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Abstract—Cloud-fog computing emerges to satisfy the low
latency and high computation requirements of Internet of Things
(IoTs) services. Elastic Optical Networks (EONs) are excellent
substrate communication networks between fog datacenters and
cloud datacenters. However, the uneven traffic of massive cloud-
fog services incurs many spectrum fragments, leading to high
extra energy consumption. To solve this problem, we propose
an Energy-efficient Deep Reinforced Traffic Grooming (EDTG)
algorithm based on deep reinforcement learning. Unlike existing
manually network features extracting methods, we convert the
traditional network modal and the service routing path into
colored network images to represent their states, and extract
the features automatically by MobilenetV3 according to these
images. With the extracted features, we implement an Advantage
Actor-Critic (A2C) algorithm, whose actor module and critic
module share an Artificial Neural Network (ANN) to get optimal
grooming actions. Additionally, after repeated attempts and
experiments, we set up an objective reward and punishment
mechanism to evaluate the grooming actions. We conduct exten-
sive simulations for performance evaluation, and the results have
shown that EDTG can significantly reduce energy consumption
compared with two well-performed traffic grooming algorithms.

Index Terms—Elastic Optical Networks (EONs), Deep Rein-
forcement Learning, Traffic Grooming, Cloud-fog Computing,
Energy Efficient.

I. INTRODUCTION

CLOUD computing is good at providing substantial com-
puting resources to process requests [1]. With the ex-

plosive growth of global Internet of Things (IoTs) services,
traditional cloud computing cannot satisfy their low latency re-
quirement [2]. Fog computing emerges as a complementation
of cloud computing to decrease the latency [3]. As shown in
Fig. 1, the cooperation of cloud and fog computing can provide
high quality services to the customers [4]. Elastic Optical
Networks (EONs) are the promising substrate communication
networks between fog datacenters and cloud datacenters [5].
It can adaptively allocate spectrum and flexibly select modu-
lation format. With the rapid development of 5G, Augmented
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Reality (AR), Virtual Reality (VR), and other emerging ser-
vices, EONs have been widely deployed as substrate networks
carrying 5G services. As many mice traffic are generated in
EONs, these incur spectrum fragmented, and extra energy
consumption [6]. How to groom these mice traffic onto the
same channel to save spectrum resource and to decrease energy
consumption is extremely important [7]-[10].

Previous studies have investigated the traffic grooming
problem intensively, which are dedicated to the bandwidth-
efficient utilization problem [11], the energy-saving problem
[12], and the expense cost-saving problem [13]. Especially,
a State-aware Modification Grooming Algorithm (SGA) is
proposed to solve the traffic grooming problem. SGA has been
applied to balance network indicators with survivable EONs
to achieve high network performance [14]. Although heuristic
algorithms similar to SGA and traditional optimization algo-
rithms perform well in traffic grooming, they need to extract
features manually. The features dimension cannot cover the
whole EONs state, and they cannot intelligently perceive the
EON state to groom the services. Deep Reinforcement Learn-
ing (DRL) algorithm has been applied in some large-scale
missions [15]-[17]. It can make decisions by perceiving the
state, and can evaluate the decisions to maximize cumulative
rewards and get better strategies [18]. To solve the problem
of temporal and spatial imbalance caused by network load,
DRL stateful grooming algorithm is proposed to accommodate

Fig. 1: The structure of cloud-fog elastic optical networks.
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the variability according to the network state [19]. However,
these previous works all rely on manually extracting network
features, and how to apply DRL to solve the traffic grooming
problem automatically in EONs for cloud-fog computing has
not been studied.

In this work, we design an Energy-efficient Deep Reinforced
Traffic Grooming (EDTG) algorithm to generate the optimal
traffic grooming strategy in EONs for cloud-fog computing.
The main contributions of this work include the following
aspects:
• To optimize energy consumption in traffic grooming, we

design an EDTG algorithm based on the Advantage Actor-
Critic (A2C) algorithm. We provide a tractable solution that
the actor module and the critic module share an ANN to
complete tasks, which significantly reduces the number of
parameters and the complexity of the network.
• Unlike existing methods that manually extract network

features from traditional network modal, we convert the net-
work modal into colored pixel images to represent the network
states and adopt pixel features to represent the network infor-
mation. This not only considers the quantitative information of
resources in the process of traffic grooming but also includes
other network-wide context information.
•We deeply analyze various situations that in traffic groom-

ing and set up a detailed reward and punishment mechanism
with 12 rewards and punishments through repeated attempts
and experiments. We use it to evaluate the effect of grooming
actions to optimize EDTG.
• We conduct comprehensive simulations, and simulation

results show that the EDTG algorithm performs better than
several well-performed algorithms, such as State-aware Modi-
fication Grooming Algorithm (SGA) [14], and traditional Deep
Reinforcement Learning (DRL) algorithm [19].

