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Abstract 

An efficient and accurate method for calculating the sound radiated by a baffled circular 1 

rigid piston is using spherical harmonics, and the solution is a series containing the integral of 2 

spherical Bessel functions. The integral is usually calculated with the generalized 3 

hypergeometric functions in existing literatures, which shows poor convergence at middle and 4 

high frequencies due to the overflow and the loss of significant figures. A rigorous and closed 5 

form solution of the integral is derived in this paper based on the recurrence method, which is 6 

accurate in the whole frequency range and thousands of times faster than the existing methods. 7 

It is shown that the proposed method can be extended for the calculation of the sound radiated 8 

by a baffled piston and an unbaffled resilient disk with axisymmetric velocity and pressure 9 

profiles, respectively, and some baffled rotating sources where the velocity profile is asymmetric. 10 

  11 
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1. Introduction 

The sound radiated by a baffled circular piston is calculated with Rayleigh integral, which 1 

is unsolvable in most cases.1 The direct numerical integration of Rayleigh integral can be used 2 

to obtain the result while the calculation time and required memory size increase significantly 3 

with frequency.2 The most efficient and rigorous calculation method currently available is 4 

decomposing the integral into a series of spherical harmonics where the angular and radial 5 

components are related to Legendre and spherical Bessel functions, respectively.1,3 The 6 

expression of the series is different in different regions, resulting in paraxial, inner, and outer 7 

expansions. The existing methods work fine for the paraxial and inner expansions, but the 8 

calculation of the outer expansion is rather time-consuming at middle and high frequencies 9 

which will be focused on in this paper.  10 

The paraxial expansion is used when the distance between the field point and the radiation 11 

axis is less than the transducer radius. In this expansion, each term of the series is obtained with 12 

a finite step of recurrences.1 It converges rapidly, but the coordinates of the field point and the 13 

transducer radius are coupled in the argument of special functions. Although the paraxial region 14 

covers the major energy of a sound beam at high frequencies, it is sometimes necessary to 15 

calculate the sound pressure in other regions. For example, the ultrasounds outside the paraxial 16 

region need to be taken into consideration, otherwise the prediction of audio sounds generated 17 

by nonlinear interactions of intensive ultrasounds would be inaccurate.4,5 18 

The inner expansion is valid when the distance between the field point and the transducer 19 

center is less than the transducer radius. Although the inner expansion converges slowly, the 20 

field coordinates are uncoupled in the argument of special functions which means the radial and 21 

angular components can be calculated separately for a large number of field points.1,3 To improve 22 

the convergence performance, a feasible technique is estimating the values of truncated terms of 23 

the series.3 The inner expansion is not widely used because this region is small and it is also 24 

covered by the paraxial region.  25 
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For the field point at outer region where the distance between the point and the transducer 1 

center is larger than transducer radius, the outer expansion needs to be used.1,3 The widely used 2 

expression of the outer expansion is related to the generalized hypergeometric function (GHF).1,3 3 

Although it converges rapidly at low frequencies, its convergence performance is poor at middle 4 

and high frequencies because the GHF is an alternating series, the calculation involves 5 

subtractions between large numbers resulting in loss of significant figures, and the number of 6 

summation terms increases rapidly as the frequency increases. Therefore, the extended precision 7 

of float numbers in computers or other special techniques have to be used, resulting in an 8 

increase of computation complexity.6,7 Besides, the GHF is difficult to analyze if further 9 

operations on the solution are required, such as integrals4,8 and derivatives9 with respect to the 10 

coordinates and the transducer radius. 11 

In this paper, the outer expansion for Rayleigh integral is given and the integral over 12 

spherical Bessel functions is simplified rigorously into a closed form based on the recurrence 13 

method. Compared to the existing GHF method, Gauss-Legendre quadrature, and Bessel 14 

expansion method, the proposed expression is accurate and computationally efficient in the 15 

whole frequency range. It can also be extended to other scenarios such as a baffled piston, an 16 

unbaffled resilient disk with axisymmetric velocity and pressure profiles, and some baffled 17 

rotating sources where the velocity profile is asymmetric. 18 

 19 

2. Methods 

As shown in Fig. 1, the sound pressure radiated by a baffled circular rigid piston with a 20 

radius of a is calculated with Rayleigh integral1,10 21 
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where j is the imaginary unit, 0 is the air density, ω is the angular frequency, v0 is the uniform 23 

velocity amplitude, k is the wavenumber, and ρs and φs are the polar radial and azimuthal angular 24 
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coordinates of a source point rs = (xs, ys, zs) on the radiation surface with zs = 0, and r = (x, y, z) 1 

is the field point. The time dependence term e−jωt is omitted and t is the time. 2 

