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 1 

Abstract 2 

The near and far fields of traditional loudspeakers are differentiated by whether the sound 3 

pressure amplitude is inversely proportional to the propagating distance. However, the audio 4 

sound field generated by a parametric array loudspeaker (PAL) is more complicated, and in this 5 

article it is proposed to be divided into 3 regions: near field, Westervelt far field, and inverse-6 

law far field. In the near field, the audio sound experiences strong local effects and an efficient 7 

quasilinear solution is presented. In the Westervelt far field, local effects are negligible so that 8 

the Westervelt equation is used, and in the inverse-law far field a simpler solution is adopted. It 9 

is found that the boundary between the near and Westervelt far fields for audio sound lies at 10 

approximately a2/λ – λ/4, where a is transducer radius and λ is ultrasonic wavelength. At large 11 

transducer radii and high ultrasonic frequencies, the boundary moves close to the PAL and can 12 

be estimated by a closed-form formula. The inverse-law holds for audio sound in the inverse-13 

law far field and is more than 10 meters away from the PAL in most cases. With the proposed 14 

classification, it is convenient to apply appropriate prediction models to different regions. 15 

  16 
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I. INTRODUCTION 1 

Parametric array loudspeakers (PALs) generate highly directional audio sounds in air due 2 

to the nonlinear interactions of ultrasonic beams.1 PALs have been used in audio applications 3 

such as active noise control,2 measurement of the acoustic parameters of materials,3 mobile 4 

robotic navigation,4 stand-off concealed weapons detection,5 directivity control,6 and 5 

constructions of omni-directional loudspeakers.7 Therefore, it is important to be able to predict 6 

the sound pressure of the audio waves generated by PALs in the full field efficiently and 7 

accurately. The near and far fields of traditional loudspeakers are differentiated by whether the 8 

sound pressure amplitude is inversely proportional to the propagating distance in the region,8 9 

but the audio sound fields generated by a PAL are more complicated. In this paper, it is proposed 10 

to divide the audio sound field into 3 regions: the inverse-law far field, the Westervelt far field, 11 

and a near field. With this proposed classification, appropriate models can be chosen for different 12 

regions to enable faster and more accurate sound field calculation. 13 

In the inverse-law far field, the inverse-law holds, and the solutions are the simplest. 14 

Starting from the Lighthill equation, Westervelt obtained a closed-form formula for the audio 15 

sound in the inverse-law far field by assuming the ultrasound is collimated and nonlinear 16 

interactions of ultrasound take place only over a limited distance.9 Berktay and Leahy modified 17 

Westervelt’s formula by taking into account effects arising from the cylindrical/spherical 18 

spreading of ultrasonic waves, and they improved prediction accuracy by introducing an aperture 19 

factor for the transducer and the product directivity of ultrasonic waves.10,11 The Berktay solution 20 

is given as a simple expression in the time domain, which provides the basis for the signal 21 

modulation techniques in the realization of PALs.1,12 Several modifications to the Berktay model 22 

were later proposed to improve the prediction accuracy for the sidelobes of PALs.13 A more 23 

accurate model has been proposed which employs the convolution of the Westervelt directivity 24 

and the ultrasonic wave directivities.14-17 Although the ultrasonic waves are not assumed as 25 

collimated in the convolution model, they are assumed to be exponentially attenuated along each 26 
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direction, which is not true in practice because of the complexity in the near field of ultrasonic 1 

transducers. The boundary of the inverse-law field is often far away from the transducer.17  2 

The Westervelt far field is defined as the region where Westervelt equation is accurate and 3 

the local effects characterized by the ultrasonic Lagrangian density are negligible.18,19 When the 4 

quasilinear approximation is assumed, the audio sound can be considered as the radiation from 5 

an infinitely large virtual volume source, with the source density proportional to the product of 6 

the ultrasonic pressure. In earlier studies, the ultrasonic beams were simply assumed to be 7 

spherically spreading with a directivity function.16,17 Recently, the nonlinear interactions of 8 

actual ultrasonic beams generated by a transducer were modelled to improve prediction 9 

accuracy.20,21 To simplify the calculation, the paraxial (Fresnel) approximation is usually 10 

assumed for ultrasonic waves and this enables a Gaussian beam expansion method to be used 11 

because the ultrasonic wavelength is usually much smaller than the PAL radius.22,23 If the 12 

paraxial approximation is assumed for both ultrasonic and audio waves, then the Westervelt 13 

equation reduces to the well known Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation after 14 

approximating a second order derivative of sound pressure with respect to the propagating 15 

direction by a first order derivative. The calculation is further simplified, although the result is 16 

accurate only inside the paraxial region, which is inside about 20° from the transducer axis.24  17 