The rest of this paper is organized as follows. In Section II,
the related works are investigated. In Section III, the motiva-
tion of this work is presented and an energy model of EONs is
designed. In Section IV, the network states are converted into
images, and an EDTG algorithm is proposed. Simulations are
comprehensively conducted, and the comparisons are taken
with several baseline algorithms in Section V. Finally, Section
VI gives a succinct conclusion and future work.

II. RELATED WORK

The related works are investigated from three aspects,
energy-efficient EONs, energy-aware traffic grooming, and
reinforced resource assignment.

A. Energy-efficient EONs

In this subsection, we introduce the previous researches on
energy consumption issues in EONS. Due to the tremendous
growth of energy consumption in substrate networks, many
efforts have been taken towards energy-efficient solutions
[20]. Minimizing the number of activated network elements,
a manycast routing and spectrum assignment algorithm was
designed by A. Fallahpour et al. [21] to save the energy for
cloud computing. To save the energy in the delay-constrained
passive optical network, an energy-aware framework was

presented, optimizing the number of working wavelengths.
Y. Zhao et al. [22] developed a static linear programming
and a dynamic virtual optical network embedding algorithm
to minimize the energy consumption with sliceable multi-
flow transponders. Focusing on the predictable tidal traffic
phenomenon, R. Alvizu et al. [23] proposed a suite of on-
line mathematics to decrease the power in the mobile metro-
core networks. Using the network coding technique, Musa
et al. [24] analyzed the bounds of energy efficiency of 1+1
survivable electric-optics dual layers networks. For enhancing
the energy efficiency in software-defined networks, Xiong
et al. [25] utilized traffic prediction methods to manage the
lightpath and reduce the number of lightpath termination and
re-establishment. To cope with the traffic spikes, Zhong et al.
[26] introduced a lightpath splitting approach to support more
traffic services through improving the modulation levels of the
split lightpaths.

Most of these works applied multicast scheme or network
virtualization method to improve energy efficiency. Different
with them, this work grooms the mice traffic onto the same
network elements as many as possible to reduce the energy
consumption.

B. Energy-aware Traffic Grooming
In this subsection, we introduce the advantages of traffic

grooming in reducing energy consumption. Enabled by the
sliceable optical transponders, optical-layer traffic all groom-
ing can decrease the number of power consumption elements.
Zhang et al. [27] investigated three kinds of transponders
with different slicing levels. For each transponder, a power-
minimized integrated model and the corresponding heuristic
algorithm were developed. To solve the problem of mixed-
electrical-optical grooming with dynamic traffic, Zhang et al.
[28] put forward the concept of a three-layered auxiliary graph,
and designed different traffic grooming strategies by adapting
the edge weights of the auxiliary graph. To maintain the sur-
vivability issue, Wu et al. [29] studied the survivable grooming
routing and spectrum assignment in software defined elastic
optical networks. To provision mission-critical optical wireless
datacenter networks, Celik et al. developed a fast efficient
grooming solution that grooms mice flows, mission-critical
flows, and forwards on scheduled rack-to-rack lightpaths. To
solve the problems of low spectrum efficiency and large
network energy consumption, J. Zhang et al. [30] proposed
a traffic grooming method for elastic optical networks with
distributed data centers. Hadi et al. [31] designed a two-
stage energy-efficient resource assignment algorithm, which
minimized the number of adopted amplifiers and transponders
in the first stage, and optimized the parameters of the transpon-
ders to minimize power consumption. Jin et al. [32] analyzed
both delay and energy issues in traffic grooming scenarios.

All the above studies adopt the traditional heuristic algo-
rithms for traffic grooming to reduce energy consumption.
In this paper, we aim to reduce the energy consumption by
minimizing the utilized ports, transponders, regenerators, and
spectrum resources. Different from the previous works, we
utilize reinforcement learning algorithm to generate optimal
grooming scheme to decrease energy consumption.
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C. Reinforced Resource Assignment