 3 

 4 

Fig. 1 Sketch of the radiation from a baffled circular rigid piston. 5 

 6 

To simplify Eq. (1), a spherical coordinate system (r, θ, φ) is established based on the 7 

rectangular one (x, y, z), where r, θ, and φ are the radial distance, zenithal angle, and azimuthal 8 

angle, respectively. The spherical coordinates of the source point rs are consequently rs, θs = π/2, 9 

and φs. The simplified expression is a series of angular and radial components which are different 10 

in different regions. The existing methods work fine for the paraxial and inner regions,1,3 so this 11 

paper focuses on the outer region where r > a.  12 

The outer expansion of Eq. (1) using spherical harmonics can be obtained in different 13 

ways1,3 and a simpler derivation is presented in Appendix, which is 14 
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where j2n(⋅) is the spherical Bessel function, h2n(⋅) is the spherical Hankel function of the first 16 

kind, P2n(⋅) is the Legendre polynomial, and Γ(⋅) is the Gamma function. It has been shown that 17 

the calculation of Eq. (2) is highly efficient compared to Eq. (1) without loss of accuracy.1,3 18 

The integral in Eq. (2) is 2
0

(j )d
ka

n    which is mostly calculated by the GHF 1F2(⋅) in 19 
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existing literatures1,3,8,9 1 
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Substituting the explicit expression of the GHF into Eq. (3) yields (denoted by “GHF series”) 3 
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Equation (4) is usually calculated as the summation of truncated terms and converges 5 

rapidly when ka is small.8 However, it shows poor convergence performance when ka is large 6 

(300 for example) for the following three reasons. First, it is an alternating series due to the 7 

factor (−1)i; therefore, the calculation involves subtractions of large numbers when ka is large, 8 

resulting in a substantial loss of significant figures. Second, the number of summation terms 9 

required for a specified accuracy increases rapidly as ka increases, resulting in excessive 10 

computational load. Last, it easily leads to an arithmetic overflow for large ka before 11 

convergence because the terms in the summation are proportional to (ka)2i.  12 

To solve these problems, the extended precision of float numbers in computers and other 13 

special techniques have to be used to calculate GHFs with large arguments.6,7 Some techniques 14 

have been adopted in MATLAB for the built-in function “hypergeom” to calculate GHFs 15 

numerically, but the calculation is still time-consuming and the obtained results are sometimes 16 

unreliable.7 For example, when “hypergeom(1, 200, 1)” is called, the answers returned in 17 

MATLAB 2008b and MATLAB 2018a are different, which are 6.69 × 10299 and 1.005, 18 

respectively.7 Furthermore, it is difficult for further operations on the expressions containing 19 

GHFs, which are necessary for some cases. For example, the derivative with respect to the disk 20 

radius, a, is used in Ref. 9 to obtain the radiation of a ring monopole source; the integral with 21 

respect to the radial coordinate of the field point, r, is used in Ref. 8 to obtain the sound generated 22 

from general radiator; and integrals with respect to both the radial and angular coordinates, r 23 

and θ, are used in Ref. 4 for the calculation of the audio sound generated by nonlinear 24 
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interactions of intensive ultrasounds.  1 

There are another two existing ways to calculate the integral in Eq. (3) numerically. One is 2 

using fundamental integration techniques such as the Gauss-Legendre quadrature (denoted by 3 

“Gauss-Legendre”), and the other is using infinite spherical Bessel function expansion (Eq. 4 

(11.1.1) in Ref. 11; denoted by “Bessel expansion”) 5 
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Although these two methods work fine when n is comparable to or larger than ka, they also show 7 

poor convergence performance when n is smaller than ka because j2n(ξ) oscillates significantly. 8 

For example, when ka = 300 and n = 10 as shown in the next section, more than 75 and 150 9 

terms are required for these two methods, respectively, to reach satisfactory precisions. 10 