In the near field, the local effects characterized by the ultrasonic Lagrangian density cannot 18 

be neglected. The audio sound pressure distribution is more complicated and local maxima and 19 

minima occur in a similar way to that observed in the near field of traditional loudspeakers. The 20 

general second-order nonlinear wave equation is accurate in the modelling of the near field audio 21 

sound.18 However, its equivalent form written in terms of the velocity potential (the Kuznetsov 22 

equation), is often used because the evaluation of the second-order spatial derivatives of the 23 

ultrasonic Lagrangian density can be avoided.19,25 Unfortunately, the calculation of the 24 

quasilinear solution of the Kuznetsov equation is rather time-consuming, so the audio sound in 25 

the near field of PALs is rarely calculated using this equation. The audio sound in the near field 26 
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of the PAL can also be obtained by using the direct numerical calculation of the Navier-Stokes 1 

equations in the time domain, although this again incurs heavy computational expenditure.26 2 

Thus, the near field for audio sound generated by PALs is complicated and difficult to calculate, 3 

which means that it is convenient to separate out the sound pressure field and to apply different 4 

models to different regions. 5 

In this paper, a simplified but rigorous expression of the quasilinear solution of Kuznetsov 6 

equation for a baffled circular PAL is developed first, which is based on a spherical harmonic 7 

expansion method and this is used to calculate the audio sound in the near field. This is designed 8 

to extend the method reported in Ref. 21 by adding the ultrasonic Lagrangian density so that 9 

local effects are considered in the solution. Compared to the existing model in Ref. 19, where 10 

the five-fold integral has to be evaluated numerically, the proposed spherical expansion can be 11 

calculated efficiently without loss of accuracy. The accurate expressions for calculating the 12 

audio sounds in the Westervelt far field and the inverse-law far field are then obtained by 13 

simplifying the proposed spherical expansion. With these proposed efficient and accurate 14 

calculation methods, the transition distances among these 3 regions are then investigated 15 

quantitatively. After identifying a region an appropriate prediction model can then be chosen to 16 

enable fast and accurate calculation of the sound field for various applications.  17 

 18 

II. METHODS 19 

When a baffled circular PAL with a radius a generates two harmonic ultrasound waves at 20 

frequencies f1 and f2, with f1 > f2, the audio sound with frequency fa = f1 – f2 is demodulated in 21 

air due to the nonlinearity. The velocity profile on the transducer surface commonly used in 22 

applications is assumed to be uniform as 23 

 21j j

1,0 2,0 0( ) e e
t t

v t v v
 − −

= + , (1) 24 

where j is the imaginary unit, vi,0 is the amplitude of the vibration velocity, and ωi = 2πfi (i = 1, 25 

2) is the angular frequency of the ith primary wave. The radiation of the PAL is governed by the 26 
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second-order nonlinear wave equation,18,19 1 

 
2 2 2 2

2 2 2

2 2 4 2 2 2

0 0 0

2

0 0

1 1p

t t c
L

p p
p

c c t c t

 




 
− = − − +

   



−
 




, (2) 2 

where p is the sound pressure, c0 is the small-signal sound speed, and “second-order” means 3 

terms of third and higher orders in the acoustic variables are neglected in the derivation.18 On 4 

the right-hand side of Eq. (2), the first term accounts for the fluid thermo-viscosity, where δ is 5 

the sound diffusivity parameter and this is related to the sound attenuation coefficient α at the 6 

angular frequency ω by 
2 3

0( ) / (2 )c   = ;27 the second term accounts for the nonlinearity, 7 

where ρ0 is the static fluid density and β = 1.2 is the nonlinearity coefficient in air; the third term 8 

characterizes the local (non-cumulative) effects where L stands for the Lagrangian 9 

density,18,19which is given as 10 

 
2

0 2

0 0

1

2 2

p
L

c



=  −vv , (3) 11 

where v is the acoustic particle velocity vector.  12 

Equation (2) is difficult to solve directly, so different assumptions and simplifications are 13 

usually made in the mathematical modelling at different approximation levels. Two commonly 14 

used simplifications assume that local effects are negligible18,19 and the audio sound pressure 15 

amplitude is inversely proportional to the propagating distance.9,14 The prediction error caused 16 

by each approach depends on the distance between the field point and the PAL.19 To further 17 

illustrate this, the audio sound field generated by a PAL is divided into 3 regions: the near field, 18 

the Westervelt far field and the inverse-law far field. In the near field, the local effects are strong 19 

so that Eq. (2) has to be used to calculate the audio sound.19 In the Westervelt far field, these 20 

local effects are negligible so that Eq. (2) reduces to Westervelt’s equation after neglecting the 21 

Lagrangian density:9,18,19,24 22 
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In the inverse-law far field, the audio sound pressure amplitude is inversely proportional to the 1 

propagating distance so that the solution of the audio sound has the simplest form. 2 

A. Near field  3 

To solve Eq. (2) accurately and efficiently, its equivalent form, i.e. the Kuznetsov equation, 4 

is introduced in terms of the velocity potential Φ such that v = ∇Φ,18,19 5 

 ( )
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Because the ultrasound level generated by a PAL is limited, the nonlinearity is weak and the 7 

quasilinear approximation can be assumed.1 After using the method of successive 8 

approximations,28 Eq. (5) is decomposed into two coupled linear equations under the harmonic 9 

excitation  10 
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where the wavenumber 0 ji iik c = + , αi is the sound attenuation coefficient at frequency fi, 12 

