fig. 2. The antenna has two quarter-wave transformers
to convert impedance at the edge to 50 (2.

An external hybrid junction was used to introduce a temporal
phase difference of 90° between the two feeding ports. A
hypothetical plane with a physical area of 162 mmx162 mm
(or A = X xY) was considered at a spacing of one free-
space wavelength (or S = )\g) from the patch antenna. The
hypothetical plane is pictorially depicted in Fig. 2(b). It is worth
emphasizing here that the TSM designed to time synchronize
the electric field will also be placed in this hypothetical plane.
The magnitude and phase of the two Cartesian field components:
Ex and E, were probed in a 2D mesh grid in this plane, where
discrete points of the grid were physically spaced by 4.26 mm
(or ~ \,/4) along x- and y-axes. It is to be mentioned here
that physical spacing between the sampling points is critical in
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Fig. 2: (a) Top view of the microstrip patch antenna that is fed
by coaxial feeds at two orthogonal ports matched to 50 ohm. (b)
Perspective view of hypothetical aperture plane defined at a spacing
S on top of the patch antenna.

the performance of the metasurface. A smaller step size better
captures the fine variations in the aperture field distribution
but is extremely difficult to implement as it requires matching
sized phase-shifting cell elements. We have verified through
near to far-field transformation that a sampling step of \g/4
was sufficient for the design.

The sampled field data is mapped on the aperture using colour
combinations in Fig. 3. The data of Cartesian electric field
components was used to compute the two CP field components;
LHCP and RHCP with (2) and (3), respectively. The calculated
amplitudes and phases of the two CP field components are
mapped on the aperture in Fig. 4. The maximum amplitude
of the Ergcp is 550 V/m and the maximum amplitude of the
Erucp is around 80 V/m. It can, therefore, be concluded that
the antenna radiates LHCP field, which was expected. The
phase of the LHCP was non-uniform but symmetric and that
of the RHCP, which is cross-polar component, was spirally
distributed.

The phase of the LHCP was first normalized so that phase
values are between 0° and 360°, which was then transformed
to a time scale between 0 and T. The time scale data was used
to calculate the relative time-delay required at each sampled
point in order to time synchronize the unsynchronized rotation
of electric field vectors, which is visually represented on a
normalized scale in Fig. 5. This time delay was implemented
with a thin TSM made of cell elements similar to that used
in [17]. The cell element has an identical printed pattern on

Magnitude of Electric Field (E,) Magnitude of Electric Field (Ey)

Y (mm)
Y (mm)

-50 0 50
X (mm) X (mm)

(@ (b)

Phase of Electric Field (Ex) Phase of Electric Field (Ey)

Y (mm)

-50 0 50
X (mm) X (mm)

(c) (d)

Fig. 3: Magnitude and phase of two orthogonal Cartesian field
components probed at one wavelength spacing from the patch antenna
(S = Xo); (a) Magnitude of Ex (V/m) (b) Magnitude of Ey (V/m)
(c) Phase of Ex (d) Phase of Evy.
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Fig. 4: Magnitude and phase of two circularly polarized field
components (a) Magnitude of Erncp (V/m) (b) Magnitude of Erucp
(V/m) (c) Phase of Erucp (d) Phase of Erucp. Note the significant
difference in vertical scales between (a) and (b).

both sides of a thin dielectric layer, which is discussed in the
following section.
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Fig. 5: Normalized time delay between O and T required to time
synchronize the CP electric field.
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Fig. 6: Configuration of time-delay cell (a) Critical dimensions in
millimetre and \g: Hdl=1.65 mm or 0.06 g, Hdw=0.28 mm 0.01 )\,
Vdl=4 mm or 0.15)\g, Vdw=0.175 mm or 0.06\g, R=3.36 mm or
0.12X0, Rw=0.175 mm or 0.06 )¢, lw=0.35 mm or 0.013)\g and (b)
Physical rotation angle that controls the time delay of the cross-polar
transmitted-field component. The golden stripes represent the printed
pattern and the grey area is the dielectric material.