Furthermore, the required maximal terms of Gauss-Legendre quadrature and Bessel expansion 11 

are unclear for different orders n and arguments ka. 12 

 13 

2.1. Proposed closed form solution 14 

In following paragraphs, we will show that the integral can be rigorously simplified into a 15 

closed form so the sound pressure Eq. (2) can be calculated quickly and analytically. To simplify 16 

the derivation, an auxiliary indefinite integral is introduced as 17 

 ( ) j ( )d ,  ,x x xx 

    =  . (6) 18 

Then the integrals in Eq. (2) are represented as 1

2 ( )n ka  and 1

2 (0)n . For n = 0, the closed 19 

form of 
1

0 ( ) cosx x= −   can be obtained by substituting the explicit expression of j0(x) = 20 

sin(x)/x into Eq. (6). For the case n ≥ 1, it is hard to obtain the integral directly so the following 21 

recurrence relation is introduced 22 
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which can be verified using the recurrence relation of spherical Bessel functions.12 The 1 

recurrence steps for the calculation of 1

2 ( )n x  are 2 
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which stop when l = n because the coefficient of 1( )n

n x−

−   becomes 0. Following above 4 

relationships, 1

2 ( )n x  can be represented as 5 
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with 1 1
2 2

(0) π ( 1) ( )n n n =−  +  + . 7 

Equation (9) is given in closed forms because j2n−l−1(x) can be represented by a finite 8 

number of trigonometric functions, which are much easier to calculate than the GHF in Eq. (3), 9 

the Gauss-Legendre quadrature or the Bessel expansion in Eq. (5), especially when n is small 10 

and ka is large. For example, when ka = 300 and n = 0, Eq. (9) shows that only the calculation 11 

of the fundamental function j−1(300) = cos(300)/300 is required to obtain the exact result. It is 12 

also noteworthy that no approximations are assumed in the derivation of Eq. (9), so it is accurate 13 

in the whole frequency range. 14 

 15 

2.2. Additional examples 16 

In addition to the rigid piston mentioned above, the proposed method can also be extended 17 

for other scenarios. When the velocity profile of the baffled circular piston is arbitrarily 18 
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axisymmetric, it can be expanded into a summation of even-degree polynomials.13,14 For 1 

example, for the velocity profile of the form v0[1 – (ρs/a)2m], m = 0, 1, 2, …, the integral 2 

1

2

2 ( )m

n x+  is required in the calculation of sound pressure and can be similarly obtained as (see 3 

Appendix A for derivations) 4 
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with 2 1 2 1
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When the pressure profile of a resilient disk in free space (without a baffle) is arbitrarily 7 

axisymmetric,3,15 the integral 2

2 1( )n

m x+  is required and its closed form can be similarly obtained 8 

as (see Appendix B for derivations) 9 
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In addition to the cases with axisymmetric profiles, the proposed method is also valid for 12 

some cases when the surface velocity or pressure profiles are asymmetric, such as the rotating 13 

source in an infinitely large baffle. In this case, the surface velocity profile at order ℓ can be 14 

given by v(ρs)cos(ℓφs), where the radial and angular components are separated and ℓ = 0 15 

corresponds to the axisymmetric case.8 Here an example is presented, where ℓ = 1, i.e. 16 

v0ρsa−1cos(φs), representing the wobbling effects of a piston.16 The spherical expansions of the 17 

sound pressure can be expressed as (see Appendix C for derivations) 18 
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where 
1

2 1P )(n+    is the associated Legendre function at order 1 and the integral of 20 
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2

2 1 2 1

2 j d( ) ( )n n xx xx+ + =   can be obtained by the closed form given in Eq. (11).  1 

 2 

3. Results and discussions 

The efficiency of the proposed method Eq. (9) for calculating the integral 
0

2 )dj (n

ka

    is 3 

firstly demonstrated by comparing the numerical results with the ones obtained by using the 4 

Gauss-Legendre quadrature, Bessel expansion Eq. (5), and the GHF series Eq. (4). Figure 2 5 

shows the results of the integral obtained with the four methods at different ka and n. The 6 

abscissa represents the number of truncated terms in the Bessel expansion and GHF series, or 7 

the terms in the Gauss-Legendre quadrature, or the summation steps in the proposed solution. 8 