In this subsection, we introduce some research on the
application of reinforcement learning in resource allocation.
To support the machine learning based optical networks,
Zhao et al. [33] designed a new architecture of the optical
network, named self-optimizing optical networks (SOON).
Several classical applications have been demonstrated with
SOON. Francesco et al. [34] provided a comprehensive explo-
ration of the applications of machine learning in elastic optical
networks, and proposed several potential research directions.
To accommodate the reinforcement learning algorithm for
optical network resource assignment, Yan et al. [35] intro-
duced an interesting definition of multi-modal optical networks
to replace different optical network. A resource allocation
algorithm based on actor-critic reinforcement learning was
proposed, and simulation results showed that it could achieve
resource optimization. The deep reinforcement learning was
first adapted to the routing, modulation, and spectrum assign-
ment (RMSA) process in EONs, and a Deep-RMSA algorithm
was proposed by X. Chen et al. [19]. To improve network
performance under survivable EONs, a deep reinforcement
learning based RMSA algorithm was investigated by X. Luo et
al. [36]. Simulation results showed that it could significantly
improve the overall network performance while maintaining
the network survivability. To mitigate the crosstalk and frag-
mentation issue in spatial division multiplexing EONs, Xiong
et al. [37] presented a spectrum partition scheme to suppress
the crosstalk and utilized a two-dimensional spectrum resource
packing method to improve spectrum efficiency. R. Proietti
et al. [38] introduced a machine-learning based quality of
transmission estimation scheme for lightpath provisioning with
intradomain and interdomain traffic. Considering crosstalk
and physical layer impairments, Yao et al. [39] designed an
intelligent resource allocation algorithm based on dynamic
unsupervised fuzzy clustering in SDM-EONs.

These previous works are based on traditional network
modal, which make it difficult to extract all useful features.
We design a new method to convert the network state into
several colorful pixels images, so that we can extract network
features easily and groom services accurately.

III. MOTIVATION AND ENERGY MODEL

In this section, we first present the motivation of our work
by visualizing the basic idea of general traffic grooming
framework, and then describe the energy model for calculating
network energy consumption.

A. Motivations

Figure 2 illustrates the difference in resource occupation
between grooming and no grooming. If there is no traffic
grooming, there are many fragmented resources after allocat-
ing massive services [6]. For example, service A with 10Gbps
traffic rate is provisioned with 25GHz resources, and then
the surplus resources are wasted. Supposing service B with
20Gbps traffic rate also passes through the same routing path
with service A, it will be provisioned with other 25GHz
resources. But if we groom these two services together as

Fig. 2: The grooming process.

the total traffic rate is 30Gbps, which is less than 40Gbps,
resource occupancy and energy consumption will be reduced.
The traditional network modal cannot perceive the whole state
of the network, but the image can contain all the information
and we can extract features easily from it. In addition, traffic
grooming is a step-by-step decision-making process, which is
just right to utilize DRL.

Motivated by these two findings, we propose an Energy-
efficient Deep Reinforced Traffic Grooming (EDTG) algo-
rithm. It converts the traditional network modal into images
to extract features, and introduces reinforcement learning to
groom services. We define the energy consumption model
of the network. As the spectrum resources are much more
sufficient relative to the requested bandwidths, and each node
is equipped with regenerators. Thus the spectrum continuity
is not considered [23].

B. Energy consumption model

A given network contains many energy-consuming ele-
ments, the most important of which is the energy consumption
of ports, transponders and regenerators. The resources of a
port, transponder, and regenerator are limited. How to develop
a grooming strategy so that these elements can support more
services is very important, which can reduce the number of
ports, transponders and regenerators, and reduce network en-
ergy consumption. In this paper, we only consider the 40Gbps
and 100Gbps line rates to define the energy consumption
model of the network. Their corresponding energy consump-
tion parameters are shown in Table I [27], which is proved
to be feasible. We only consider DP-QPSK as the modulation
format for the substrate network EONs. In the experiments,
we convert spectrum resources into spectrum slots. A 40Gbps
line rate service requires 25GHz spectrum bandwidth, which
corresponds to one spectrum slot. A 100Gbps line rate service
requires 50GHz spectrum bandwidth, which corresponds to
two spectrum slots.
IP Port: We consider a 400Gbps IP port for traffic grooming
in the electrical layer, which connects an optical transponder
and an IP router. The energy consumption of each port is
560W, and the sum of energy consumption of all IP ports is
EIPT , which is calculated by

EIPT = 560× n, (1)
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TABLE I: The energy consumption of different line rates [27].

