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Abstract 9 

A goal to reduce the frequency of animal-vehicle collisions is motivating extensive 10 

research on this topic world-wide. Over the last 30 years, one popular mechanism to warn 11 

wildlife of approaching vehicles is the Wildlife Warning Reflector, manufactured and 12 

distributed under the brands Swareflex (Austria) and Strieter-Lite (USA). These reflectors 13 

were designed to scare deer and other ungulates from roadways at night by reflecting light 14 

from the headlights of approaching vehicles into the eyes of animals on the road verge. 15 

Robust documentation of their effectiveness has been lacking, yet there has been a push in 16 

Australia to examine their efficacy with regard to medium to large macropodids. Field 17 

trials of the reflectors are problematic and difficult to design rigorously, so we chose to 18 

examine the behavioural response of two captive macropodid species (Macropus rufus and 19 

M. rufogriseus) to the reflectors on a simulated road in order to derive some indication as 20 

to their efficacy. The behavioural response to the reflectors was negligible for both species 21 

and not consistent with an aversive effect to deter road use or crossing. We conclude that 22 

they would be of little value in our efforts to reduce the frequency of kangaroo or wallaby 23 

collisions with vehicles in Australia. 24 

Running Title: The efficacy of warning reflectors 25 
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Introduction  26 

The road network is a significant interface where human activities impinge on the 27 

environment. There is growing global concern over the trauma to humans and loss of 28 

animal life that result from collisions between animals and vehicles (Forman et al. 2003; 29 

Sherwood et al. 2002). While the road network is responsible for a variety of other impacts 30 

on the environment, and in particular on wildlife populations through habitat 31 

fragmentation (Gerlach and Musolf 2000; Goosem 2002; Kramer-Schadt et al. 2004) and 32 

noise pollution (Forman and Alexander 1998; Reijnen et al. 1995), the loss of animal life 33 

has serious conservation implications for populations of both common and already 34 

threatened species (Lopez 2004; Ramp and Ben-Ami In Press). As a consequence, there is 35 

a pressing need to reduce the loss of animal life on roads. Yet collisions with animals on 36 

roads also cause significant injuries and fatalities to vehicle occupants, as well as vehicle 37 

damage, stimulating efforts to reduce the frequency of collisions solely on human safety 38 

grounds (Conn et al. 2004; Khattak 2003; Williams and Wells 2005). In order to combat 39 

this problem, research has been channelled towards the development of mechanisms that 40 

can be implemented to mitigate collision frequency. 41 

One such device developed in the early 1970s by the Austrian company Swareflex® is 42 

the Wildlife Warning Reflector. Specialising in reflective devices for enhancing road 43 

safety, the Wildlife Warning Reflectors were designed to prevent collisions with the large 44 

ungulates of Europe. The reflectors were modified and marketed in the USA and Canada 45 

by Strieter Corporation® in 1994. The reflectors are installed along the road verge in an 46 

array that reflects the headlights of oncoming vehicles into the eyes of animals either on 47 

the road or on the verge (Fig. 1). The manufacturers contend that this reflected light causes 48 

the animals to flee the road before the vehicle arrives. It follows that the reflectors only 49 

have the capacity to scare animals off roadways during the night. 50 
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Despite being installed in many countries, conjecture surrounds the ability of the 51 

reflectors to reduce the frequency of collisions between vehicles and animals. In a 52 

commissioned statistical report by Strieter Corporation®, Grenier (2002) found that the 53 

reflectors reduced 78 to 90 % of collisions where the reflectors were installed correctly 54 

across 53 sites in 13 states in the USA and in British Columbia in Canada. In contrast, 55 

independent published findings on the effectiveness of this device have at best presented 56 

ambiguous results, with most failing to detect any beneficial effect. The efficacy of the 57 

reflectors has been tested in a variety of ways, and these fall into four categories of studies 58 

(see Knapp 2004 for a review): those that examined fatality rates when reflectors on roads 59 

were either covered or uncovered (Reeve and Anderson 1993; Schafer and Penland 1985); 60 

those that compare fatality rates before and after the installation of reflectors (Ingebrigtsen 61 

and Ludwig 1986; Waring et al. 1991); those that compare different road segments with 62 

and without reflectors (Gladfelter 1984); and those that investigate the behavioural 63 

response of animals either in the wild or in captivity (Ujvari et al. 1998; Waring et al. 64 