Φi is the velocity potential at frequency fi, i = 1, 2, and “a”, and q can be considered as the source 13 

density function of a volume virtual audio source occupying the whole space,19 14 
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Here, the superscript “*” denotes the complex conjugate, vi = ∇Φi is the particle velocity for the 16 

ith ultrasonic wave, and i = 1 and 2.  17 

The velocity potential of the ultrasound is calculated using the Rayleigh integral [Eq. (5.2.6) 18 

in Ref. 29] 19 
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s s s( ) ( )d x x y y z− −= + +  is the distance between the field point r = (x, y, z) and the 21 
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source point rs = (xs, ys, zs) with zs = 0 on the transducer surface, and the origin of the rectangular 1 

coordinate system Oxyz is the center of the PAL with the z-axis perpendicular to the transducer 2 

surface S. The orthogonal components under the system Oxyz of the velocity of ultrasound can 3 

be obtained by,19 4 
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The source density function of the virtual audio source is obtained from Eqs. (7) to (9), and 6 

the velocity potential of audio sounds is an integral over the space, so that 7 

 
a v

a v v v v

v

j

d d
4

1 e
( ) ( ) d

π

dk

y zq x
d

− −

 

 −



 

 = −   r r , (10) 8 

where 2 2 2

v vv v( ) ( ) ( )d x x y y z z− + + −= −  is the distance between the field point r and the 9 

virtual source point or its image at rv = (xv, yv, zv).21 The sound pressure of audio sounds can be 10 

obtained using its second-order relationship with the velocity potential as,19  11 
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Equation (11) is the exact solution of the Kuznetsov equation under the quasilinear 13 

approximation, but is difficult to compute numerically due to the five-fold integral that arises 14 

after substituting Eqs. (7) to (10) into this equation. The well-known Gaussian beam expansion 15 

method cannot be used here to simplify the calculations because significant errors are introduced 16 

in the near field no matter how many Gaussian beams are used.30,31 In the following paragraphs, 17 

the five-fold integral in Eq. (11) is simplified based on a spherical harmonic expansion method 18 

that removes the need for additional approximations. 19 

To simplify the sound pressure of ultrasound, a spherical coordinate system (r, θ, φ) is 20 
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adopted, where r, θ, and φ are the radial distance, polar angle, and azimuthal angle, respectively. 1 

The Green’s function in free field, i.e., sj

s )e ( π4idk
d  in Eq. (8), can be expanded in spherical 2 

coordinates as a summation of spherical harmonic terms. After utilizing the orthogonal 3 

properties of Legendre polynomials and trigonometric functions, the velocity potential can be 4 

simplified as21 5 
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where the coefficient and the radial component of ultrasound are 7 
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respectively. In addition, Γ(⋅) is the Gamma function, j2n(⋅) is the spherical Bessel function, h2n(⋅) 10 

is the spherical Hankel function of the first kind, P2n(⋅) is the Legendre polynomial, rs,> = max(r, 11 

rs), and rs,< = min(r, rs). 12 

The components of the acoustic particle velocity under the spherical coordinate system can 13 

be obtained directly from Eq. (12), to give 14 
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Equations (12) and (15) represent rigorous transformations of the Rayleigh integrals in Eqs. (8) 16 

and (9), and these have been shown to facilitate fast computation times.32 The integral in Eq. 17 

(14) can be calculated either by the numerical integration21 or generalized hypergeometric 18 

functions.32,33 19 
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The source density function in Eq. (7) can be rewritten as 1 
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After substituting the spherical expansion expressions from Eqs. (12) and (15) into Eqs. (10) 3 

and (16), the velocity potential of audio sounds can be written as 4 

 a p ( ) ( ) ( )( ) r + =   +r rr r , (17) 5 

where the three components on the right-hand side of the equation are the contributions from the 6 

corresponding components in Eq. (16), and they are (see Appendix for derivations) 7 
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which contains the Wigner 3j symbol, and this can be calculated using a closed-form formula 13 

[see Eq. (C.23) in Ref. 34, or Eq. (20) in Ref. 21]. The triangular inequality should also be 14 

satisfied, so that |l – m| ≤ n ≤ l + m. The radial components of audio sounds Fp(r), Fr(r), and Fθ(r) 15 

are then given as 16 
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respectively, where rv,< = min(r, rv), rv,> = max(r, rv), and rv is the radial coordinate of the virtual 2 

source point rv. 3 

Equations (17) to (24) are the main results of this section. The audio sound pressure can be 4 

obtained by substituting Eqs. (12), (15), and (17) into Eq. (11). Equation (17) is solved by the 5 

Kuznetsov equation with the quasilinear assumption and this is exact over the entire field. 6 

Because no additional assumptions are made in the derivation, it is equivalent to the original 7 

solution to Eq. (10) that contains five-fold integrals. The proposed expressions in Eqs. (18) to 8 