Line Rate (Gbps) Spectrum Width (GHz) Modulation Formart Reachability (km) Power of Transponder (W)
40 25 DP-QPSK 1800 158.65

100 50 DP-QPSK 2000 259.63

where n represents the number of IP port.
Optical Transponder: The energy consumption parameters
corresponding to different line rates are shown in Table I,
which is proved to be feasible. The energy consumption for
an elastic optical transponder is given by

EiOPT = 1.683× TR(GB/s) + 91.333(W ), (2)

where i represents the i-th transponder, TR denotes the traffic
rate of a service. The sum of energy consumption of all optical
transponders is,

EOPT =

NOPT∑
i=1

EiOPT , (3)

where NOPT represents the number of occupied optical
transponders. There are two types of line rates, 40Gbps and
100Gbps. For example, a transponder is occupied by service A,
whose line rate is 40Gbps, the energy consumption calculated
according to formula 2 is 158.65W .
Optical Regenerator: For an optical regenerator, we consider
two parts of its energy consumption. One part depends on
the fundamental power of the optical regenerator, for every
increase of one regenerator, the energy consumption increases
by µ = 100W . The other part θ is the energy consumption
according to the different modulation formats which have
different line rates. The θ for line rate 40 is 25W, the θ for
line rate 100 is 50W. The calculation formulas are as follows,

EiOPR = µ+ θ, (4)

EOPR =

NOPR∑
i=1

EiOPR, (5)

where θ is the corresponding energy consumption with differ-
ent line rates. The energy consumption of 40Gbps is 25W, and
the energy consumption of 100Gbps is 50W. NOPR represents
the number of optical regenerators. Thus, for line rate 40Gbs
and 100Gbps, the corresponding energy consumption of a
transponder is 125W and 150W, respectively.

Therefore, the optimization goal is to minimize the total
energy consumption ETG,the formula of calculating ETG is
as follows,

ETG = EIPT + EOPT + EOPR. (6)

IV. DEEP REINFORCEMENT TRAFFIC GROMMING

How to perceive the state of a heterogeneous network
for traffic grooming algorithms is complicated and vitally
important. The information contained in the network state is
intricate, and it is challenging to perceive traditional network
modal features. In this part, we first convert the network
states into different images and extract the features of these
images by MobilenetV3. Then we design an Energy-efficient

Deep Reinforced Traffic Grooming (EDTG) algorithm based
on the Advantage Actor-Critic (A2C) reinforcement learning
algorithm.

A. Converted to Images

The network information is discontinuous, such as the
number of elements, the locations of different elements, and
whether the spectrum resources are occupied. All the infor-
mation cannot be easily extracted based on the traditional
network modal. However, the pixels are continuous in an
image, and we can extract useful information easily through
a Convolutional Neural Network (CNN). Motivated by the
explosion of information and the excellent performance of
image in extracting features, we implement a mechanism of
converting the traditional network modal into colorful network
images.

As shown in Fig. 3, we take the NSFNET as an example.
We set up NSFNET to have five wavelengths according to the
resource simulation of the optical network, and there are ten
spectrum slots on each link of each wavelength. We aim to
groom as many services as possible to the same wavelength,
so as to maximize resource utilization. We divide NSFNET
into five parts. The information presented by the traditional
network modal is limited. It is impossible to know where
resources in the network are occupied and where resources
are available. Even the network matrix vector with this in-
formation can hardly cover all the information. Driven by
these limitation, we use different shapes with 11 colors to
represent the different resources occupancy states of ports,
transponders, regenerators, and links. For a regenerator, we
use a triangle to represent it. When service arrives one after
another, whenever the 25GHz spectrum resources (a spectrum
slot) of regenerator A is occupied, the triangle changes the
color followed by black, purple, green, cyan, red, blue, gray,
orange, yellow, pink and white. When all the spectrum slots of
regenerator A are occupied, it means that regenerator A can no

Fig. 3: Convert to images.
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longer support more services, and we use a white triangle to
represent it. Similarly, we use solid circles to represent ports
and transponders, and line segments to represent links. In this
way, we convert the states of the five parts of the NSFNET
into five images, namely G1, G2, G3, G4, G5. The service
routing path is calculated by the shortest path algorithm, and
it is also converted into a image Sr. We extract features from
G1, G2, G3, G4, G5 and Sr, these six images are as the input
of the CNN, rather than treated as an image. Then we groom
the service based on these features.

B. EDTG algorithm

Traffic grooming is a process of perceiving the current
state of the network and grooming services to a specific
part where resources are available. Deep learning algorithms
perform well in perceiving the environment, but they lack the
specific decision-making ability to determine service grooming
problems. Reinforcement learning algorithms make actions
according to the states and continuously optimize the action
strategy. Therefore, Deep Reinforcement Learning (DRL) is
introduced in this paper, it integrates the advantages of these
two techniques, and it can learn decision-making methods
from high-dimensional raw data directly.