1991). While it is reductions in fatality rates that are goal of any mitigation device, those 65 

studies that also examine the mechanism by which the device works (i.e. behavioural 66 

responses to reflected light) have the best chance at obtaining conclusive evidence of their 67 

effectiveness. These studies have indicated that animals habituate very quickly to the 68 

presence of reflectors and that there is no conclusive evidence that they would cause any 69 

species of animal to flee (Ujvari et al. 1998). 70 

Fatality rates of wildlife in Australia are as high, if not higher, than in the countries 71 

where reflectors are currently employed (Ramp et al. 2005), and trauma to road users is a 72 

growing concern in Australia (Abu-Zidan et al. 2002). Australian highways often bisect 73 

habitat where native fauna are abundant, and macropodids (kangaroos and wallabies) are 74 

often attracted to roadside verges to forage, as the vegetation is often greener and of higher 75 
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quality than in the surrounding areas (Bennett 1991). Despite the conflicting evidence of 76 

their effectiveness, the push to use warning reflectors in Australia for preventing collisions 77 

with macropodids has been strong (Lintermans 1997), and some positive results have been 78 

found. For example, reflectors reportedly reduced fatalities of the Proserpine rock wallaby 79 

in Queensland, although more research was called for (Johnson et al. 1993). O’Rourke 80 

(1990) found a reduction in hit rates from 12 per month to <1 per month along a 5-km 81 

highway, however, the study was confounded by a general reduction in fatalities during the 82 

study period. Despite these results, the question remains as to whether macropodids react 83 

to the reflected light in the aversive way that is suggested to repel ungulates like deer from 84 

roads bounded by Wildlife Warning Reflectors. 85 

We therefore examined under controlled captive conditions the behavioural responses 86 

of two representative species of macropodids (a large kangaroo Macropus rufus and a 87 

brush wallaby M. rufogriseus) to light from headlights with and without the addition of 88 

Wildlife Warning Reflectors. We tested the two most common brands of reflector on the 89 

market, Swareflex® and Strieter-Lite®, and used two different colours, red and white. We 90 

isolated the response to reflected light from the physical presence of a vehicle and its 91 

associated noise by creating an artificial road and simulating the passage of vehicle 92 

headlights along it. 93 

Methods 94 

Study site and species 95 

The study was conducted at the University of New South Wales Cowan Field Station, 96 

approximately 45 km north of Sydney, Australia, and within Muogamarra Nature Reserve 97 

(33°37′35″ S, 151°09′20″ E). Experimental trials were conducted on Macropus rufus (the 98 

red kangaroo) and M. rufogriseus (the red-necked wallaby). These two species were 99 

chosen as they are commonly encountered on roadways in central and eastern Australia, 100 
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respectively, and are exemplars of the large and medium body-size range of the kangaroos 101 

and wallabies. Furthermore, of the native fauna killed on Australian roads, the kangaroos 102 

and wallabies are the most similar in size (and eye height) to the ungulates (namely deer) 103 

that the reflectors were designed for. 104 

Experimental design 105 

The experiments were conducted in two large and contiguous enclosures (Yard A and B) 106 

at Cowan Field Station (Fig. 2). The subjects were twelve male and five female red 107 

kangaroos in Yard A, and eight male and seven female red-necked wallabies in Yard B. 108 

The yards enclosed a former orchard site which had been cleared of all trees and shrubs 109 

and subsequently possessed a relatively uniform cover of tall grasses and herbs (10 – 50 110 

cm) with some bracken. A ‘road’ was constructed by mowing to a few centimetres a 10-m 111 

wide strip of herbage (mainly grass), traversing both yards. The intention was to attract 112 

subjects onto the ‘road’ as kangaroos and wallabies prefer grazing on short green grasses 113 

and herbs (Dawson 1989; 1995). In this way we localised and maximised the observations 114 

of behaviour in response to the simulated passage of vehicle headlights. On a real road, the 115 

hard surface is unvegetated and macropodids forage on the verge, impacting with a vehicle 116 

while crossing or taking flight into its path. Thus our ‘road’ simulated a broad verge and 117 

we encouraged use by regular mowing and localised irrigation by a sprinkler system to 118 

stimulate and support new growth during the warmer months. In the placement of the 119 