A. Time-Delay Cell Element

The type of cells used for most LP antennas and some
CP antennas have a stack of alternating dielectric and metal
layers [19], [36], [37]. These cells introduce a phase shift
without changing the polarization of the propagating electric
field. However, for CP electric field, there are other thin cell
configurations that transform an incoming LHCP electric field
into an RHCP transmitted electric field or vice versa [17], [32],
[33]. In these types of cell elements, the time delay of the
transmitted field is simply controlled by the rotation angle of
the printed pattern on the cells. One such time-delay cell used
here for the demonstration has a conductive printed pattern on
both sides of a dielectric layer. The conductive printed pattern
has a circular ring and two orthogonal metallic features.

The important dimensions of the unit cell are labeled in
Fig. 6(a). The golden traces represent the printed conductive
pattern and the grey area is the 1.57 mm thick Taconic TLY-5
dielectric material [38]. It is to be mentioned here that only
the top layer is shown in the figure and an identical layer
exists on the bottom side of the dielectric material. This unit
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Fig. 7: The surface currents at the input and output sides of the
time-delay unit cell with partial metallic features and when excited
by one of the two orthogonal field components.

cell was simulated with the periodic boundary conditions in
the lateral directions. The two de-embedded ports were used
at the input and output along the z-axis. The horizontal and
vertical metallic features in the time-delay cell resonate when
excited by one of the two orthogonal field components. To
investigate this further, horizontal and vertical features of the
cell were separately excited with the two orthogonal field
components; E; and Ey, respectively. The circular ring and
the connecting vertical section was excited with E, and the
H-shaped horizontal section was excited with Ex, as shown in
Fig. 7. The vertical field component (E,) was transmitted due
to the resonance of the ring and the attached vertical metallic
feature. However, as visible in the top row of the pictures
in Fig. 7, the surface currents at the input and output sides
of the cell are pointing in opposite directions, indicating an
out-of-phase transmission (or 180° phase shift) of the vertical
component. The horizontal electric-field component (or Ey)
was transmitted due to the resonance of an H-shaped metallic
feature on the unit cell. It is important to note that the directions
of the surface currents at the input and output sides of the
unit cell are the same, indicating an in-phase transmission of
the horizontal field component. The transmission magnitudes
of both E, and E, were greater than —0.5 dB and only E,
experiences a transmission-phase shift of ~ 180°. It is well
known that a phase shift of 180° in one of the Cartesian field
components, relative to the other, changes the sense of the
CP field, which in this case was from LHCP to RHCP. In
addition, the cell introduces a phase shift or time delay, which
is discussed below with more details.

The unit cell performance was further analyzed for the
propagating Floquet space harmonics and an LHCP field was
excited from the input port. The co- and cross-polar reflected
and transmitted electric fields were observed at both input
and output ports, respectively. The unit-cell dimensions were
optimized such that most of the incoming LHCP field was
coupled into the outgoing RHCP field. The transmitted RHCP
field component experiences a time or phase delay, which
is controlled by the clockwise physical rotation angle of the
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Fig. 8: Transmitted RHCP electric field at the same instant of time for
three different values of ), the rotation sense of the electric field is
displayed. (a) ¢ = O and the direction of the transmitted electric field
is used as a reference, for v = 45 and 1) = 90 the electric vectors in
(b) and (c), are delayed by ~ T'/4 and ~ T'/2, respectively.
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Fig. 9: Normalized phase and time delays experience by transmitted
field through the unit cell with different rotation angles ().

printed pattern, represented by symbol ¢ in Fig. 6(b). As an
example, a snapshot of the electric field vector in the transmitted
region for ¢ = 0°,45°, and 90° are shown in Fig.8. The
time-delay of the cross-polar transmitted field component was
normalized such that the time delay is O when ¢ = 0. The
time delay was calculated directly from the phase delay (or
A¢) obtained from unit-cell simulations using At = A¢/w.
The exact values of time- and phase-delay obtained from the
unit cell simulations are plotted against ¢ in Fig. 9.

B. Time-Synchronizing Metasurface

To build the aperture of TSM, the cell elements were
appropriately rotated to provide the required time delays. To
do this, the required time-delay data given in Fig. 5 was used
to find cells from the time-delay plot given in Fig. 9. As an
example, at the center of the aperture in Fig. 5, a normalized
time delay of ~0.5T was required, which according to Fig. 9
can be obtained from a unit cell that has ¢ = 90, i.e. the
printed pattern was rotated by ~ 90° angle. In this manner,
the TSM aperture was populated with the corresponding cell
elements. The rotation angles of cells mapped on the aperture
of the TSM are shown in Fig. 10(a) and a perspective view
of the resulting 3D model of the TSM is shown in Fig. 10(b).
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Fig. 10: (a) Rotation angles (z)) of the unit cell mapped on the aperture.
(b) A perspective view of the TSM model with a close up in the
inset, an identical conductive pattern exists at the bottom of the TSM,
which is not visible in the figure.