 9 

 10 

 11 

Fig. 2 Numerical calculation of the integral 
0

2 )dj (n

ka

    using four methods when (a) ka = 12 

10 and n = 0; (b) ka = 300 and n = 10; (c) ka = 900 and n = 10; and (d) using the GHF series at 13 

n = 10. 14 
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 1 

It can be found in Fig. 2(a) that all the results converge rapidly when ka = 10, which is in 2 

the low frequency range. However, the spherical Bessel functions oscillate significantly at large 3 

ka, so more terms are required in the Gauss-Legendre quadrature and Bessel expansion to obtain 4 

accurate results, such as more than 75 and 200 for Gauss-Legendre quadrature in Figs. 2(b) and 5 

(c), respectively. However, only 10 steps are required while using the proposed solution. When 6 

the frequency is high, e.g. ka = 300 or 900, the curve for the GHF series are not included in Figs. 7 

2(b) and (c) because the results exceed the vertical axis range. These curves are plotted 8 

separately in Fig. 2(d) with larger vertical axis ranges. The first term of the GHF series of Eq. 9 

(4) is up to 1028 and 1038 for ka = 300 and 900, respectively, while the accurate results of the 10 

integral are only 5.05 and 5.84, respectively. The result for ka = 900 overflows when the 11 

truncated terms exceed 183, and the curve for ka = 300 converges to an incorrect result much 12 

larger than 5.84 due to the loss of significant figures as discussed in Sec. II. 13 

The GHF can also be calculated using the built-in function “hypergeom” in MATLAB 14 

where better but not publicly known techniques are used to solve the problems occurred in the 15 

direct summation of truncated terms of the GHF series Eq. (4). Table 1 compares the calculation 16 

time using the GHF calculated by this built-in function and the proposed method for the orders 17 

0 to N, where N is the maximal order required for calculating the sound pressure in Eq. (2) to 18 

give satisfactory precisions. The calculation time using the GHF method increases as the ka and 19 

N increase and is more than 60 s when ka = 900 and N = 600, while the time with the proposed 20 

method is less than 0.1 s for all cases. Furthermore, it is noteworthy that the values calculated 21 

by MATLAB are sometimes unreliable and efforts should be spent to validate the accuracy case 22 

by case.7 23 

 24 

Table 1. Comparison of the calculation time when the GHF is calculated by the built-in 25 

function “hypergeom” of MATLAB R2018a (based on a personal computer with 2.5 GHz main 26 



 

 

Page 12 of 20 

frequency) and the proposed method. 1 

Case 
Calculation time (s) 

GHF method Proposed method 

ka = 300, N = 200  9.47 0.0048 

ka = 500, N = 350 23.12 0.016 

ka = 900, N = 600 62.75 0.043 

 2 

In the following simulations, the common parameters used in modelling audio sounds 3 

generated by nonlinear interactions of intensive ultrasounds, i.e., a parametric array 4 

loudspeaker,5 are used to verify the accuracy of the proposed solution. The radius of the 5 

transducer a = 0.3 m, the frequency f = 65 kHz, the complex wavenumber k = ω/c0 + jα, and ka 6 

= 350 + 0.09j, where the sound speed c0 = 343 m/s and the sound attenuation coefficient in air 7 

α = 0.3 Neper/m, which is calculated according to ISO 9613-1 at the temperature of 25C and 8 

the relative humidity of 70%.17  9 

Figure 3 shows the sound pressure on the radiation axis of the transducer and the directivity 10 

index, which is defined as 20log10[|p(θ)/p(θ = 0)|] at kr→∞, for the surface velocity profile of 11 

the piston (v0) and the simply supported disk (2v0[1 – (ρs/a)2]).14 In the proposed method, the 12 

on-axis pressure is calculated by Eq. (2) by setting θ = 0, the directivity index is calculated by 13 

Eq. (2) after using the far field asymptotic formula h2n(kr) ∼ (−1)nh0(kr) at kr→∞,  14 

 0 0

1
2

0 0 2 2
0

0

(
(

1 ( )
h )

4 )
( ) ( ) P cos j )d

π ( 1
( ,  

)

ka

n n

n

n
p

n
c v k

n
r kr    



=

 +
→

+

+  =
   r , (13) 15 

and the number of truncated terms is set as 200. The exact values of the on-axis pressure and the 16 

directivity index are presented for comparison, which are calculated with Eqs. (20-21) and Eq. 17 