The Actor-Critic (AC) algorithm is a classic DRL algorithm
composed of the actor module and critic module. The actor
module selects actions based on the calculated probability,
and the critic module evaluates the effect of actions. In the
AC algorithm, the strategy network πθ deployed by the actor
module for decision-making is an ANN, whose parameter is
θ. During the whole process of the task, each step can get a
reward value r, and the final reward obtained by the whole
task is R. The function Q(s, a) is used instead of R, and the
critic module is adopted to calculate the function value Q. To
maximize the expected reward, the gradient strategy is used

as follows,

5Rθ =
1

N

N∑
n−1

T∑
t−1

Qπθ (s, a)5 logpθ(s, a), (7)

where N represents the number of iterations, pθ represents
the action policy of AC. The critic value is updated according
to the mean square error between the estimated Q value and
the actual Q value. The calculation formula of the loss is as
follows,

loss =
1

N

N∑
n−1

T∑
t−1

(r +maxQπθ (st+1, at+1)−Qπθ (s, a))2,

(8)
where T is the total time, t represents a time unit.

However, AC algorithm is difficult to converge because
some actions cannot be sampled. In order to balance the
actions not taken in the algorithm, a baseline needs to be added
to make the feedback positive and negative. The Advantage
Actor-Critic (A2C) algorithm is proposed to optimize the AC
algorithm. A2C uses the advantage function to replace the
original reward in the Critic network, which can be used as an
indicator to measure the selected action value and the average
value of all actions. The specific formula is as shown in the
formula 10-12.

The Asynchronous Advantage Actor-Critic (A3C) algorithm
uses an asynchronous update method, and does not require a
large amount of memory like Deep Q Network (DQN) for
experience playback. And it breaks the correlation between
data in neural network training. In fact, each asynchronous
worker of A3C is an independent A2C, but its structure is
more complicated. Therefore, we designed a multi-process
A2C algorithm, which is comparable in speed to A3C, but
its structure is simpler.

By introducing the A2C algorithm, we propose a traffic
grooming algorithm named EDTG, as shown in Fig. 4. The

Fig. 4: EDTG Algorithm.
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Algorithm 1 EDTG Algorithm

1: Initialize the network, all resources are available.
2: i = 1.
3: while i < I do
4: Convert current network state si and service i routing

to image.
5: Observe state si to check the resources required by

service i.
6: Take an action ai to groom i according to strategy

π(ai|si; θ).
7: Observe state si+1 and get reward ri.
8: i = i+ 1.
9: if i ∈ U then

10: Ri ← V (si,θv ).
11: Calculate loss lv ,la,and entropy e.
12: Calculate total loss lt = lv · cv + la − e · ce
13: Update θv and θa according to loss lt.
14: end if
15: if i ∈ E then
16: Clean all occupation of resources.
17: i = 1.
18: end if
19: end while

Actor module uses the MobilenetV3 network to extract the
characteristics of the six input images, and uses the ANN
network to select which wavelength to groom the service
represented by the routing image Sr according to the charac-
teristics. The Critic network is also an ANN, it evaluates the
impact of actions on the network and updates the parameters
of ANN network to modify the action selection strategy of the
Actor module. In order to formulate the process of EDTG, we
define some parameters and functions, i is the service index,
I is the total number of steps, si represents the state of the
network. The strategy function π(ai|si; θ) with parameter θa in
the actor module and value function V (si,θv ) with parameter
θv are used by EDTG. U is a sign of network update, E is
a sign of completion of all services grooming. Algorithm 1
describes the detailed procedures of EDTG.

State: The extracted 1×1×1000 features are used as the
state of EDTG. We divide the NSFNET into five parts and
initialize each part. There are no services in the network,
and all resources are available. Perceiving the state of the
network is the first step of EDTG. We utilize the method
mentioned in subsection IV-A to convert the five divided
network and current service i routing path into six images
as the network state si. There are two major advantages of
adopting the images as the state of the network. One is that si
can comprehensively contain the information in the network,
and the other is that we can more easily extract features from
si.

Then a lightweight convolutional neural network named
MobilenetV3 is utilized to extract the features, including
information on nodes, links, ports, transponders, regenera-
tors, etc. As shown in Fig. 4, the input is six images of
224×224×3, and has not been treated as an image. The output
is the features of 1×1×1000. In this process, MobilenetV3

Fig. 5: Resource allocation during the grooming process.

decomposes standard convolutional layers into the form of
deep convolution and points convolution, which dramatically
improves the running speed. In addition, it is necessary to
remove the activation function of the last layer, which is
because the activation function after dimensionality reduction
will destroy the extracted features. MobilenetV3 adopts the
H-Swish activation function instead of ReLU6. As shown in
formula 9, where x represents the input of the active layer.
H-swish can effectively improve network accuracy.

