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Abstract—A mechanism to derive non-repetitive coverage path
solutions with a proven minimal number of discontinuities is
proposed in this work, with the aim to avoid unnecessary, costly
end effector lift-offs for manipulators. The problem is motivated
by the automatic polishing of an object. Due to the non-bijective
mapping between the workspace and the joint-space, a continu-
ous coverage path in the workspace may easily be truncated in the
joint-space, incuring undesirable end effector lift-offs. Inversely,
there may be multiple configuration choices to cover the same
point of a coverage path through the solution of the Inverse
Kinematics. The solution departs from the conventional local
optimisation of the coverage path shape in task space, or choosing
appropiate but possibly disconnected configurations, to instead
explicitly explore the least number of discontinuous motions
through the analysis of the structure of valid configurations in
joint-space. The two novel contributions of this paper include
proof that the least number of path discontinuities is predicated
on the surrounding environment, independent from the choice of
the actual coverage path; thus has a minimum. And an efficient
finite cellular decomposition method to optimally divide the
workspace into the minimum number of cells, each traversable
without discontinuities by any arbitrary coverage path within.
Extensive simulation examples and real-world results on a 5 DoF
manipulator are presented to prove the validity of the proposed
strategy in realistic settings.

Index Terms—Cellular Decomposition, Non-repetitive Cover-
age Task, Non-redundant Manipulator

I. INTRODUCTION

THE non-repetitive coverage task of a given object is an
important application carried out by manipulators. This

is for instance the case of inspecting a surface for defects at
close range [1], painting [2], deburring [3] or polishing [4].
The task is effectively encapsulated as the generic coverage
path planning (CPP) [5] [6] problem, which requires for the
end-effector (EE) to traverse over all the points that define
the surface of a given object exactly one time, whilst usually
fulfilling additional task-specific constraints (e.g. sustaining
a desired orientation of the EE with respect to the surface,
maintain contact or exerting a constant EE force/torque).
This is in contrast to error reduction-driven motion planning
schemes for robotic tasks requiring high precision, such as
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(a) Relationship between joint- and work-space.

(b) Greedy solution example (c) Optimal solution example

Fig. 1. (a) Illustration of the coverage task problem and the relationship
between joint- and work-space. Different colours denote disjoint sets of non-
singular joint configurations (arbitrarily, blue may for instance represent those
with elbow-up, whilst green may represent elbow-down), and their correspond-
ing path in the workspace. The coloured segments of the arbitrary coverage
path shown in black have unique IK solutions. However, multiple IK solutions
exist for the intersecting area shown in black. The underlying continuous
coverage path sought out thus becomes intermittent in the workspace after
mapping onto the joint-space. In this example, whatever choice among the
multiple IK solutions, six discontinuities are required (depicted by black
crosses), since the path has three separate segments in set 1, and four in set 2.
The case where the joint-space solutions are taken in full from set 2 (green)
is depicted. (b) Starting from a configuration belonging to set 1, without
explicitly calculating the reachable boundary of each set, the boundary of the
set 2 within the reachable area of set 1 is unknown. So a greedy strategy will
fully cover the set 1, dividing the uncovered region into two parts, leading
to an extra lift-off. On the other hand, although at first sight it may appear
the same as using the greedy strategy starting from set 2. (c) illustrates the
concept of CPP optimality in the joint space, whereby the continuity of the
reachable area is explicitly considered, thus producing a coverage path with
a single EE lift-off.

repetitive motion planning (RMP) [7], or so-called cycling
motion generation (CMG) schemes [8], notably attractive for
repetitive automated industrial production processes.

Typically, joint-space dimension is higher than the
workspace’s, and the Inverse Kinematic (IK) mapping between
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task and joint space is thus non-bijective. As a result, plan-
ning in the higher dimension joint-space cannot ensure non-
repetitive visiting, and coverage paths are thus more suited to
be designed directly in the workspace domain [9].

Yet what constitutes a continuous coverage path in the
workspace may easily end up truncated into many seemingly
intermittent sections after mapping them back onto the joint-
space, with undersirable path discontinuities, as graphically
illustrated by Fig. 1. This is also the case if a simplistic greedy
strategy is followed, as the example depicted in Fig. 1(b),
whereby a complete path in task space that solves for all possi-
ble configurations leads to unnecessary lift-offs to accomplish
full coverage.

Singularities have been proven to be at the origin of these
bifurcations of the joint-space [10] [11], sitting at the inter-
section of different configurations (e.g. elbow-up and elbow-
down). Notwithstanding singularities, for non-redundant ma-
nipulators, non-singular configurations thus form disjoint sets
in the joint-space, as illustrated in Fig. 1, and continuous joint-
space paths between sets must then visit singularities along the
way for full coverage. The problem is further compounded by
additional task constraints, most notably obstacles, which pro-
duce usable configurations further divided into many disjoint
sets, inevitably incurring undesirable “jumps” between sets for
successful coverage, as very rarely the whole workspace ends
up mapped into a single set.