(29) in Ref. 14, respectively. The results obtained with the proposed method agree well with 18 

those from the exact solutions. This validates the accuracy of the proposed method in the outer 19 

region where no closed form exact solution is available at present.  20 
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 1 

 2 

Fig. 3 Calculated normalized sound pressure on the radiation axis (a) and the directivity index 3 

(b) when ka = 350 + 0.09j for a baffled circular radiator with the uniform (rigid piston) and 4 

quadratic (simply supported disk) velocity profiles. 5 

 6 

4. Conclusions 

An outer expansion is derived for the sound radiation from a baffled circular rigid piston 7 

based on the recurrence relation of spherical Bessel functions. Unlike the existing GHF method, 8 

the Gauss-Legendre quadrature, and the infinite Bessel expansion, the expression is given in a 9 

closed form and can be calculated exactly with finite terms in the whole frequency range. In the 10 

proposed expression, the spherical coordinates of the field point and the disk radius are 11 

uncoupled, which is convenient for obtaining derivatives and integrals with respect to these 12 

parameters. The proposed method can also be extended to other scenarios, such as the radiation 13 

from a baffled circular piston with axisymmetric velocity profiles, a resilient disk in free space, 14 

and a baffled rotating source. Future work is to investigate the simplification of the sound 15 

radiated by a rectangular radiator. 16 

 17 

Appendix 

A. A baffled circular piston with arbitrary axisymmetric velocity profiles 18 

For a baffled circular piston with an arbitrary axisymmetric velocity profile, Eq. (1) is 19 
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rewritten as  1 
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where V(ρs) is the given surface velocity profile and equals to v0 for a rigid piston. 3 
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where P ( )n

m   is the associated Legendre function at the degree n and order m, and θs = π/2 since 7 

zs = 0 for all source points. 8 

Substituting Eq. (A2) into Eq. (A1) yields 9 
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where the relation rs = ρs has been used since θs = π/2. Using the substitution ξ = kρs and 11 

performing the integral with respect to φs yield 12 
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where all the terms m > 0 are eliminated because the integrations are zero. According to the 14 

condition θs = π/2 and the explicit expression of Pn(0) (Eq. (4.2.4) in Ref. 18) 15 

 

1
/2 2 2

2

,   even
P

0,                              odd

( )
( 1)

(0) π ( 1)

n
n

n
n

n

n
 +

−
=  +

=


=


. (A5) 16 

All the terms in Eq. (A4) are zero when n is odd and can be omitted. After replacing n by 2n and 17 

using Eq. (A5), Eq. (A4) can be simplified as 18 
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where V(ρs) = v0 corresponds to Eq. (2).  2 

The integral of spherical Bessel functions is required in Eq. (A6) and depends on specific 3 

surface velocity profiles. For arbitrary axisymmetric distributions, they can be represented as 4 

series in different ways with even degrees of (ρs/a),14,19,20 and the following one is adopted in 5 

this paper13 6 
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where Am are known expansion coefficients. For example, the case A0 = 1 and A1 = A2 = ⋯ = 0 8 

represents a rigid circular piston, the case A0 = 2, A1 = −2, and A2 = A3 = ⋯ = 0 represents a 9 

simply supported disk, and the case A0 = 3, A1 = −6, A2 = 3, and A3 = A4 = ⋯ = 0 represents a 10 

clamped disk.14 Substituting Eq. (A7) into Eq. (A6) yields the integrals with the form 11 
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According to the auxiliary indefinite integral Eq. (6) and the recurrence relation Eq. (7), the 13 

recurrence steps for the calculation of 2 1

2 ( )m

n x+  are 14 

 

2 1

2 2 1 2 1

2

2 1 2 2

2

2 1 2

2 2

1 2

2 2 1

2 2 1

2( ) ( ),                0

( ),             1

                                              

( ) ( ) j

( ) 2( 1) ( ) j

( ) 2( )

m

n n n

m

n n n

m l m

n l n l

m m

m m

x x x

x n m x x

x

n m x l

l

n m l

x

+

− −

− − −

+ −

− − −

+

−

 = + 



−

= + − −

=

=

 

+ −

=

2 1

2 1

2 1 2

1

1 1

1 1

( ) j

( ) 2 ( ) j

( ) 0 j ( ),          

( ),  

                                              