‘road’ we noted that favoured rest sites were on one side and so we placed supplementary 120 

pelleted food and water on the other in order to encourage movement across the road. 121 

Along the road, seven pairs of standard 55 Watt sealed-beam headlights were installed, 122 

approximately 20 m apart. The lights were fixed to star-pickets at heights of 80 cm and 123 

100 cm apart (average values for sedan cars). The progressive switching on of these lights 124 

was controlled by a computer and a daisy-chained pair of addressable A/D switching 125 
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interfaces (Silicon Chip Magazine, July 1997) with eight relay outputs each. A custom 126 

application in Microsoft Visual Basic 6.0 drove the interfaces. The program allowed the 127 

parameters of vehicle (headlight) speed (km h-1), vehicle frequency (vehicles h-1) and 128 

headlight overlap (dwell time before extinguishing of last switched set with current 129 

illuminated headlight set) to be set and the sequence of simulated vehicle passages within 130 

an hour to be user-controlled, regular or random. We report the results of trials with 20 131 

random vehicle passes per hour travelling at 60 km h-1 over a four hour period each night. 132 

We found that due to the size of the yards, speeds of 100-110 km h-1 (typical speed limits 133 

of rural roads) required the lights to switch too fast to elicit a measurable response. 134 

An observation hide was built in Yard A, directly in line with the road. The floor of the 135 

hide was 2 m above the ground and was supported by a steel base. This hide allowed direct 136 

observation of behaviour of kangaroos and wallabies on the road and also housed all 137 

computer and video recording equipment. We found that the most effective way to observe 138 

and review behaviour was via video recordings. Thus we installed Go-Video Mini-308IR 139 

monochrome CCTV cameras with infra-red illumination for night viewing on 2-m high 140 

star-pickets next to each pair of headlights. The cameras were directed along the road and 141 

were spaced so that the entire ‘road’ was visible at night by the series of cameras. Images 142 

from four cameras were combined using a ‘quad processor’ (images to a 4-way split 143 

screen) and recorded on a Panasonic AG-6040 VCR with VHS240 tapes. 144 

Wildlife Warning Reflectors from the two leading brands, Strieter Corporation and 145 

Swareflex, were used. For both brands, we chose to examine red reflectors given the 146 

history of using this colour of reflector world-wide, and also white reflectors to overcome 147 

any visual preferences the two species may have for particular wavelengths. The reflectors 148 

were installed according to the specifications of the manufacturers (Strieter Corporation 149 

2001, Figure 1). Strieter Corporation outlines two methods of installation, depending upon 150 



 7

whether the area adjacent to the road is flat or on a slope. As the yards used in this study 151 

were relatively flat, we used the method stipulated for flat situations. This required the 152 

placement of reflectors 20-m apart on either side of the road with a staggered configuration 153 

so that reflectors were not directly opposite one another. Reflectors were placed 10 m from 154 

the centre of the road so that they were 20 m across from each other and 5 m from the edge 155 

of the road. The reflectors have two reflective faces, and these were pointed towards the 156 

road so that animals on the road would be illuminated by the reflected light. 157 

The primary objective of this study was to isolate responses to patterns of light. The 158 

experimental design was established in such a way as to mimic typical wildlife-vehicle 159 

interactions; however the simulation deliberately did not replicate the sound and 160 

movement of a vehicle, as in Ujvari et al. (1998). Thus we examined the behavioural 161 

responses of the macropodids to light, with and without reflectors, presented in a fashion 162 

that simulated a moving vehicle. On alternating nights we ran three different simulations. 163 

On the first night the lights were kept off for the entire night as a control. For the following 164 

night the lights were switched on but the reflectors were covered with black cloth. On the 165 

third night the cloth was removed and the lights switched on. This design enabled us to 166 

differentiate between the normal behaviour of the subjects, their response to the passage of 167 

light and their response to the passage of light in the presence of the reflectors. This 3-day 168 

protocol was repeated 15 times. 169 

Data analysis 170 

Differences between the proportion of subjects exhibiting vigilance and flight and the 171 

number of times subjects crossed the road were compared between treatments for both 172 