This work advocates for the minimisation of the cost
incurred on these path discontinuities, which can significantly
outweigh any improvements proposed in the literature that may
occur locally in the task space when it comes to coverage [12].
This is perhaps more apparent for the case of the uniform
polishing task motivating this work, as that means lifting
the EE off the object’s surface, adjusting the pose of the
manipulator to the new configuration, and landing back into
contact with the surface again. This may be not only sub-
optimal for the speedy completion of the CPP task, but also
introduces potentially avoidable complexity in transitioning
between position and force/torque control [13] [14] [15] during
the coverage task.

In this work, a mechanism is proposed to address this short-
coming and derive CPP solutions with a proven minimal num-
ber of discontinuities, with the aim to avoid unnecessary, costly
EE lift-offs. The solution departs from locally optimising the
shape of the coverage path in task space, or choosing appro-
priate but possibly disconnected configurations, but explicitly
seeking for least number of discontinuous motions through a
novel cellular decomposition analysis of the structure of valid
configurations in the joint-space. A conceptual illustration is
given in Fig. 2. The two novel contributions of this paper can
be summarised as:

1) Proving that the minimum number of path disconti-
nuities, or “lift-offs”, for the non-repetitive coverage
task with non-redundant manipulators is independent
of the actual choice of coverage path. Instead, it is
predicated on the surrounding environment - the relative
pose between manipulator, object and the presence of
any obstacles - and this motivates to formulate the
problem as a global cellular decomposition process. On

Fig. 2. The role of the novel algorithm for the coverage task. The proposed
instrument is compatible with any other existing cellular decomposition
solutions whilst also elliciting a minium number of path discontinuities due
to pose reconfigurability.

a side note, this also implies that the proposed scheme
can be exploited as a criterion to evaluate the most
advantageous placement of a manipulator, or object to
be manipulated (e.g. polished, painted), both in a fixed
configuration (automated production line), or in a mobile
manipulation environment.

2) Proposing an effective finite cellular decomposition
method to divide a worskpace surface into the least num-
ber of cells whereby each is ensured to be traversable
by any arbitrary inner path without incurring disconti-
nuities.

The remainder of this paper1 is organised as follows.
Section II reviews existing literature. Section III describes
the proposed abstraction of the problem into a topological
graph of surface cells corresponding to feasible, continuous
configurations, hence administering the tools to prove that the
number of path discontinuities for the CPP problem can be
made independently to the eventual coverage path chosen.
Section IV goes into further details about the process of finitely
resolving the surface into cell elements, whilst Section V
reports on the proposed iterative strategy to build on the cell
elements to ensure CPP with a minimum number of discon-
tinuitues. Experimental results from simulations and on an
actual non-reduntant manipulator are collected in Section VI,
with final concluding remarks gathered in Section VII.

II. RELATED WORK

Almost all state-of-the-art methods to solve the CPP prob-
lem first divide the robot’s workspace area and then solve the
CPP problem in each cell, so called cellular decomposition,
which is generally further divided into two categories: exact
cellular decomposition methods [16] and Morse-based cellular
decomposition methods [17] [18]. Exact cellular decomposi-
tion methods divide the free space into several simple, easy
sub-regions, and use conventional coverage paths, such as
trapezoidal [19] or the boustrophedon paths [20] [21], to finish
coverage in each cell. Morse-based cellular decomposition
methods apply divisions of the free space based on the critical

1A video illustrating the concepts and results hereby described can be found
here: https://youtu.be/Wbx3QyHds7s

https://youtu.be/Wbx3QyHds7s
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points of Morse functions to present more flexible shapes
for cells over those extracted by exact cellular decomposi-
tion. A combination of Morse decomposition and Voronoi
diagrams [22] has also been proposed, particularly fitting to
cover vast open spaces and narrow areas simultaneously.

Optimality of CPP algorithms mainly focus on metrics such
as path length and time to completion. Atkar et al. [23]
optimised the coverage path through chossing optimal starting
points. Huang [24] reduced movement cost by remaining on
straight paths as long as possible thus minimising the number
of turns. Jimenez et al. [25] used a genetic algorithm to achieve
optimal coverage. Whilst generic, the context of these cover-
age works has almost invariably been motivated by mobile
robots operating on 2- or 2.5-dimensional terrains. However,
for manipulator, this essay advocates avoiding unnecessary
path lift-off discontinuities as that decidedly outweighs any
other performance metric improvement that may be achieved
during the coverage process, e.g. by switching between dif-
fering geometric paths such as boustrophedon and spirals
as proposed in the works of Hassan and Liu [12]. These
discontinuities in the CPP task are inherent to the kinematics of
manipulator mechanisms, and as such the algorithms designed
for mobile robots do not need to deal with this problem. We
notice that [26] considered the pose optimisation of a mobile
manipulator for coverage, searching for a valid criterion for
the adequacy of the relative pose between manipulator and
object(s) to be handled, under the assumption that reposition-
ing the robot is costly and that simultaneous repositioning and
end-effector motion is not desired.