H − Swish[x] = x
ReLU6(x+ 3)

6
(9)

Action: After extracting features from G1, G2, G3, G4, G5

and Sr, EDTG observes the traffic of the current service i
and the network state si, then takes an action ai according
to strategy π(ai|si) to groom the service into G1 or G2 or
G3 or G4 or G5 . It calculates the probability distribution
P = [p1, p2, p3, p4, p5] of various actions through the softmax
function, where p1 + p2 + p3 + p4 + p5 = 1, the various
actions represent which part of the resources of the five parts
are occupied by the current service. Finally, EDTG selects
specific actions according to the probability distribution. The
essence of the DRL algorithm is how to make an action, and
the action of EDTG is to determine which part of the current
service should be groomed by observing the network state.

As shown in Fig. 5, there are two services A and B.When
service A that needs a unit of resources is successfully
groomed, the color states of the corresponding links, ports,
transponders and regenerators change to purple, and the new
network state is shown in the image. When service B that
needs two units of resources arrives, and it has a common link
with service A. If EDTG makes an action to groom service
B to the same part as service A, and the new network state
is shown in the image. Then the energy consumption can be
reduced by serving the requests with a common link.

Reward: After the service is groomed completely, the state
of the network will become si+1 by adding ports, transpon-
ders, and regenerators. In the meantime, those six images will
also adjust accordingly. Then EDTG will calculate a reward
or a punishment value ri by judging the grooming effect to
get better grooming strategies. If the service occupies fewer
resources and consumes less energy after traffic grooming,
EDTG will get a larger reward. If the service cannot be
groomed, EDTG will get a punishment value. The reward and



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3063471, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL 7

TABLE II: Rewards and Punishments

Condition

Action

RewardBlocking No Blocking
Active

Blocking
Passive

Blocking
Switch to
First-Fit

Add
Port

Add
Transponder

Add
Regenerator Grooming

Unavailable Resource X -3
X -4

Available Resource

X -5
X -7

X 3.5
3

X X 2.5
X X 2

X 1.5
X X 1
X X X X 0.5
X X X 0

punishment mechanism affects the optimization direction of
the grooming strategy, and each value of which is inappropri-
ate will guide the grooming strategy to update in the incorrect
direction. We determine the reward and punishment values
shown in Table II through a large number of experiments.
We divide the different occupancy states of resources and the
results of the grooming into 12 categories. When a service
arrives, the resources required by the service may or may not
exist in the network at the moment. If there is no available
resource, it should be actively blocked. However, this service
will be passively blocked when the grooming strategy insists
on grooming the service to a wavelength without resources. In
addition, if there are not resources required by the service in
the wavelength I, but the service is groomed to wavelength I.
In order to reduce the blocking rate, we have added an option
to utilize the First-Fit strategy to groom the blocked service to
wavelength with resources. This will greatly increase energy
consumption, which is contrary to our original intention.
Therefore, we increase the punishment for this situation. If
the necessary resources required for this service are available,
the service should be groomed according to the required
resources of ports, transponders, and regenerators. In general,
the reward value is inversely proportional to the number of
ports, transponders and regenerators added. Then a reward or
a punishment value shall be got.

Whenever five services are groomed successfully, U is
activated. The states, actions, and reward values are used
to update the EDTG. It is worth noting that we adopt the
same one ANN as the actor module and critic module, which
reduces the complexity of the EDTG network structure. This
ANN network undertakes the tasks of the actor module and the
critic module, and gets two losses respectively. We calculate
the total loss to update the ANN network. Therefore, it can
calculate the total loss of the ANN according to formula 10,
11 and 12,

lv =
1

n

N∑
i=1

(Ri − V (s, θ))2, (10)

la =
1

n

N∑
i=1

(Ri − V (s, θ))× log(π(a|s), θ), (11)

lt = lv × cv + la × ca + e× ce, (12)

where la represents the mean square error of the value function
and the total reward, lv represents the cross-entropy of the
strategy function and the difference between the value function
and the total reward, and lt represents the total loss. cv ,
ca,ce are the coefficients of lv , la and e. Ri represents the
reward. Then EDTG updates the ANN parameter θ through the
gradient descent method. Entropy (e) is introduced to express
the difference in action selection probability. When the system
learns policies that can groom all services effectively, e will
converge. When all services are groomed successfully, the
system activates E and resets the network.