Strieter-Lite and Swareflex reflectors and both red and white colours. Comparisons were 173 

made using the non-parametric tests for paired samples, the Wilcoxon Signed Rank Test 174 

and the Friedman Test, in SPSS v 13 (SPSS Inc. 2004). Monte Carlo significance estimates 175 
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(95 % confidence levels and 10,000 randomisations) were used to obtain P values. While 176 

the magnitude of response (effect size) was of interest in this study, the main aim was to 177 

identify trends in response from the two species, where the addition of reflectors should 178 

result in a predictable increase in vigilance and flight, with a decrease in crossings (any 179 

other response would not be of interest if the reflectors were to reduce collisions). As a 180 

consequence tests were conducted as one-tailed, rendering P values significant at the 0.05 181 

level when α = 0.10 (Quinn and Keough 2002). 182 

Results 183 

Vigilance 184 

A behavioural response to the light was expressed as vigilance approximately 50 % of the 185 

time for both species, regardless of the addition of reflectors of either type or colour (Fig. 186 

3). The only significant difference observed at the 0.05 level indicated that vigilance was 187 

engaged in more often by M. rufus when red Strieter-Lite reflectors were used (Table 1), 188 

although the increase in effect was only 13 %, from 52% to 65 % of the time (Fig. 3). 189 

Flight 190 

Flight in response to light when red Strieter-Lite reflectors were added was significantly 191 

higher for M. rufogriseus (Table 2), although again this represented an increase of only 5.7 192 

%, from 2.8% to 8.5 % of the time (Fig. 4). No other significant differences were 193 

observed. 194 

Crossing 195 

The number of times each species crossed the road, in either direction, did not differ 196 

significantly among treatments for either reflector type or colour (Table 3, Fig. 5). 197 

Discussion 198 

This study represents the first time captive experiments have been conducted to quantify 199 

whether Wildlife Warning Reflectors alter the behaviour of macropodids. To do so, it 200 
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examined how two species of Macropus responded to the light emitted from vehicle 201 

headlights, isolated from the additional effects of sound and motion. We observed that 202 

given a light source simulating the traverse of a car along a road, approximately 50 % of 203 

both M. rufus and M. rufogriseus exhibited an increased vigilance response. This effect 204 

represents a ‘freeze’ response, and kangaroos are often reported to stand erect yet remain 205 

motionless when approached by vehicles at night (E. Lee unpublished data). The 206 

proportion of subjects that fled in this situation was 5 % or less for both species. 207 

Quantitative analysis of vigilance and flight responses to oncoming vehicles under real 208 

circumstances are so far lacking. However, in one unpublished study of three kangaroo 209 

species responses to approaching vehicles along the Silver City Highway in far-west New 210 

South Wales Australia, considerable variation in the proportion of kangaroos exhibiting 211 

either vigilance or flight responses was observed (E. Lee unpublished data). During the 212 

night, kangaroos were more likely to exhibit flight (68 %) as opposed to vigilance (23 %), 213 

while during the day kangaroos were most likely to exhibit vigilance (51 %) than flight (31 214 

%). This indicates that the response adopted by an individual may depend upon whether 215 

they can obtain a visual fix on the approaching vehicle. While the vigilance responses 216 

obtained in this study with captive animals were similar in range to those observed along 217 

the Silver City Highway, the flight responses were proportionally less frequent. This 218 

suggests that under captivity, kangaroos and wallabies may be less likely to flee as 219 

captivity is well known to dampen behavioural responses through effects like habituation 220 

and the physical constraints of small enclosures. 221 

The addition of either Strieter-Lite or Swareflex warning reflectors, in either red or 222 

white, had either no effect or only a small significant effect on the behaviour of both M. 223 

rufus and M. rufogriseus. With red Strieter-Lite reflectors in place a small increase in the 224 

vigilance of M. rufus was recorded, and M. rufogriseus showed a small increase in the 225 
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flight response. While some alerting or aversive effect is encouraging, the small size of 226 

such behavioural responses by just one type of reflectors, albeit in captivity, limits their 227 

utility in substantially mitigating animal-vehicle collisions. The response or lack thereof 228 

may be species-specific but there is no evidence that the species tested are unrepresentative 229 

of the Macropodidae in terms of reactivity to threatening stimuli (Jarman and Coulson 230 