III. PROBLEM FORMULATION

In this section, we first state the problem of optimal cover-
age path planning ensuring least number of discontinuites. The
problem is tailored to a polishing task with the introduction
of additional task-specific constraints, as per the motivation of
this work. These could be waived for a more generic exercise.
Then, we show that the least number of discontinuities is
independent of the choice of physical coverage path, so
the original problem is transformed to an optimal cellular
decomposition problem. Finally, the minimisation problem is
further transformed to a colouring problem of the derived
graph ensuring least number of different colours.

A. Problem Statement

Given the surface of an object, the manipulator kinematics
and the shape and relative pose of obstacles in the workspace,
under the assumption of a point contact between surface and
EE, a valid coverage path consists of all valid joint-space poses
of the manipulator that satisfy the following constraints:

1) Kinematic: the resulting manipulator motion is collision-
free. When the EE contacts the surface, its z-axis is align
with the normal vector of the surface at the contact point.

2) Force: when the EE contacts the surface, the manipulator
is able to exert the required force along the z-axis.

3) Manipulability: when the EE contacts the surface,
the manipulator should remain well-conditioned (under

Fig. 3. Flow chart of the proposed coverage problem solver for optimal lift-
off. The top section illustrates the different possilbe IK solutions to cover the
same surface points. The vivid robot depiction shows the most common class
of configuration: shoulder-right (s-r) & (w-u) wrist-unflipped, able to reach
the three cyan areas on the flat surface. Configuration shoulder-left (s-l) & (w-
u), shown shaded on the left-most figure) can also reach the same areas. Two
additional configurations (shown shaded on the right-most figure), (s-r) & (w-
f) wrist-flipped, and (s-l) & (w-f) are also valid, although they can only cover
the middle part of the reachable area, in shaded cyan. An unpainted surface
section indicates it is not reachable with any configuration. As illustrated,
each robot configuration is uniquely denoted with a different colour.
In collecting all valid configurations, since the manipulator is non-redundant,
the space of valid configurations has the same 2-dimension as the task-space,
and it is thus computable based on IK relations. A corresponding topological
graph is generated based on the distribution of possible colours, and a solver
is developed to reach all optimal solutions in proven finite steps. More details
of the iterative solver process are provided in the text and in Fig. 4.

given manipulability measure [27]), to dispense with
arising pertubations.

The optimal CPP problem is to find a valid joint-space
path whereby the manipulator EE covers the workspace non-
repetitively and ensures the least number of discontinuities.
The optimal coverage process is illustrated on a flat surface
problem by the flow chart shown in Fig. 3.

B. Independence from the Physical Coverage Path

An observation which simplifies the original problem is that
manipulators are locally omni-directional in the joint-space,
and configurations corresponding to a segment of coverage
path without lift-off have high dimensional continuity in the
joint-space, regardless of their sequencing order. As a result,
this work is inspired to consider only continuous regions
in the joint-space and its corresponding reachable area in
the workspace, instead of coverage paths in the task space,
which is equivalent to a cellular decomposition problem in
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Fig. 4. Proposed cellular decomposition solver the set-up in Fig. 3. All
configurations are divided into four disjoint (uniquely coloured) homogeneous
sets, or cells, based on their joint-space continuities. The small circle filled-in
with colour(s) represents all the possibilities to paint the corresponding area.
A topological graph is created based on the distribution of the colours. Finally,
in this example, two optimal options exist, both requiring zero lift-off.

the workspace considering joint-space continuity. Under this
equivalence, complete visiting of each cell is guaranteed
with any arbitrary joint-space continuous path within, without
discontinuities. Hence, once the cells are determined, the CPP
problem within each cell is trivial, effectively transforming
the design of the global coverage path in the traditional sense
into a global cellular decomposition problem in joint-space,
optimal in the number of lift-offs by incuring workspace
partitions with minimum sets.

C. Modeling

Let C be the set of all valid configurations and M be the set
of all reachable points on the surface. The pose of the EE is
also denoted by M since there is an one-to-one correspondence
between the pose of the EE and the point on the surface, so
we do not distinguish them.