V. SIMULATION AND RESULTS ANALYSIS

In this section, we evaluate the performance of EDTG with
extensive simulations using 14-node and 21-link NSFNET
topology, as shown in Fig. 6. NSFNET has 50 spectrum slots
on each physical link. We randomly generate 100 services
in advance, and the source node and destination node of
each service are randomly selected from all nodes. The traffic
requirements of each service are uniformly distributed within
[10,100] Gbps. The simulation parameters are shown in Table
III. We calculate K = 3 candidate paths for each service
and set W = 8 processes to train at the same time. For the
training of EDTG, we set the parameters α and ε of RMSprop
optimizer, and the base learning rate as 0.99, 1e − 5, and
7e−6. The total number of training steps is 10e6, the number
of forward steps in A2C is 5. We test different CNN such
as Alexnet, Fcnet, MobilenetV2, and MobilenetV3, and we
finally find that MobilenetV3 is the best. The server we use
to run the simulation is configured with Intel Core i9-9900K
CPU, 32GB memory, and Nvidia GTX 1080Ti graphics card.

We analyze the performance of AC, A2C, and A3C al-
gorithms in traffic grooming. Then we conduct experiments
on the following two well-performed grooming algorithms to
evaluate EDTG.

State-aware Modification Grooming Algorithm (SGA)
[14]: SGA is a heuristic algorithm, and it grooms the services
with the same source node and destination node together to
occupy fewer resources.

Deep Reinforcement Learning Algorithm (DRL) [19]:
DRL is an intelligent algorithm for distributing services, and
it uses a matrix containing network-specific information as
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TABLE III: Parameters description

Parameters Definitions Value
Net Simulation network NSFNET
Node Number of nodes 14
Link Number of links 21
Wavelength Number of network divide 5
Spectrum Resources Total resources of the network 50
K Number of service routing 3
W Number of multiple processes 8
α RMSprop optimizer alpha 0.99
ε RMSprop optimizer epsilon 1e-5
learning rate Base learning rate value 7e-6
steps Number of training steps 10e6
num-steps Number of forward steps in A2C 5

Fig. 6: NSFNET topology.

a feature set, and then distributes services to reduce energy
consumption.

We aim to reduce the energy consumption of various
elements in EON, such as ports, transponders, and regenerators
through traffic grooming. Among them, SGA judges whether
the current service is the same with the source and destination
nodes of the service previously allocated. If they are same,
they will be groomed. If they are different, only the available
resources will be allocated. EDTG identifies the links that need
to be occupied according to the converted images and whether
it should be unblocked. Therefore, we ignore the minor energy
consumption and only focus on the energy consumption of the
port, transponder, and regenerator in the network.

A. Comparison of Different Traffic Grooming Algorithms

Figure 7 illustrates the energy consumption of different
update algorithms corresponding to AC, A2C, and A3C al-
gorithms. We can observe that the convergence values of each
algorithm are almost indistinguishable, and this is because
the framework of these three algorithms is the Actor-Critic
mechanism. There is little difference in the final convergence
of energy consumption in our work. The A2C algorithm uses
the advantage function instead of the original reward in the
AC algorithm to measure the quality of the selected action
and the average value of all actions. Therefore, the variance
of A2C results is smaller. A3C adds an asynchronous update
method on the basis of A2C. It is divided into multiple
worker networks and a global network. Each worker is an
independent update network and obtains parameters from
the global network and uses its own gradient to update the

parameters of the global network. In fact, every worker is an
A2C, the update time of each round of A2C and A3C with
the same number of processes is the same, but we can observe
that the A3C algorithm converges 2000 iterations earlier than
A2C algorithm from Fig. 7. So A3C only speeds up the
convergence speed, and there is no significant reduction in
energy consumption. However, we start eight A2C processes,
train at the same time, calculate the average loss to update
the same network, which also speeds up the process of
convergence, but it is not as complicated as the asynchronous
update of A3C. Based on the above reasons, EDTG adopts the
A2C framework.
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Fig. 8: The entropy of EDTG.

Figure 8 illustrates the entropy of EDTG. The entropy value
represents the probability distribution of action selection. We
can observe that the entropy value is inversely proportional to
the number of iterations, and it starts to converge after 20000
iterations. As the entropy value changes smaller, the EDTG’s
selection action strategy changes more stable. When the en-
tropy value is converged, it means that with the continuous
learning of the network, EDTG has learned a stable strategy
and it can groom all services in an energy-efficient manner.