The improvement in time synchronization with the TSM was
verified by simulating it with the previously described patch
antenna, in CST Microwave Studio. Furthermore, the results
predicted through numerical simulations were validated by the
measurements of a prototype. The prototype was measured in
NSI spherical near-field measurement system. The predicted
and measured results of the prototype design are discussed in
the following section.

IV. MEASURED RESULTS

The patch antenna with the TSM was simulated and both
near- and far-field results were analyzed. The time synchroniza-
tion in the radiated electric field with the TSM was quantified
by analytically calculating the phase of the dominant CP
electric field component above the TSM. An indirect approach
was adopted and first, the phases of the two Cartesian field
components were probed at a discrete number of points on the
aperture of the antenna. The data was used to calculate the
magnitude and phase of the two CP electric fields, i.e. RHCP
and LHCP. The color plots of the amplitude and the phase
of the dominant, RHCP, field component are mapped on the
aperture in Fig. 11.
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Fig. 11: Magnitude and phase of the dominant RHCP electric field
mapped to the aperture above TSM. The field is concentrated in the
center of the aperture while the phase is nearly uniform, visible by
less variation in colors.

The highest amplitude of the Erpcp is ~ 520 V/m at
the center of the aperture. The phase of Ergcp was then
transformed into the time scale using angular frequency. The
time synchronization in the electric field was reflected in the
phase of the radiated electric field. The positive influence in the
time synchronization of the electric field was also reflected in
the far-field directivity patterns of the antenna in the direction
normal or broadside to the antenna aperture. The far-field
radiation patterns were observed in a frequency band around
the central operating frequency of 11 GHz. The elevation
pattern cuts were taken at two azimuth angels: ¢ = 0° and
¢ = 90°. Normalized patterns cuts are given in Fig. 14. The
predicted peak directivity of the patch antenna with the TSM
was around 22 dBic in the broadside, which was about 15 dB
more than that of the patch antenna without TSM in the same
direction.

The front side of the built prototype is on the left in Fig. 12,
while the backside with a hybrid junction and the RF cables is
on the right of the figure. The hybrid junction was used to obtain
the temporal phase difference of 90° between the two input
ports of the patch antenna. The input ports of the antenna have
reasonable impedance matching around the central operating
frequency, as shown in Fig. 13. As a reference, the variation in

Orthogonal
feed points

junction

Fig. 12: Photographs of the fabricated prototype: (left) front view
showing metasurface and Hybrid junction and (right) back view
showing two orthogonal feeding points of the microstrip patch antenna.

reflection magnitude with the TSM is also given in the figure.
It is evident from the results that the loading of the antenna by
the TSM does not have a significant impact on the impedance
matching. This is because: (a) The TSM was designed using
unit cells that have very high transmission magnitude and (b)
The TSM was placed at a spacing of one wavelength from
the patch antenna. In prototyping, plastic spacers were used to
suspend the TSM over the patch antenna.

The far-field patterns were measured in a frequency band
between 10.5 GHz to 11.5 GHz with a step of 0.1 GHz. In the
broadside, along +z-axis, the maximum directivity of 22 dBic
was achieved at 11 GHz. It is worth emphasizing here that
the directivity of the patch antenna without TSM in the same
direction was only 6.8 dBic. The far-field pattern cuts, with
the TSM, taken at two azimuth angles ¢ = 0 and ¢ = 90
are given in Fig. 14(a) and Fig. 14(b), respectively. The high
sidelobe levels in measured patterns, particularly at azimuth
angle (¢ = 0°), are attributed to the diffractions from the edges
of the extended ground plane and scattering from the support
structure used to fix the antenna in the anechoic chamber. The
antenna has acceptable cross-polar rejection with cross-polar
components at least 20 dB less than the co-polar component in
the main beam direction. The polarization purity or the cross-
polar rejection can be increased further using a feed antenna
with lower cross-polar components. Similarly, the time-delay
element of the TSM can also be optimized to reject the overall
cross-polar component of the antenna system.