Given a configuration p ∈ C covering m ∈ M, follow-
ing the joint-space continuity, there exist a neighbourhood
(p ∈)Up ⊂ C that can be reached continuously (without lift-
off) from p, covering a section of surface (m ∈)Vm ⊂ M.
This is illustrated in Fig. 3, where the poses reached by
the manipulator configuration depicted in vivid colour can be
reached continuously - shown in vivid cyan. If any of them
is chosen as p, then all of them are in Up. Assuming there
are some other unassigned configurations, i.e., C \Up 6= ∅,
choosing another p′ ∈ C \Up specifies another set Vm′ ⊂M -
e.g. the shaded configurations depicted in Fig. 3. It is evident
that Up′∩Up =∅. On repeating this process, all configurations
are assigned a colour. Let the number of configurations be
infinite. Actually, each valid configuration implies an open
neighbourhood of valid configurations covering an open region
on the surface (defined sub-resolutionally if the input data is
discretised, like a triangular mesh in our case). The family
of all open regions on the surface implied by all valid
configurations is an infinite open cover of the whole surface
which, with physical meanning, must have boundary. Then,
even if there are infinite many open regions in the family,
the Heine-Borel theorem in mathematical analysis claims the
existance of a subcover with finite open regions. The finiteness

of a discretised input data is trivial because the number of
configurations is also finite. As such, C is divided into a finite
number of disjoint sets, denoted by a finite number of different
colours.

The problem also exploits the concept of a cell defined on
the task-space, following the standard terminology of conven-
tional cellular decomposition methods, but with the additional
property of homogeneity. This is established on noticing that
IK mapping from reachable points in the workspace to a single
set of configurations is injective, since there is no non-singular
path connecting two configurations whose EEs are at a same
point (see graphic example in Fig. 1). The injectivity of each
branch of the IK is the motivation to map the property of joint-
space continuity back on to the surface, thus the algorithm can
be visualized by drawing colours on the surface to form cells
belonging to the same configuration class (colour). Refering
to the same square coverage example, Fig. 4 shows how C is
divided into 4 disjoint sets. Since different IK solutions possess
distinct colours, the available colours for points can be used
to classify them. Let {ci}, i = 1, · · · ,n be all the colours used,
then for two points m1,m2 ∈M their sets of available colours
are cm1 = {c11, · · · ,c1i},cm2 = {c21, · · · ,c2 j}. We then say that
m1 and m2 belong to the same cell if and only if{

m1,m2 are connected
{c11, · · · ,c1i}= {c21, · · · ,c2 j}

Typically, for a triangular mesh surface as is our case, con-
nectivity is provided by the edges of the mesh. Fig. 4 shows
the creation of the cells.

Finally, a topological graph is created, whose elements
are cells. Each cell possesses an index, records the possible
colours and the indices of its adjacet cells in order, as per
the example in Fig. 3. Since the number of colours is finite,
the number of possible combinations of colours is also finite,
which can be ordered as
{c1}, · · · ,{cn}
{c1,c2}, · · · ,{c1,cn},{c2,c3}, · · · ,{c2,cn}, · · · ,{cn−1,cn}
· · · (with all i-element combinations in the i-th row)
{c1, · · · ,cn}

For each combination of colours, the number of corresponding
cells is finite, unless there are infinite many small cells with
area zero, which is physically meaningless for the coverage
task of the robots. In all, the number of cells must be finite.

After creating the topological graph, the cellular decompo-
sition process is transformed into painting all points in a graph
with one of their available colours. The number of solutions
to “painting” the full graph means the number of coverage
path segments, where discontinuities are required in between,
with the minimum(s) as best solution. Two valid solutions
exist for the example in Fig. 4. In summary, the proposed
model of colouring a point in the surface to be covered means
selecting a given IK solution for it, and the planning problem is
thus transfered to designing a colour scheme for a topological
configuration graph.
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Fig. 5. In this example, only the middle cell still needs solving. From the
two available colours, whatever the choice to fill the cell in its entirety incurs
an extra, unnecessary lift-off. On the other hand, optimality is achieved when
splitting the cell into two parts, with the two resulting sub-cells filled in with
different colours, requiring only 1 lift-off.

(a) Example shows that it is sufficient to consider cutting path
which starts and end at the topological edge endpoints.

(b) Example shows that it is unnecessary to consider cutting paths that
stretch across edges.

(c) Example shows that intersecting cutting paths can be discarded.

Fig. 6. Unnecessary or sub-optimal cell divisions cases can be safely
discarded.

IV. ENUMERATIVE SOLVER FOR CELLULAR
DECOMPOSITION

The difficulty of solving the coloring problem is that,
although points are gathered into homogeneous cells, they can
be filled in with different colours, instead of only being seen as
a whole and drawn with a single colour. The counter-example
in Fig. 5 illustrates this phenomenon. By efficiently discarding
equivalent cellular decompositions, it can be proven that the
total number of different cellular decompositions is finite, thus
all optimal solutions are finitely solvable.

A. Finiteness of Divisions

Since any path starting and ending at the boundary of a
cell will divide the cell into two parts, there are infinite many
physical solutions of dividing a cell into parts. However, there
are only finite classes of them from a topological structure

Fig. 7. Possible divisions of a 3-edge cell, as the most complex situation
that need not further divisions. It can be observed how some of them are the
same in terms of topological structure (e.g. 001,010 and 100), or the division
is impossible (e.g. 011 is enforced, but cell 1 and 2 do not have the same
colour), it is clearly already a finite problem, and the description of further
simplifications is omitted for clarity and space constraints.

viewpoint because of the equivalence of physical divisions in
the number of lift-offs.