(20) can be calculated more efficiently for 3 reasons: (i) it is a series with a three-fold summation 9 

consisting of uncoupled spherical angular and radial components; (ii) the radial components 10 

Fp(r), Fr(r), and Fθ(r) can be transformed into a rapidly converged integral using the property of 11 

spherical Bessel functions (see Ref. 21 for details); and, (iii) a number of the terms do not need 12 

to be calculated because many values of the Wigner 3j symbol are zero due to the restrictions of 13 

the triangular inequality. 14 

B. Westervelt far field  15 

In the Westervelt far field, the Westervelt equation, Eq. (4), is used to calculate the audio 16 

sound pressure. The source density function of the virtual sound source, Eq. (7), and the 17 

relationship between the sound pressure and velocity potential of audio sounds, Eq. (11), are 18 

then simplified as 19 
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respectively. In this case, the audio sound pressure is reduced to 22 
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which is the same as Eq. (21) in Ref. 21. 1 

C. Inverse-law far field  2 

Asymptotic formula for spherical Hankel functions at kar → ∞ yields 3 
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And the radial component in Eq. (27), Fp(r), can be simplified as  5 
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By substituting Eq. (29) into Eq. (27), it is clear that the audio sound pressure amplitude is 7 

inversely proportional to the propagating distance, r, so that the audio sound in the inverse-law 8 

far field is obtained. It is noteworthy that the solution obtained here is more accurate than 9 

existing ones, such as Refs. 9 and 14, because the complex nonlinear interactions in the near 10 

field of the PAL are more accurately captured. 11 

D. Consistency of governing equations and solutions 12 

To make the methods easy to follow, the relationships among the important governing 13 

equations and the solutions in the near field, the Westervelt far field, and the inverse-law far 14 

field are presented in Fig. 1. The Lighthill equation is derived from conservation of mass and 15 

conservation of momentum without approximations. The equation of state is then used to obtain 16 

a second-order nonlinear wave equation, Eq. (2), where the terms of cubic and higher order in 17 

the acoustic variables are ignored.18 The Kuznetsov equation, Eq. (5), is equivalent to the 18 

second-order nonlinear wave equation but is expressed in terms of the velocity potential instead 19 

of the sound pressure.19 The near field solution in Eq. (11), is obtained from the Kuznetsov 20 

equation under a quasilinear assumption. 21 

By neglecting the local effects (characterized by the Lagrangian density) in the second-22 

order nonlinear wave equation, the Westervelt equation, Eq. (4), is obtained, and the quasilinear 23 

solution of this equation is reported in Eq. (27) after substituting Eq. (22) into it. If the 24 
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asymptotic limit, Eq. (28), is employed for the spherical Hankel functions, the inverse-law far 1 

field solution is obtained as Eq. (27) after substituting Eq. (29) into it. It is also noted that the 2 

KZK equation is a paraxial approximation of the Westervelt equation and the Burgers equation 3 

is the one-dimensional form of the KZK equation without accounting the diffraction effects.24 4 

 5 

 6 

Fig. 1. (Color online) Relationships among the governing equations and the solutions in 7 

different fields presented in this paper. 8 

 9 

III. SIMULATIONS AND DISCUSSIONS 10 

Numerical simulations are conducted here using MATLAB R2018a. The sound attenuation 11 

coefficients of the ultrasound and audio sounds in air are calculated according to ISO 9613-1 12 

with the relative humidity 60% and temperature 25℃.35 The vibration velocity amplitude at two 13 

ultrasonic frequencies are v1,0 = v2,0 = 0.1 m/s. Because there are two ultrasound frequencies, the 14 

average of them, fu = (f1 + f2)/2, is used in the following text for clarity. The wavenumber at fu is 15 
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therefore denoted by ku. The reference quantity for the sound pressure level (SPL) used in the 1 

following text is 20μ Pa. The results calculated by the quasilinear solution based on Kuznetsov 2 

equation [Eq. (2)], Westervelt equation [Eq. (4)], and the inverse-law property [Eq. (29)] are 3 

denoted by “Kuznetsov”, “Westervelt”, and “Inverse-law”, respectively. As shown in the 4 

spherical expansions in Eqs. (18) to (20) and (27), the audio sound pressure and velocity 5 

potential are obtained by using the three-fold summation series with respect to l, m, and n, with 6 

the truncated term being set as N for all l, m, and n for simplicity. 7 

A. Validation of the proposed calculation method 8 

To illustrate the accuracy and efficiency of the proposed method in Sec. II.A, the parameters 9 

in Ref. 19 are used and also listed in Table I. Figure 2 shows the audio sound pressure level (SPL) 10 

as a function of the truncated term N at several typical field points when y = 0. It is clear that all 11 

the curves converge with sufficient terms. The truncated error is less than 0.1 dB when the 12 

truncated term N is larger than 10. 13 

 14 

Table I. The parameters used for validating the proposed method in Sec. II.A. 15 

Item Value 

Average ultrasound frequency fu = 39.5 kHz 

Audio frequency fa = 1 kHz 

Sound attenuation coefficients 
α1 = α2 = 2.8 × 10−2 Np/m 

αa = 6.9 × 10−4 Np/m 

Transducer surface radius a = 0.02 m 

Helmholtz number kua =14.7 

Rayleigh distance 0.146 m 

 16 
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 1 

Fig. 2. (Color online) Convergence of the audio sound SPL as a function of the truncated term 2 