The measured broadside gain at the operating frequency of
11 GHz is 19.8 dBic and was about 2 dB less than the measured
directivity. The 2 dB loss was contributed by the RF cables and
the hybrid coupler used in the feeding arrangement of the patch
antenna. To investigate this further, we have characterized both
RF cables and the hybrid junction using a network analyzer. The
magnitude of the transmission coefficient for these components
is plotted in Fig. 15. At the operating frequency, the insertion
loss of each cable was around 0.4 dB, thus contributing a total
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Fig. 13: Magnitude of the reflection coefficient measured at the two
orthogonal input ports of the microstrip patch antenna. (a) Without
metasurface and (b) With metasurface.

loss of 0.8 dB. The insertion loss measured at 0° and 90°
phase ports of the hybrid junction was 0.2 dB and 0.7 dB,
respectively. The total insertion loss at the operating frequency
was around 1.8 dB. The axial ratio in the direction of beam
peak was less than 3 dB, which is evident by the axial ratio
pattern cuts taken at the two azimuth angles, given in Fig. 16.
The peak gain and directivity variation within a finite frequency
band around the operating frequency is shown in Fig. 17. It
can be seen that gain is closer to directivity at the frequency
points where the antenna has matched impedance. Despite
being a narrow band structure, the 3 dB directivity and gain
bandwidth are at least 600 MHz, which is sufficient for
receiving Ku-band satellite services. One of the important
factors that determine the overall bandwidth of the phase-
correcting metasurface based antennas is the transmission
bandwidth of the cell, which is the building block of the
metasurface. To investigate the performance of the cell used
here, the magnitude of the transmitted field component is
plotted in Fig. 18. The —1dB transmission bandwidth is
between 10.8 GHz to 11.3 GHz and the -3dB transmission
bandwidth is in the frequency band between 10.6 GHz to
11.6 GHz. At a frequency where the transmission magnitude
of the cell is low, the metasurface behaves as a reflector rather
than a transmitting surface, which violates the fundamental
requirement of a phase-correcting metasurface or a TSM. The
unique aspect of the proposed time-synchronization strategy is
that it uses the phase of actual CP electric-field vectors, unlike
the approximated ray-tracing method that does not cater to the
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Fig. 14: Comparison of predicted and measured normalized far-field
pattern cuts taken at azimuth angles: (a) ¢ = 0° and (b) ¢ = 90°. The
cross-polar components in both planes are also included for reference.
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Fig. 15: Transmission through RF cables and the hybrid junction used
to feed the patch antenna.
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Fig. 17: Broadside directivity and gain variation with frequency.

Peak directivity predicted from full-wave simulations is included
for comparison.

physical asymmetry of the base antenna. The method does not
have any fundamental limitation and can easily be extended
to large apertures high-gain antennas such as radial-line slot
arrays [10], [39], metasurface antennas [40], and even antenna
arrays.

V. CONCLUSION

A new method to increase significantly the directivity of
a simple circularly polarized (CP) antenna through improved
time-synchronization of the electric field vectors on a plane in
the near-field region is presented. The proof-of-concept design
uses a patch antenna that is fed at two orthogonal input points
through a hybrid junction for introducing a temporal phase
difference of 90°. The time-synchronization is achieved in
an extended plane parallel to the antenna aperture using a
time-synchronizing metasurface (TSM). The TSM comprises
spatially distributed time-delay cells to appropriately delay the
rotation of CP electric field vectors. Through improved time-
synchronization, the far-field directivity of the patch antenna is
increased from 6.8 dBic to 22 dBic and the 3dB beamwidth is
reduced from 114° to 11.1°. Unlike ray-tracing based lenses,

A < --20
1dB BW
I -40

3dB BW

-80

-100

--120

Transmission Magnitude

el I-14
Transmission Phase 0

(Bap) aseyd uoissiwsuel |

Transmission Magnitude (dB)

T T T T T T T T T T T T T T T -160
10.00 10.25 1050 10.75 11.00 1125 11.50 11.75 12.00
Frequency (GHz)
Fig. 18: Transmission phase and magnitude of the time-delay unit
cell in a frequency band around the operating frequency.

the proposed design method uses data of the actual near field,
which in this case was computed using detailed full-wave
numerical simulations.
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