Fig. 6(a) shows how cutting paths which start or end at
a point other than an endpoint on an edge are unnecessary
and can be pruned. Let a cutting path end at an arbitrary
point of the edge connecting with cell 3. From the definition
of a cutting path, it implicitly enforces cell 1 and cell 2
having different colours. If 1 6= 3 and 2 6= 3 the division is
trivial. However, for the depicted cases when 1 = 3 or 2 = 3,
any cutting paths that start at any endpoint of the edge are
equivalent. Hence, for a complete solutoin it is sufficient to
only consider cutting paths which start and end at the endpoint
of an edge.

Fig. 6(b) shows how cutting paths which go across any edge
are unnecessary. Let a cutting path go across an edge, then cell
4 and cell 5 are prevented from being colored together which
leads to non-optimality, since they are separated physically by
the cutting path.

Fig. 6(c) shows that cutting paths need not go across each
other. When two cutting paths intersect, the resulting cutting
path segments can be continuously transformed back onto the
existing topological edges, and can be safely diregarded.

In conclusion, only cutting paths which start and end at
the endpoint of topological edges and do not go across each
other need to be considered when considering options for cell
subdivision, making the total number of topological divisions
finite.

B. Solution to Simple Cells

The following kinds of cells offer simple cases that can be
solved directly without further divisions:

1) Cells containing less than four edges. They cannot be
divided further into several cells with less number of
topological edges. Fig. 7 enumerates all possible topo-
logical divisions for a three-edge cell, which constitutes
the most complicated case for direct enumeration. Bi-
nary number are used to represent the edge connectivity,
1 (connected), 0 (disconnected). It is thus easy to see that
there are at most 8 situations that require consideration.

2) Cells with only one possible colour.
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Fig. 8. The 24 possible divisions of an 4-edge cell. For the cell which has more
than 3 edges, the sub-cell may be created. In this figure, the connectivities
that correspond to generating a sub-cell is ××11,×11×,1××1,11××.

C. Solution to Complex Cells
The concept of using binary coding for a simple cell

is extended to solve for an arbitrary n-edge cell, with the
addition of “×” for a yet unspecified connectivity state that
emanates from these more complex scenarios. For this binary
combination, there are less than 2n×m branches for an n-edge
cell with m possible colours, so the problem remains finite. An
example of solving for n = 4 is shown in Fig. 8. In this case,
a continuous connected state (1s) implies that part of this cell
must be painted with the same colour as that of the adjacent
cells. On the other hand, a connectivity of 0 indicates that
the topological edge between the cell and the corresponding
adjacent cell is maintained, and as such the colours must be
different.

The unspecified state × indicates a sub-cell will be gener-
ated. A more detail discussion about the distinction between
0 and × is warranted: when connectivity cases such as the
following arise

1××1,1×××1, · · ·

the cell is divided into smaller parts whose colours are
enforced to be different, i.e. the cell needs further subdivision.
Refer for instance to cases ×× 11,×11×,1××1,11×× in
Fig. 8. The original cell transforms into a new one with fewer
edges, since some (two for a 4-edge cell) edges are replaced
by a single one. We use the bracket notation (· · ·) in the
binary number of the original cell to represent the generation
of sub-cells. In recursively applying the same division for the
applicable sub-cells, any n-edge cell can thus be continuously
divided into a set of cells with fewer edges, suitable to then
be solved enumeratively as described. Since sub-cells are
generated from an original one, there are extra constraints on
its connectivity as specified by the previous division. As such,
the following situations may arise:

1) Single × cannot form a sub-cell, because

· · ·1×1 · · ·= · · ·101 · · · or · · ·111 · · ·

but both conditions of the right side are considered in
other branches. This is why the × case does not apply
to the 3-edge cell in Fig. 7.

Fig. 9. The equivalence of moving the unconnected 0 state outside the bracket.
Following this, in order to reduce the number of edges of a sub-cell, the
equivalent sub-cell connectivity arrangement on the right is enforced.

2) The 0s can be freely moved outside the bracket, because
of the equivalence

· · ·×1(0×·· ·×1)1×·· ·= · · ·×10(×·· ·×1)1×·· ·

See Fig. 9. The same is true for the right bracket based
on the symmetry of the number list, since a cutting graph
makes sense only when the inner two numbers at the
boundary are 1s. This is why there are no brackets in
Fig. 8.

3) The new topological edge created by a cutting path must
be retained as it is manually introduced as such (it will
always be 0, spliting a cell into different colours, it can
not be be 1 or ×). No extra possiblities appear after the
division.