1989). 231 

The ability of Wildlife Warning Reflectors to elicit a response in macropodids relies on 232 

the extent of the visual field of the subjects in question. Most marsupials have dichromatic 233 

vision although there is currently a paucity of data (Deeb et al. 2003). One recent study has 234 

suggested that some marsupials may possess trichromatic colour vision (Arrese et al. 235 

2002), yet attempts to prove this in the wallabies and kangaroos have so far proven 236 

unrewarding (Deeb et al. 2003; Hemmi et al. 2000). To date, the standard reflectors used 237 

in the USA, Canada and in Europe for ungulates have been red. Research on the colour 238 

spectrum visible to deer, however, has suggested that maximum absorbance by deer is 239 

closer to 500 nm, rather than the 650 – 700 nm wavelengths produced by red light (Jacobs 240 

et al. 1994). Similar vision patterns have been observed in the tammar wallaby (M. 241 

eugenii), with a peak absorbance at 501 nm and another peak at 539 nm (Hemmi et al. 242 

2000). Based on current information, it is likely that the recommendation to switch from 243 

using red reflectors to other colours for ungulates, such as white, green and amber 244 

(Sielecki 2004), would also hold true for Australian marsupials. Nonetheless, we gained a 245 

greater response from red, rather than white, reflectors. 246 

In addition, a complete spectrometric evaluation of the reflective properties of the 247 

reflectors was conducted by the British Columbia Ministry of Transportation and 248 

Highways (Sivic and Sielecki 2001). Testing both Strieter-Lite and Swareflex reflectors, 249 

the study found that under laboratory conditions the illuminance of the reflectors with a 250 
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standard vehicle headlight was less than 0.1 lux at a distance of 2 m from the source, 251 

regardless of colour (cf. on a clear night, full moon illumination level is 0.1 lux). The 252 

minimal additional illumination contributed by the reflectors compared to the 253 

overwhelming stimulus of rapidly approaching bright headlights may explain why we 254 

generally failed to get a significant addition to the baseline behavioural response to 255 

headlights alone. However, given the high sensitivity of nocturnal eyes further research on 256 

the optimal illumination to cause alertness and measured withdrawal from the road as 257 

compared to temporary blindness, inertia and confused flight is warranted. From anecdotal 258 

evidence, some drivers believe that dimming or switching off headlights helps avoid 259 

collisions with kangaroos. 260 

The statistical power of many of the previous roadside trials conducted in Australia has 261 

been questioned (Lintermans 1997), making them likely to fail because of insufficient 262 

replicates and poor sampling design. To counteract this, we have conducted a rigorous 263 

captive study to avoid many of the pitfalls of field trials. In doing so, we have failed to 264 

detect a sufficient response from our two chosen species to warrant recommendation of 265 

appropriately designed field trials. Possible questions raised by this study are how the 266 

reflection of low intensity light might combine with the presence of an approaching 267 

vehicle to amplify the behavioural response, and if so, what impact would habituation have 268 

on the behavioural response if permanently installed at a location, as habituation has 269 

already been shown to dampen any initial behavioural response to reflectors (Ujvari et al. 270 

2004). The issue is whether reflected light evokes a sufficient alerting or evading 271 

behavioural response in medium to large Australian fauna that would result in fewer 272 

collisions with vehicles. We failed to record such a response and so installation of Wildlife  273 

Warning Reflectors on highways at hotspot locations must be treated as a dubious solution 274 

to the problem of wildlife-vehicle collisions. While the need to improve human safety and 275 



 12

conserve wildlife populations is paramount, solutions to this problem are most likely going 276 

to require radical rethinking of road and vehicle design, as well as a changing of attitudes 277 

in drivers. 278 
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Tables 397 

Table 1 Vigilance response to reflectors 398 

Comparison of the proportion of Macropus rufus and M. rufogriseus becoming vigilant 399 

directly after the running of the light system with and without reflectors. Wilcoxon Signed 400 

Rank tests with 10,000 Monte-Carlo permutations were used to derive p-values, reported 401 

for both one and two-tailed tests. N = 15. 402 

 403 
Species Type Colour z p(two-tailed) p(one-tailed) 
Macropus rufus Strieter-Lite Red -1.960 0.055 0.027 
  White -0.824 0.430 0.213 
 Swareflex Red -1.258 0.217 0.107 
  White -0.852 0.412 0.207 
Macropus rufogriseus Strieter-Lite Red 0.000 1.000 0.510 
  White -0.683 0.504 0.252 
 Swareflex Red -1.109 0.278 0.143 
  White -0.454 0.679 0.333 