N at several typical field points when y = 0, where the parameters in Table I are used. 3 

 4 

For comparison, the direct integration of Eq. (10) is performed (denoted by “direct 5 

method”), where the 1/3 Simpson rule is used for numerical integrations. The integrated 6 

coordinates are evenly discretized, and the field coordinate is set as the middle point between 7 

adjacent integrated coordinates to avoid singularities of Green’s functions. The infinitely large 8 

integral domain is reduced to a cylindrical column centered along the axis of the PAL with a 9 

radius of 1.5 m and a length of 3 m to cover the major energy of ultrasonic beams. Figure 3 10 

shows the audio SPL as a function of the propagating distance in different directions at 1 kHz, 11 

where the results obtained by the proposed method are same as that from the direct method. But 12 

the proposed method is faster than the direct method to calculate the audio sound in different 13 

directions because the polar angle coordinate, θ, of the field point is uncoupled in the expression. 14 

For example, the radial components in Eqs. (22) to (24) need to be calculated only once when 15 

obtaining the 3 curves in Fig. 3. 16 

 17 
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 1 

Fig. 3. (Color online) The audio SPL as a function of the propagating distance in different 2 

directions at 1 kHz, where the circles are that obtained by using the direct method. 3 

 4 

Table II lists the computation time of the proposed and direct methods at 3 typical field 5 

points. The precision criterion is used to identify the difference between the SPL calculated with 6 

the two methods to be less than 0.05 dB. The calculation was conducted on a personal computer 7 

with 2.5 GHz main frequency and 16 GB random access memory. Table II demonstrates that the 8 

computation time of the proposed method remains similar for all the cases, but is at least 100 9 

times faster than the direct method. The reason for the computation saving is that the direct 10 

method has to calculate the sound pressure of the ultrasound at many virtual source points and 11 

then integrate over a large space, but this is not required in the proposed new method. 12 

B. Regions of the audio sound field of the PAL 13 

Figure 4 shows the audio SPL as a function of the propagating distance at 1 kHz calculated 14 

with different methods, where the transducer radius is 0.05 m and the average ultrasound 15 

frequency is 40 kHz. Here, the results obtained by the 3 methods are different, from which the 16 

audio sound field is proposed to be divided into 3 regions: near field, Westervelt far field, and 17 

inverse-law far field.  18 
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Table II. Comparison of the computation time of the proposed and direct methods. 1 

Field points 
Calculation time (s) 

Proposed method Direct method 

x = y = 0 and z = 0.05 m (On-axis) 0.59 75.2 

x = 0.05 m, y = 0, and z = 0.05 m (Off-axis) 0.56 82.5 

x = y = z = 0 (Close to the PAL) 0.64 354.6 

 2 

 3 

 4 

 5 

 6 

FIG. 4. (Color online) The audio SPL as a function of the propagating distance at 1 kHz 7 

calculated with different methods: (a) on the radiation axis (0°), and (b) in the direction 10°, 8 

where the transducer radius is 0.05 m and the average ultrasound frequency is 40 kHz. 9 

 10 

In the near field, the audio SPL is complicated and local maxima and minima take place 11 
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due to strong local effects characterized by the ultrasonic Lagrangian density, so here the 1 

Kuznetsov equation must be used. When the radial distance is larger than 0.42 m and 0.19 m in 2 

Figs. 4(a) and (b), respectively, the difference between the curves denoted by “Kuznetsov” and 3 

“Westervelt” is less than 0.1 dB, and so the Westervelt equation may be used to predict the audio 4 

sound in the Westervelt far field. The inverse-law far field is the region where the radial distance 5 

is larger than 28.7 m and 7.3 m in Figs. 4(a) and (b), respectively, and the difference between 6 

the curves denoted by “Westervelt” and “Inverse-law” is less than 1 dB. The transition distances 7 

among these regions are the largest on the radiation axis, so only the sounds on the radiation 8 

axis are considered in the following simulations for simplicity. 9 

C. The transition distance from the near field to the Westervelt far field 10 

Figure 5 shows the audio SPL at 1 kHz and the ultrasound field at 40 kHz on the radiation 11 

axis as a function of the propagating distance, where the transducer radius is 0.05 m. The 12 

ultrasound pressure is calculated with the closed-form formula [Eq. (5.7.3) in Ref. 29]  13 
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where ku is the wavenumber at the average ultrasound frequency fu, and v0 is the vibration 15 

velocity amplitude. The ultrasonic Lagrangian density is approximated by neglecting the particle 16 

velocity components in the x and y directions in Eq. (3) as 17 
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where vu,z is the particle velocity component in z direction and can be obtained by the relation 19 

vu,z = (jkuρ0c0)−1∂pu/∂z, and Eq. (30) as 20 
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The obtained ultrasound pressure and Lagrangian density on the radiation axis are then 22 

normalized by 2ρ0c0v0 and 2ρ0v0, respectively, and are shown in Fig. 5(b). 23 
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 1 