V. ITERATIVE SOLVER FOR CELLULAR DECOMPOSITION

With the enumerative solver as the basic building block,
the graph can now be solved iteratively. Starting from a fully-
unpainted graph, an unsolved cell is arbitrarily chosed and
enumeratively solved as described in Section IV. Assuming a
cell with n-edges with m possible colours, there are at most
2n×m possible divisions. A branch for each possible solution
of the chosen cell is created, and in each branch the selected
cell is filled in with the specfied colour (so it will not change
any more). In the next iteration, an unsolved branch is selected,
and an unsolved cell within it, and repeat the same steps.

Note that the constraints given by the solved adjacent cells
significantly restrict the possible solutions, because the state
of an edge resticts the connectivity of the cells on both sides.
Through iterative execution, if there is a cell who cannot
satisfy all constraints given by its solved adjacent cells, then
the graph cannot be painted using the current state of the even
partly-filled painting scheme, orelse a valid coloring scheme
for the graph can be generated which uniquely specifies
the configuration to polish each equivalent workspace point
amongst the various valid IK solutions it may exhibit.

The search algorithm runs on a deepest-first-searching
(DFS) format, so that the memory requirements are reduced.
As an exhaustive search protocol, all optimal physical cellular
decompositions must be homeomorphic to one of the resulting
schemes.

A. Cost Calculation

The physical meaning of the cost for a (partly filled) graph
is the number of colour segments in the current portion of the
graph, i.e. 1 colour equals cost = 1. The cost formulation is
then described incrementally, whereby after a cell is solved



THIS PAPER IS CONCURRENTLY SUBMITTED FOR TMECH AND AIM 2020 PRESENTATION 7

Fig. 10. Cost variation calculation. Left: the middle cell connects two distinct
cells, so cost variation (1) is 1−2 =−1. Right: two edges connect with the
same adjacent cell, cost variation (1) is 1−1 = 0.

TABLE I
UR5 MANIPULATOR KINEMATIC PARAMETERS

Joint i ααα iii [rad] aaaiii [m] θθθ iii [rad] dddiii [m]
1 π/2 0 θ1 0.089
2 0 −0.425 θ2 0
3 0 −0.39225 θ3 0
4 π/2 0 θ4 0.11
5 −π/2 0 θ5 0.09

EE 0 0 - 0.32

1) if its connectivity is all zero, then the cost will increase
1 after freshly coloring this cell.

2) if its connectivity has only one 1 connection to an
already solved cell, then the cost will remain unchanged,
since the cell colour can be filled homegeneously with
the connected adjacent cell.

3) if its connectivity has i 1s, there may exist multiple
edges which connect the same adjacent cell, as per the
illustration in Fig. 10. In order to be consistent with the
physical meaning of the cost, if these edges connect j
distinct solved cells, then the variation of cost is

∆cost = 1− j (1)

VI. EXPERIMENTAL RESULTS

The proposed algorithm performs non-repetitive coverage
task using non-redundant manipulators of any dimension.
Simulation and experimental examples emulating a polishing
task on an object’s surface are presented in this section
implemented using a typical 6 DoF manipulator, a Universal
Robots UR5. The kinematics of the 6 DoF manipulator are
collected in Table I. For such endeavour, the (commonplace)
final revolute joint of the manipulator is unnecessary given the
rotating nature of the polishing tool itself. This is indeed the
case for the UR5, and simulations and real evaluation have
thus been undertaken where the last link has been locked.

In the first simulated experiment in Section VI-A a hemi-
spherical object is polished at different poses in the workplace:
one arbitrarily set, and the other precisely crafted to be fully
reachable with the least number of lift-offs, which shows the
ability of the proposed algorithm to also become a workspace
design metric for evaluating the quality of the object place-
ment to be inspected. The second simulated experiment in
Section VI-B shows how the proposed algorithm can directly
influence the choice of configurations to avoid non-optimal
configurations that invariably lead to unnecessary lift-offs
altogether. Additional examples with objects of arbitrary shape
are collected in Section VI-C. Finally Section VI-D depicts
real-world experiments with a UR5 manipulator polishing
a wok in free space, and under the presence of obstacles,

(a) (b) (c) (d)

Fig. 11. (a) Hemispherical object arbitrarily placed in the workspace. (b)
Coloured cells of four valid configuration, chosen by the optimal solution
shown in (d). (c) Topological graph. (d) One optimal solution requiring 3
lift-offs (note how the manipulator cannot fully cover the farthest part of the
mesh - the bottom area in the optimal solution, unpainted).

(a) (b) (c) (d)

Fig. 12. (a) Hemispherical object placed obliquely in the workspace to achieve
full coverage. (b) Coloured cells of three valid configuration, chosen by the
optimal solution shown in (d). (c) Topological graph. (d) One optimal solution
requiring only 2 lift-offs and achieving fully coverage, with the object fully
painted over).

to proves the applicablity of the proposed algorithm in real
settings.