( ),                       1

( )

l m l

n l

m n m n m n

n m n m n m

m n m n m n

n m n m n m

x x l

x l n m

x

x x x

x xx x

− + −

− −

− + − + − +

− + − −

− + − − +

− − − − −

  = + −

  −

−

= −

=         l n m











 = +

, (A9) 15 

which equal to Eq. (8) in the paper when m = 0 and stop when l = n + m because the coefficient 16 

of 1( )m n

n m x−

− −  becomes 0. From the above relationships, 
2 1

2 ( )m

n x+  can be represented as Eq. 17 

(10). 18 
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 1 

B. An unbaffled resilient disk with arbitrary axisymmetric pressure profiles 2 

The sound pressure radiated by a resilient disk in free space (without a baffled) is calculated 3 

with the dipole integral3,15 4 
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where P(ρs) is the given pressure profile. The partial derivative in Eq. (A10) can be transformed 6 

into  7 
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where s  is the gradient operator under the rectangular coordinate system (xs, ys, zs) and 
sze  9 

is the unit vector in the direction of +zs axis. By using Eq. (A11) and the condition θs = π/2, the 10 

partial derivative of Green function in Eq. (A10) becomes 11 
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where the first term is omitted because cosθs = 0.  13 

Using the spherical expansion of g(rs;r) in Eq. (A2) and Eq. (A12), Eq. (A10) is expanded 14 

as 15 
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. (A13) 16 

Similar to Eq. (A3), substituting ξ = kρs and performing the integral with respect to φs yield 17 
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According to the condition θs = π/2 and the explicit expression (Eq. (4.2.5) Ref. 18) 19 
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all the terms in Eq. (A14) are zero when n is even and can be omitted. After replacing n by 2n + 2 

1 and using Eq. (A15), Eq. (A14) can be simplified as 3 
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The integral of spherical Bessel functions is required in Eq. (A16) and depends on specific 5 

surface pressure profiles. For arbitrary axisymmetric distributions, they can be represented 6 

with15,19 7 
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where Bm are known expansion coefficients. For example, the case B0 = 1 and B1 = B2 = ⋯ = 0 9 

represents the disk in free space excited by a uniform pressure.3 Substituting Eq. (A17) into Eq. 10 

(A16) yeilds the integrals with the form 11 
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Similar to Eq. (A9), 2

2 2 1

2

1 j d( ) ( )n

mm

nx x x x++ =   can be written in closed form as Eq. (11). 13 

 14 

C. A baffled wobbling piston  15 

The surface velocity profile representing the wobbling effects is v0ρsa−1cos(φs).16 Similar 16 

to the derivations above, the sound pressure can be expanded by using the spherical harmonics 17 

Eq. (A2) as 18 
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The integral with respect to φs in Eq. (A19) is nonzero only when m = ±1 because 1 
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Equation (A19) is then simplified as 3 
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According to the relation θs = π/2 and Eq. (4.4.3) in Ref. 18 5 
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All the terms in Eq. (A22) are zero when n is even and can be omitted. After replacing n by 2n 7 

+ 1 and using Eq. (A22), Eq. (A21) can be simplified as Eq. (12) in the paper.  8 

The directivity factor of the wobbling effects is given by Eq. (6) in Ref. 16 as 9 
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where J2(⋅) is the Bessel function at order 2. To obtain the directivity factor of the proposed 11 

solution, the approximation h2n+1(kr) ∼ j(−1)n+1h0(kr) at kr→∞ is substituted into the sound 12 

pressure expression Eq. (12), yielding 13 

 
3

j 1 20 0 2
w 2 1 2 1

0

0

0

( )
, e P (cos ) j )d

( )( ) π (
 

(

(

1

4 3)
( ) cos (   

2 ) 2)

ka
kr

n n

n

nc v
p

n

ka kr n n


      



+ +

=

 +

+  +

+  =
    , (A24) 14 

where the integral 
2

2 1
0

)d(j
ka

n  +  can be calculated with Eq. (11). To obtain the directivity 15 

factor, Eq. (A24) needs to be normalized by 16 
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which is obtained by letting θ = 0 for the case of the radiation from a baffled rigid piston. 18 

Dividing Eq. (A24) by Eq. (A25) yields 19 
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It can be demonstrated by numerical calculations (not presented here for simplicity) that 2 