 2 

 3 

FIG. 5. (Color online) (a) The audio SPL at 1 kHz and (b) the level of normalized ultrasound 4 

pressure and Lagrangian density at the average ultrasound frequency 40 kHz, as a function of 5 

the propagating distance on the radiation axis, where the transducer radius is 0.05 m. 6 

 7 

The ultrasound pressure amplitude has several local minima and maxima in the near field. 8 

From Eq. (30), the radial distance at the local minima can be obtained by [Eq. (5.7.4) in Ref. 29] 9 
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where λu is the wavelength at the average ultrasound frequency fu and     rounds down the 11 

quantity inside. Similarly, the radial distance at the local maxima can be obtained by 12 
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The first two (n = 1 and 2) local minima and maxima are plotted in Fig. 5. It appears that the 2 

locations of local maxima and minima of ultrasonic Lagrangian density are close to that of the 3 

ultrasound pressure. 4 

The ultrasonic Lagrangian density is non-cumulative as the propagation of the ultrasound 5 

beams.18 In the near field, where the field point is close to a PAL, the ultrasonic Lagrangian 6 

density fluctuates significantly, and the audio sound calculated with the Kuznetsov equation in 7 

Fig. 5(a) is complicated which means that the results obtained with the Westervelt equation are 8 

inaccurate. Figure 5(b) shows that the ultrasonic Lagrangian density is small when the radial 9 

distance is larger than the first local maximum (0.29 m in this case), and the results calculated 10 

with the Westervelt equation in Fig. 5(a) are also accurate. 11 

The transition from the near field to the Westervelt far field is affected by the local minima 12 

and maxima of the ultrasound pressure amplitude. As shown in in Fig. 5(b), at the first two local 13 

minima, the normalized Lagrangian density is more than 30 dB lower than that near the PAL, so 14 

it can be neglected in the calculation of audio sounds and the results obtained by the Kuznetsov 15 

and Westervelt equations are almost the same, as shown in Fig. 5(a). At the distance of the first 16 

two local maxima, the Lagrangian density amplitude is near its local maxima, so its effects are 17 

prominent and the difference between the results obtained by the Kuznetsov and Westervelt 18 

equations is large. The difference decreases as the ordinal number of the local maximum 19 

decreases. For example, the difference is 3.0 dB at the second local maximum (0.09 m) and it 20 

decreases to 0.3 dB at the first local maximum (0.29 m).  21 

Figure 6 shows the difference of the audio SPL calculated with the Kuznetsov and 22 

Westervelt equations as a function of the propagating distance on the radiation axis, with 23 

different transducer radii at different ultrasound frequencies for an audio frequency of 1 kHz. 24 

The radial distance to the first maximum of the ultrasound pressure amplitude is listed in Table 25 
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III and calculated by setting n = 1 in Eq. (34), so that 1 
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At large radial distances, the audio SPL difference approaches 0 dB indicating the accuracy of 3 

using the Westervelt equation. At small radial distances, the number of local minima and maxima 4 

increases as the transducer radius and ultrasound frequency increases, as predicted from Eqs. 5 

(33) and (34).  6 

 7 

 8 

 9 

FIG. 6. (Color online) The audio SPL difference calculated with the Kuznetsov and Westervelt 10 

equations as a function of the propagating distance on the radiation axis (a) with different 11 

transducer radii when the average ultrasound frequency is 40 kHz, and (b) at different average 12 

ultrasound frequencies when the transducer radius is 0.05 m, where the audio frequency is 1 13 
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kHz. 1 

 2 

Table III. The first maxima of the ultrasound pressure amplitude and the transition distances 3 

from the near field to the Westervelt far field for several sets of parameters. 4 

Transducer 

radius (m) 

Ultrasound 

frequency fu (kHz) 

First maximum 

rmax(1) (m) 

Transition distance from the near 

field to the Westervelt far field (m) 

0.02 40 0.04 0.04 (n0 = 1) 

0.05 40 0.29 0.29 (n0 = 1) 

0.1 40 1.16 0.38 (n0 = 2) 

0.15 40 2.62 0.51 (n0 = 3) 

0.2 40 4.67 0.65 (n0 = 4) 

0.25 40 7.29 0.79 (n0 = 5) 

0.05 60 0.44 0.44 (n0 = 1) 

0.05 80 0.58 0.19 (n0 = 2) 

0.05 100 0.73 0.24 (n0 = 2) 

0.05 120 0.87 0.17 (n0 = 3) 