In the results shown hereafter the environment contains the
manipulator, the object being polished, and where applicable
a ground plane and additional obstacles. Moreover, figures
shown in this section are representative examples of arbitrary
paths derived within the cells attained following the proposed
optimal coverage solution.

A. Hemispherical Object (Object Placement Criterion)

A wok-like round mesh is used for this experiment. Results
are collected in Fig. 11 and Fig. 12. In the former, the object
is arbitrarily placed with respect to the robot, as would be
the case, for instance, on an automated production line with
unsorted objects are fed via a conveyor belt. A CPP is designed
following the proposed scheme. With no criterion for the
placement, the algorithm shows that such an object placement
requires at least 3 lift-offs to inspect the reachable area, yet
fails in attaining full coverage (the farthest area, shown at the
bottom of the mesh, is out-of-bounds). Fig. 12 illustrates the
case where the proposed coverage strategy reveals a suitable
pose for the object so that not only the required least number
of lift-offs is decreased to 2 when compared to the arbitrary
placement, but the manipulator can fully cover the surface.

B. Cylindrical Object (Pruning of Suboptimal Configurations)

Polishing of a half-pipe is employed in this simulation to
demonstrate how the proposed algorithm can identify and by-
pass unnecessary configurations leading to “traps” that cause
CPPs with extra lift-offs.

The pipe is placed obliquely to achieve full coverage.
Surface normals vary along the arc length of the cylinder
over π radians, which cause increased difficulty in kinematic
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(a) (b) (c)

Fig. 13. (a) A cylindrical half-pipe object. (b) The topological graph. (c) One
optimal solution which requires only 1 lift-off.

Fig. 14. Example with three different configurations and their reachable area.
Once any configuration belonging to the middle cell is chosen to cover the
surface, sooner or later it will have to change to the left and right cells to
finish the full coverage of the surface, thus incurring a wasteful lift-off.

terms for the manipulator to sustain the desired polishing
operation. The topological graph and optimal solution are
shown in Fig. 13, where it can be seen that the full coverage
task requires only 1 lift-off. However, there are many valid
configurations which lead to non-optimality. See Fig. 14 for
an example of such “trap” configurations. The configurations
on the left and right are the ones finally chosen by one of
the optimal solutions shown in Fig. 13. However, while the
configuration in the middle can cover a large area without
lift-offs, and would therefore be equally likely to be chosen if
the IK solutions were to be selected randomly or in a greedy
fashion, it cannot reach the corners of the mesh (eventually
covered by the other two configurations). Hence, should any
configuration from the middle be selected to trace the object,
after coverage of (a section) of the middle part of the pipe,
sooner or later the CPP will have to undertake one unnecessary
lift-off for full coverage inspection, leading to non-optimality
when compared to the case shown in Fig. 13. The proposed
algorithm will provide all optimal solutions, with none of them
using the middle coloured cell.

C. Arbitrary Shape Objects and Comparative Analysis

Further simulation tests are also shown on Fig. 15 and 16,
where the robot arm was made to fully trace the surface of
objects of arbitrary shape with the proposed algorithm. In the
former instance a vase is considered, whereas a full-pipe is
consider in the latter.

To better appreciate the effectiveness of the proposed
scheme, a comparative analysis is provided to contrast key
relevant metrics with two standard geometric planners, spiral
and Boustrophedon. Number of lift-offs and time taken to
complete the coverage task were collected and are shown
in Table II. It is clearly apparent how the optimal solution
suggested by the proposed CPP planner markedly outperforms

(a) (b) (c) (d)

Fig. 15. Vase example. (a) Reachable coloured cells of two valid configu-
rations, chosen by the optimal solution shown in (c). (b) Topological graph.
(c) One of the optimal solutions requiring only 1 lift-off. The cutting path is
arbitrary. (d) Examples of poses in the two types of configurations.

(a) (b) (c) (d)

Fig. 16. Full-pipe example. (a) Reachable coloured cells of two valid
configurations, chosen by the optimal solution shown in (c). (b) Topological
graph. (c) One of the optimal solutions requiring only 1 lift-off. The cutting
path is arbitrary. (d) Examples of poses in the three types of configurations.

the purely geometric planners for the coverage task. Given the
reliance of geometric planners on the chosen starting point
for the paths, the results shown have been averaged over 10
runs for a fair evaluation where random starting points are
observed. This trait of geometric plannes can be observed in
the examples depicted in Fig 1, where once the pre-defined
coverage path is not aligned with the boundary of the reachable
area, the path may be truncated into many discontinuous parts,
and the number of lift-offs resulting from applying a standard
spiral or Boustrophedon path for coverage may become large,
as is indeed the case for the experimental results shown here.