Eq. (A26) is identical to Eq. (A23). 3 

 4 

Acknowledgements  

This research is supported under the Australian Research Council’s Linkage Project funding 5 

scheme (LP160100616). 6 

 7 

References  

1. T. D. Mast and F. Yu, Simplified expansions for radiation from a baffled circular piston, 8 

J. Acoust. Soc. Am. 118(6), (2005) 3457-3464. 9 

2. J. Zemanek, Beam behavior within the nearfield of a vibrating piston, J. Acoust. Soc. Am. 10 

49(1B), (1971) 181-191. 11 

3. M. A. Poletti, Spherical expansions of sound radiation from resilient and rigid disks with 12 

reduced error, J. Acoust. Soc. Am. 144(3), (2018) 1180-1189. 13 

4. M. Červenka and M. Bednařík, Non-paraxial model for a parametric acoustic array, J. 14 

Acoust. Soc. Am. 134(2), (2013) 933-938. 15 

5. J. Zhong, R. Kirby, and X. Qiu, A spherical expansion for audio sounds generated by a 16 

circular parametric array loudspeaker, J. Acoust. Soc. Am. 147(5), (2020) 3502-3510. 17 

6. W. F. Perger, A. Bhalla, and M. Nardin, A numerical evaluator for the generalized 18 

hypergeometric series, Comput. Phys. Commun. 77(2), (1993) 249-254. 19 

7. J. W. Pearson, “Computation of hypergeometric functions,” University of Oxford, (2009).  20 

8. M. Carley, Series expansion for the sound field of rotating sources, J. Acoust. Soc. Am. 21 

120(3), (2006) 1252-1256. 22 

9. M. J. Carley, Series expansion for the sound field of a ring source, J. Acoust. Soc. Am. 23 

128(6), (2010) 3375-3380. 24 

10. J. P. Arenas, Numerical computation of the sound radiation from a planar baffled vibrating 25 

surface, J. Comput. Acoust. 16(03), (2008) 321-341. 26 

11. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, 27 

Graphs and Mathematical Tables (National Bureau of Standards, Washington, DC, 1972). 28 

12. J. K. Bloomfield, S. H. Face, and Z. Moss, Indefinite integrals of spherical Bessel 29 

functions, arXiv preprint arXiv:1703.06428, (2017)  30 

13. M. Červenka and M. Bednařík, On the structure of multi-Gaussian beam expansion 31 



 

 

Page 20 of 20 

coefficients, Acta Acust. united Ac. 101(1), (2015) 15-23. 1 

14. R. M. Aarts and A. J. Janssen, On-axis and far-field sound radiation from resilient flat 2 

and dome-shaped radiators, J. Acoust. Soc. Am. 125(3), (2009) 1444-1455. 3 

15. T. Mellow, On the sound field of a resilient disk in free space, J. Acoust. Soc. Am. 123(4), 4 

(2008) 1880-1891. 5 

16. V. Mangulis, Acoustic radiation from a wobbling piston, J. Acoust. Soc. Am. 40(2), (1966) 6 

349-353. 7 

17. ISO 9613-1:1993. Acoustics — Attenuation of sound during propagation outdoors — Part 8 

1: Calculation of the absorption of sound by the atmosphere (International Organization 9 

for Standardization, Genève, 1993). 10 

18. S. Zhang and J. Jin, Computation of Special Functions (John Wiley & Sons, New York, 11 

1996). 12 

19. T. Mellow and L. Kärkkäinen, Comparison of spheroidal and eigenfunction-expansion 13 

trial functions for a membrane in an infinite baffle, J. Acoust. Soc. Am. 123(5), (2008) 14 

2598-2602. 15 

20. M. Greenspan, Piston radiator: Some extensions of the theory, J. Acoust. Soc. Am. 65(3), 16 

(1979) 608–621. 17 

 18 


	Abstract
	1. Introduction
	2. Methods
	2.1. Proposed closed form solution
	2.2. Additional examples

	3. Results and discussions
	4. Conclusions
	Appendix
	A. A baffled circular piston with arbitrary axisymmetric velocity profiles
	B. An unbaffled resilient disk with arbitrary axisymmetric pressure profiles
	C. A baffled wobbling piston

	Acknowledgements
	References