 5 

The distance at the n-th local maximum of the ultrasound pressure amplitude increases as 6 

the transducer radius and ultrasound frequency increase, where n is any positive integer number 7 

restricted by the condition in Eq. (34). The audio SPL difference at the location of the 8 

corresponding local maximum decreases if the transducer radius and ultrasound frequency 9 

increase. This is because the ultrasound beam is more collimated when the transducer radius and 10 

the ultrasound frequency are larger. The ultrasound beams can also be approximated by plane 11 

waves when they are highly collimated. In this case, the ultrasonic Lagrangian density 12 

approaches zero after substituting the plane wave condition |pu| = ρ0c0|vu,z| into Eq. (31), which 13 

means the local effects are negligible and the Westervelt equation is accurate. Therefore, the 14 

magnitude of the audio SPL difference can be determined by how much the ultrasound beams 15 

behave like plane waves, which is measured by defining an error function as 16 
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If the error function is small, the ultrasound beams are more collimated and the effects of the 2 

ultrasonic Lagrangian density would also be small. 3 

Because the audio SPL difference calculated with the two equations is large at points near 4 

the local maxima of the ultrasound pressure amplitude, the transition distance from the near field 5 

to the Westervelt far field can be defined as the distance at the n0-th local maximum of the 6 

ultrasound pressure amplitude, such that the error function at this point is less than a threshold 7 

ε0 > 0. To obtain n0, the following condition should be satisfied as 8 

 max 0 0]( )[ nr  . (37) 9 

Substituting Eqs. (34) and (36) into Eq. (37), n0 is obtained by 10 
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, (38) 11 

where max(1, ⋅) is used to ensure n0 is at least 1. The choice of a smaller threshold for ε0 leads 12 

to higher precision when using the Westervelt equation to predict audio sounds in the Westervelt 13 

far field, region r ≥ rmax(n0). The transition distance at several sets of parameters are listed in 14 

Table III when ε0 = 2.5%, and the numerical simulations show the error using the Westervelt 15 

equation is less than 0.6 dB under this condition. 16 

Figure 7 shows the audio SPL difference at different audio frequencies when the transducer 17 

radius is 0.05 m, and the average ultrasound frequency is 40 kHz. At high audio frequencies, the 18 

audio SPL difference is small at small radial distances. This is because the audio SPL calculated 19 

with the Westervelt equation increases by about 12 dB when the audio frequency is doubled, but 20 

the amplitude of the ultrasonic Lagrangian density changes little at different audio frequencies, 21 

so its effect on the audio SPL is relatively small at high audio frequencies. The locations of local 22 

minima and maxima in the ultrasound pressure amplitude do not change at different audio 23 

frequencies, so the transition distance from the near field to the Westervelt far field does not 24 
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vary with the audio frequency. 1 

 2 

 3 

FIG. 7. (Color online) The audio SPL difference calculated with the Kuznetsov and Westervelt 4 

equations as a function of the propagating distance on the radiation axis at different audio 5 

frequencies (transducer radius is 0.05 m and the average ultrasound frequency is 40 kHz). 6 

 7 

In this section, the formula of the transition distance from the near field to the Westervelt 8 

far field is derived based on the transducer with a uniform velocity profile. For other velocity 9 

profiles such as parabolic and quartic ones,19 an appropriate formula can be obtained using a 10 

method similar to the one described above. For a specific velocity profile, the key step is to find 11 

the location of the local maxima of ultrasound pressure amplitude on the transducer axis, where 12 

the Lagrangian density amplitude is large and the local effects are significant.  13 

 14 

D. The transition distance from the Westervelt far field to the inverse-law far field 15 

Figure 8 shows the difference between the audio SPL calculated with the Westervelt 16 

equation and the inverse-law property, as a function of the propagating distance on the radiation 17 

axis with different transducer radii at different ultrasound and audio frequencies. This difference 18 

increases as the radial distance increases, and then decreases and approaches 0 dB at large radial 19 

distances, where the prediction based on the inverse-law property is accurate. Taking 1 dB as 20 
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the error bound, this defines the region where the audio SPL difference is less than 1 dB to be 1 

the inverse-law far field. Table IV lists the transition distances from the Westervelt far field to 2 

the inverse-law far field for the parameters used in Fig. 8. 3 

 4 

 5 

FIG. 8. (Color online) The audio SPL difference calculated with the Westervelt equation and 6 

the inverse-law property as a function of the propagating distance on the radiation axis (a) with 7 

different transducer radii when the average ultrasound frequency is 40 kHz and the audio 8 

frequency is 1 kHz, (b) at different average ultrasound frequencies when the transducer radius 9 

is 0.05 m and the audio frequency is 1 kHz, and (c) at different audio frequencies when the 10 

transducer radius is 0.05 m and the average ultrasound frequency is 40 kHz, where ΔSPL = 1 11 

dB for the dashed lines. 12 

 13 

Table IV. The transition distance from the Westervelt far field to the inverse-law far field for 14 

the parameters in Fig. 8. 15 

Transducer 

radius a (m) 

Ultrasound 

frequency fu (kHz) 