D. Real World Experiments in the Presence of Obstacles

A Universal Robots UR5 manipulator is employed for real
experimentation to polish the outer surface of a wok to show
a physical coverage path generated based on the proposed
cellular decomposition method. The actual physical coverage
path uses a simple back-and-forth motion (boustrophedon)
within the resulting cells, with a lift-off concatenation between
paths segments belonging to different cells. The reader is
referred to the associated video1 for the full demonstration. As
discussed, the manipulator operates in a 5 DoF configuration.
Since hybrid position/force control [15] is beyond the scope
of this work, contact is restricted to position control.

Fig. 17 illustrates the results. Given the location of the
wok, it can be seen how the nearest part of the wok is
unreachable. As can be observed in Fig. 17(d) and 17(e),
the manipulator must keep its wrist configured in the “above”
the fore-arm configuration in order to avoid collisions, which
leads to the two shoulder-left and shoulder-right configuration
solutions. The total number of lift-offs is 1. Note that any
division keeping the resulting cell connectivity guarantees full
(reachable) coverage and is optimal in the minimum number of
lift-offs, so the cutting path dividing the final cell is arbitrary.
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TABLE II
COVERAGE PLANNERS COMPARISON

Ours (with Spiral) Ours (with Boust.) Pure Spiral (10 average) Pure Boust. (10 average)
Lift-offs Time (sec.) Lift-offs Time (sec.) Lift-offs Time (sec.) Lift-offs Time (sec.)

Hemisphere 2 2185.3 2 3246.2 34.6 2723.3 15.6 4491.4
Half-pipe 1 850.07 1 870.73 32.2 2191.2 18.4 1417.2

Vase 1 1380.4 1 1136.7 30.4 3497.1 17.8 1530.4
Full-pipe 1 1738.1 1 491.78 20.4 2267.8 16.1 2118.2

(a) (b) (c)

(d) (e)

Fig. 17. (a) Reachable coloured cells of two valid configurations, chosen
by the optimal solution shown in (c). (b) Topological graph. (c) One of the
optimal solutions requiring only 1 lift-off. The cutting path is arbitrary. (d),(e)
Examples of extreme poses in the two types of configurations.

A more interesting example arises when the motion of the
manipulator is obstructed by the cylindrical obstacle depicted
in Fig. 18. Since the obstacle may collide with the upper-
arm, fore-arm or the EE, and the wrist may collide with
the fore-arm, the resulting colour cell decomposition and
the topological graphs is more complex. As such, to avoid
collisions, the least number of lift-offs is shown to be 2.

VII. CONCLUSION

A novel proposition for the coverage planning problem has
been developed in this work. The key metric is the minimum
number of coverage path discontinuities, predicated on the
need for tasks such as polishing, painting or deburring to
curtail the number of robot lift-offs for proficient results, most
prominently within the context of its application in automated
industrial settings and increase productivity.

To this end, instead of considering the design of a coverage
path in the traditional sense, this research considers the global
optimal cellular decomposition problem in joint-space to as-
semble minimum sets that guarantee homogeneous joint-space
configurations. In noting that IK mapping from the reachable
points in the workspace to a single set of configurations is
injective, colouring a point in the surface to be covered means
selecting a given IK solution for it, and the planning problem
is transfered to designing a colour scheme for a topological
configuration graph. The proposed scheme thus provides two
relevant conributions to the CPP problem in relation to optimal
discontinuities, or “lift-offs”: (a) proof that the least number of

(a) (b) (c)

(d) (e) (f)

Fig. 18. (a) Reachable coloured cells of three valid configuration, chosen by
the solution in (c). (b) Topological graph. (c) One of the optimal solutions,
requiring 2 lift-offs. (d),(e),(f) Example of the three kinds of configurations,
where (d) Example of the shoulder-left configuration adopted to avoid
collision between the upper-arm and the obstacle. (e) Example of the wrist
above the fore-arm configuration, so that the wrist avoids colliding with the
fore-arm. (f) An example of the only valid configuration to cover the points
in the brown cell, situating the wrist below the fore-arm.

discontinuities is independent of the choice of coverage path,
and (b) suggesting a novel cellular decomposition strategy to
discard equivalent cells in an efficient manner. In proving that
the total number of different cellular decompositions is finite,
all optimal solutions are demonstrated finitely solvable.

After applying any conventional CPP algorithm in each re-
sulting cell, the nominated algorithm thus generates a coverage
path containing the least number of discontinuities. As a direct
corollary, the scheme can be applied to any other cellular
decomposition methods in the literature (e.g. Morse-based),
to produce the least number of discontinuities obeying the
given cellular decomposition method. It can also be exploited
as a criterion to evaluate placement of a manipulator or
object in the workspace for minimal lift-off coverage paths. A
systematic methodology to resolve this topic is left for future
work. Extensive simulation and a real-world implementation
on a 5 DoF manipulator in realistic conditions are presented,
supplemented by a detailed video. A comprehensive compari-
son with other geometric CPPs show the merit of the scheme
and proves the validity of the proposed strategy in producing
highly effective coverage paths.
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