 404 

Table 2 Flight response to reflectors 405 

Comparison of the proportion of Macropus rufus and M. rufogriseus fleeing the road 406 

directly after the running of the light system with and without reflectors. Wilcoxon Signed 407 

Rank tests with 10,000 Monte-Carlo permutations were used to derive p-values, reported 408 

for both one and two-tailed tests. N = 15. 409 

 410 
Species Type Colour z p(two-tailed) p(one-tailed) 
Macropus rufus Strieter-Lite Red -1.156 0.274 0.135 
  White -0.884 0.436 0.227 
 Swareflex Red -1.593 0.123 0.063 
  White -1.425 0.157 0.081 
Macropus rufogriseus Strieter-Lite Red -1.966 0.045 0.021 
  White -1.340 0.188 0.091 
 Swareflex Red -1.296 0.217 0.105 
  White -1.041 0.313 0.155 

 411 
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Table 3 Crossing in response to reflectors 412 

Comparison of the number of Macropus rufus and M. rufogriseus crossing the road under 413 

control conditions, with light, and with light plus reflectors. Friedman tests with 10,000 414 

Monte-Carlo permutations were used to derive p-values. N = 15. 415 

 416 
Species Type Colour Χ2 p(two-tailed) 
Macropus rufus Strieter-Lite Red 2.533 0.331 
  White 0.933 0.708 
 Swareflex Red 1.458 0.496 
  White 2.370 0.307 
Macropus rufogriseus Strieter-Lite Red 0.533 0.791 
  White 1.254 0.576 
 Swareflex Red 1.254 0.580 
  White 0.255 0.910 
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Figure Legends 417 

Fig. 1. 418 

Typical installation setup of Wildlife Warning Reflectors, adapted from instructions 419 

specified by Strieter Corporation®. The positions of the reflectors (R) are staggered on 420 

either side of the road at a distance (D) not more than 38 m (for these experiments we used 421 

20 m). The area of affect is indicated by shaded lines. 422 

Fig. 2. 423 

Depiction of the experimental setup using two yards, (A) M. rufus and (B) M. rufogriseus. 424 

A road strip was mown and sealed-beam headlights installed in pairs every 20 m, along 425 

with a CCTV infra-red camera. Wildlife Warning Reflectors were placed on either side of 426 

the road and are represented by the black triangles. Hides (H) and supplemental food 427 

troughs (F) were also located in the yards, while trees (grey circles) provided shelter. 428 

Fig. 3. 429 

Proportion of Macropus rufus and M. rufogriseus becoming vigilant directly after the 430 

passage of light along the road, with (black) and without (grey) reflectors. Comparisons 431 

represent mean values (± 95% confidence intervals) for both Strieter-Lite and Swareflex 432 

reflectors and red and white colours. Significance at the 0.05 level (one-tailed) is indicated 433 

by an asterisk. (a) M. rufus, red; (b) M. rufogriseus, red; (c) M. rufus, white; (d) M. 434 

rufogriseus, white. 435 
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Fig. 4. 436 

Proportion of Macropus rufus and M. rufogriseus fleeing the road directly after the 437 

passage of light, with (black) and without (grey) reflectors. Comparisons represent mean 438 

values (± 95% confidence intervals) for both Strieter-Lite and Swareflex reflectors and red 439 

and white colours. Significance at the 0.05 level (one-tailed) is indicated by an asterisk. (a) 440 

M. rufus, red; (b) M. rufogriseus, red; (c) M. rufus, white; (d) M. rufogriseus, white. 441 

Fig. 5. 442 

Number of Macropus rufus and M. rufogriseus crossing the road, with (black) and without 443 

(grey) reflectors. Comparisons represent mean values (± 95% confidence intervals) for 444 

both Strieter-Lite and Swareflex reflectors and red and white colours. Significance at the 445 

0.05 level is indicated by an asterisk. (a) M. rufus, red; (b) M. rufogriseus, red; (c) M. 446 

rufus, white; (d) M. rufogriseus, white. 447 

 448 
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Figures 449 

Fig. 1. 450 
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Fig. 3. 454 
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Fig. 4. 456 
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Fig. 5. 458 
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