Audio frequency 

fs (Hz) 

Inverse-law transition distance 

(m) when ΔSPL < 1 dB 

0.02 40 1000 10.6 

0.05 40 1000 29.1 

0.1 40 1000 31.8 

0.15 40 1000 33.0 

0.05 60 1000 17.8 

0.05 80 1000 12.8 
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0.05 100 1000 10.2 

0.05 40 250 32.3 

0.05 40 500 30.6 

0.05 40 2000 23.9 

 1 

Figure 8(a) shows that the transition distance increases as the transducer radius increases. 2 

For example, it increases from 10.6 m to 29.1 m as the transducer radius increases from 0.02 m 3 

to 0.05 m. This is because the effective virtual source containing the major ultrasonic energy 4 

becomes larger as the transducer radius increases. Figure 8(b) shows that the transition distance 5 

decreases as the ultrasound frequency increases. For example, it decreases from 29.1 m to 17.8 6 

m when the ultrasound frequency increases from 40 kHz to 60 kHz. This is because the effective 7 

virtual source becomes smaller as the sound attenuation coefficient of ultrasound beams in air 8 

becomes larger. Although the transition distance decreases as the audio frequency increases Fig. 9 

8(c), the effects are relatively small. For example, it decreases by only 1.5 m (4.9%) when the 10 

audio frequency increases from 500 Hz to 1 kHz.  11 

The effects of the transducer radius, and the ultrasound and audio frequencies on the 12 

inverse-law transition distance, are more complicated than the one from the near field to the 13 

Westervelt far field. It seems that the ultrasound frequency is the most important parameter 14 

because the ultrasound attenuation coefficient in air changes significantly as the frequency and 15 

meteorological conditions change. Therefore, an empirical formula, for example 4/αu, can be 16 

used to estimate the inverse-law far field transition distance, where αu is the ultrasound 17 

attenuation coefficient in air at the average ultrasound frequency fu. The physical meaning of 18 

this formula is that the ultrasound pressure amplitude at this location has been attenuated to 2% 19 

(e−4 ≈ 0.02). However, the formula does not hold for the very small sound absorption coefficient. 20 

 21 

IV. CONCLUSIONS 22 

In this paper, the audio sound field generated by a PAL is proposed to be divided into three 23 
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regions: near field, Westervelt far field, and inverse-law far field. In the near field, the local 1 

effects characterized by the ultrasonic Lagrangian density are strong so that the Kuznetsov 2 

equation should be used to predict the audio sound. An efficient method based on a spherical 3 

harmonic expansion is proposed to calculate the quasilinear solution without loss of accuracy 4 

for a circular PAL. In the Westervelt far field, the local effects are negligible due to their non-5 

cumulative property so that the well-known Westervelt equation is accurate. In the inverse-law 6 

far field, the audio sound pressure amplitude is inversely proportional to the propagating 7 

distance so the solution of the audio sound has the simplest form. With the proposed 8 

classification and methods, appropriate prediction models at different approximation levels can 9 

be chosen for each region.  10 

The simulation results show that the boundary between the near field and Westervelt far 11 

field is approximately a2/λ – λ/4, where a is the PAL radius and λ is the ultrasonic wavelength. 12 

At large transducer radii and high ultrasound frequencies, the boundary becomes closer to the 13 

PAL and a closed-form formula is presented to modify this value. The transition distance from 14 

the Westervelt far field to the inverse-law far field is more complicated. The ultrasound 15 

frequency is found to be the most important parameter and the transition distance can be 16 

approximately estimated with the empirical formula 4/α, where α is the ultrasound attenuation 17 

coefficient in air at the ultrasound frequency. Future work is to study the audio sound field 18 

generated by a PAL phased array. 19 
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APPENDIX 25 

Equations (18) and (19) can be obtained by substituting the spherical expansions of 26 
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ultrasonic waves Eqs. (12) and (15) into Eqs. (16) and (10), which is similar to the method used 1 

in Ref. 21. Equation (20) can be obtained similarly but a special integral is occurred due to the 2 

derivatives of Legendre polynomials as shown in Eq. (15), 3 
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According to the relations between the Legendre polynomial Pμ(⋅) and the associated 5 

Legendre function P ( )

   (Eq. (4.4.1) in Ref. 36)  6 
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and the definite integral of triple associated Legendre functions (Eq. (11) in Ref. 37) 8 
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the integral Eq. (A1) can be obtained as 10 
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where the first Wigner 3j symbol can be calculated with Eq. (20) in Ref. 21, and the second one 12 

can be rewritten by using the symmetric relations as 13 
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By setting m1 = m2 = m3 = 0 in Eq. (9a) of Ref. 38, one obtains the recurrence relation 15 
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where C and D are obtained by Eqs. (9b) and (9c) of Ref. 38 as  17 
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By substituting Eq. (A7) into Eq. (A6), the second Wigner 3j symbol can be represented by the 1 

first one. Finally, the integral Eq. (A1) is reduced to 2 
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