. 
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Fig. 10: Energy consumption of different elements.

Figure 9 shows the energy consumption of different traffic
grooming algorithms. The EDTG achieves 13% and 8% im-
provement on energy consumption compared with the DRL
algorithm and SGA algorithm. The reason is that DRL only
allocates services to the part where resources are available, but
it cannot aggregate mice traffic. SGA only grooms services
with the same source node and destination node, and it wastes
a lot of fragmented resources. Compared with these two
algorithms, after thousands of training iterations, EDTG can
groom all services with the same link to the appropriate part
by constantly updating the reinforcement learning strategy so
that fewer elements are occupied in the whole network, and
the energy consumption decreases rapidly.

B. Energy consumption of Different Elements

Figure 10 illustrates the energy consumption of ports,
transponders, and regenerators in the EDTG algorithm. Fig.
11, Fig. 12, and Fig. 13 compare the variation of energy con-
sumption of ports, transponders, and regenerators with three
algorithms DRL, SGA, and EDTG, respectively. Compared
with DRL algorithm and SGA algorithm, EDTG achieves 18%
and 6% improvement on energy consumption of ports, and
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Fig. 11: Energy consumption of ports.
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Fig. 12: Energy consumption of transponders.

achieves 18% and 22% improvement on energy consumption
of transponders, and achieves 13% and 22% improvement
on energy consumption of regenerators. Due to imperfect
parameter settings, the energy consumption convergence trend
of the port obtained by the DRL algorithm in Fig. 11 is not
good. The simulation results show that the energy consumption
obtained by the EDTG algorithm is lower and can be reduced
significantly. This is because EDTG can perceive complete
information in the network from the converted images and
learn an intelligent groom strategy.

C. Energy comparison of Different learning rates

Figure 14 depicts the energy consumption with different lr.
EDTG needs to continuously optimize the strategic network
for grooming services to ensure that each device can support
more services. When the learning rate gets lower, the conver-
gence speed of the loss function will be slower. However, if
the learning rate is too high, the gradient explosion is likely to
occur, the loss of vibration amplitude is large, and the model
is difficult to converge. From Fig. 14, we can clearly observe
that the learning rate is 7e-6 and 1e-6. When the learning
rate is 7e-6, the energy consumption converges faster, and the
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vibration amplitude is larger, which meets the characteristics
of the learning rate in deep learning. But with the two learning
rates, the energy consumption convergence effect is the same.
Thus, lr is set to be 7e− 6 in the experiment.

Fig. 14: Energy consumption with different lr.

D. Energy comparison of Different steps

Figure 15 depicts the energy consumption curves corre-
sponding to different update steps. The update step setting
of the network in the learning process is essential. Different
update steps mean that the network weight of each update is
different, which will affect the update of network parameters.
A smaller step size will reach the local optimum, and a
larger step size will result in slower convergence. For the
convenience of observation, the horizontal ordinate represents
the number of update rounds, and each round means all the
services are groomed once, and the ordinate represents the
energy consumption of the entire network. The green, orange,
and blue lines represent step sizes of 2, 5, and 10, respectively.
We can observe that the convergence rate becomes slower as
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Fig. 15: Energy consumption with different steps.

the step size increases. The effect of step sizes 5 and 10 is the
same, and the energy consumption of a length of 2 is reduced
by about 3%, so the step size of 5 is more appropriate.

VI. CONCLUSION AND FUTURE WORK

In this paper, we mainly study the traffic grooming problem
in elastic optical networks for Cloud-Fog Computing. We con-
vert the topological network into several images by converting
the network elements into colorful solid circles, triangles,
and line segments, making it simple to extract features. We
design an Energy-efficient Deep Reinforced Traffic Grooming
algorithm to groom services with minimizing energy con-
sumption. Simulation results show that, compared with two
well-performed traffic grooming algorithms, our algorithm can
reduce energy consumption significantly.

The design and implementation of EDTG, a traffic grooming
algorithm based on deep reinforcement learning, involve many
theories, methods, and technologies. EDTG still has some new
problems to be solved, which need to be continuously accumu-
lated and improved further. Further research is needed in the
following aspects. EDTG converts the whole network state into
several colorful images, which is bound to contain redundant
information. In the future, we will consider simplifying the
network and only convert the network structure composed of
service-related nodes and links. In addition, Graph Neural
Network (GNN) has a powerful modeling function for the
dependence between the points of the graph, which has made
breakthrough progress in the research field related to graph
analysis. In the future, we can use GNN to directly extract
the graph structure features of associated nodes instead of the
complex information of the whole network.
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