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Non-revisiting Coverage Task with Minimal
Discontinuities for Non-redundant Manipulators

Tong Yang, Jaime Valls Miro, Yue Wang∗ and Rong Xiong

Abstract—A theoretically complete solution to the optimal
Non-revisiting Coverage Path Planning (NCPP) problem of any
arbitrarily-shaped object with a non-redundant manipulator is
proposed in this work. Given topological graphs of surface cells
corresponding to feasible and continuous manipulator configura-
tions, the scheme is aimed at ensuring optimality with respect to
the number of surface discontinuities, and extends the existing
provable solution attained for simply-connected configuration cell
topologies to any arbitrary shape. This is typically classified
through their genus, or the number of “holes” which appear
increasingly as configurations are further constrained with the
introduction of additional metrics for the task at hand, e.g.
manipulability thresholds, clearance from obstacles, end-effector
orientations, tooling force/torque magnitudes, etc.

The novel contribution of this paper is to show that no matter
what the resulting topological shapes from such quality cell
constraints may be, the graph is finitely solvable, and a multi-
stage iterative solver is designed to find all such optimal solutions.

I. INTRODUCTION

Full coverage of the surface of a given object with non-
redundant manipulators is embodied in tasks such as automatic
polishing, deburring, painting or surface inspection, where the
need for non-repetitive path planning is paramount to avoid
over revisiting.

The kinematic relationship of a typical manipulator makes
mapping between work- and joint-space non-bijective [11],
which in effect drives coverage paths to be traditionally carried
out in the former to ensure no revisiting of points in the
surface [15]. However, in further pursuing motions where the
manipulator may minimise the number of reconfigurations is
obliged to undertake to follow a desirable continous end-
effector (EE) path, a global optimal cellular decomposition
problem in joint-space has been proposed to incur joint-space
partitions with minimum sets [20]. This is illustrated in the
example shown by Fig. 1: the external surface of a wok-like
object is inspected by a non-redundant manipulator. Points on
the surface can be reached by a variety of robot configurations.
The three solid colour cells shown in Fig. 1(b) illustrate
poses of disjoint sets reachable as a continous set by a given
configuration, visually seen by the different colours. These
cells become the elements on a topological graph Fig. 1(c),
where each possible colour of a cell is recorded. A cellular
decomposition splits and merges the cells to transform the
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(a) (b) (c) (d)

Fig. 1. Example of simply-connected cell coverage. (a) Hemispherical object
placed in the workspace. (b) Simply-connected cells of three valid robot
configurations, chosen by the optimal solution shown in (d). (c) Topological
graph. (d) One optimal solution requiring 2 lift-offs.

(a) (b) (c) (d)

Fig. 2. Example of multiply-connected cell coverage. (a) Irregular “hilly”
object placed in the workspace. (b) Multiply-connected cells of four valid
robot configurations, chosen by the optimal solution shown in (d). (c)
Topological graph. (d) One optimal solution requiring 1 lift-off.

process into that of painting all points in the graph with one of
the possible colours, driven by attaining a minimum set which
equates to least number of EE lift-offs. One such optimal
solution with 2 lift-offs is illustrated in Fig. 1(d), whereby
any arbitrary continuous path within a colour surface area
will result in maxium joint continuity of the global path. The
addition of obstacles and the relative pose of robot and object
further condition the final solution. For further details please
refer to [20].

A critical assumption however is that the constituent surface
points necessarily adopt simply-connected space topologies.
This is reasonable for simple shapes and sparse obstacle
environments, but becomes unrealistic as objects grow in
complexity, or with the imposition of increasing motion con-
straints, generically deriving in multiply-connected cells. An
illustrative example is given in Fig. 2 where a manipulator
moving over a “hilly” terrain generates reachable areas in
the mesh which contains non simply-connected cells. This
is further compounded when additional or more restrictive
constraints are imposed, as will be seen later in the results
when the degree of manipulability is also considered and
more “cavities” appear in the configuration cells and generated
topological graphs.

Since the shape of cells can be classified through their
genus, i.e., the number of “holes” within the cell, in this work
a theoretically complete solution is given by solving for cells
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with all possible genus. The key observation of the proposed
algorithm is that whatever genus the cell is, the number of lift-
off to cover it is always zero. A direct reflection from this is
thus to reduce the genus of the cell gradually by cell divisions
to eventually make it equivalent to a simply-connected cell
which has been proven finitely solvable. This however is
non-trivial: the place to put a cutting path to transform a
genus-one cell into a simply-connected cell directly effects
the order of edges on the boundary of the sub-cells, leading
to different structures. Existing algorithms in the literature are
not able to provide a systematic cell decomposition solution to
accomplish a guaranteed transformation from an initial graph
containing large genus cells into simply connected topologies.
This is provided in this work through the analysis of equivalent
topological divisions. To that extent, the finiteness of all
possible divisions is first proven for a genus-one cell as
building block. A multi-stage iterative solver can then be
introduced to transform higher-genus cells into lower-genus
cells. The two novel contributions of this paper can be thus
summarised as:

1) Providing the necessary conditions to be able to apply
the surface modeling described by the proposed topo-
logical graph structure.

2) Proposing a systematic solution to be applicable for any
genus-n cell topology.

The remainder of this paper 1 is organised as follows.
Section II reviews existing literature. Section IV proves the
necessary conditions to apply the proposed algorithm. Sec-
tion V briefly restates the existing results in [20] to solve for
simply-connected cells. Section VI goes into further details
about the finiteness of solving elementary genus-one cells,
whilst a multi-stage iterative strategy to solve for larger genus-
n cells is described in Section VII. Experimental results from
simulations are collected in Section VIII, with final concluding
remarks gathered in Section IX.

II. RELATED WORKS

Almost all state-of-the-art methods to solve the coverage
path planning (CPP) problem [5] [7] first divide the target
surface into cells then solve the CPP problem in each cell,
so called cellular decomposition, which is further divided into
two categories: exact cellular decomposition methods [13] and
Morse-based cellular decomposition methods [6] [1].

For the optimal coverage task with a manipulator, the
algorithms mainly focus on workspace metrics such as path
length and time to completion. Atkar et al. [2] optimised
the coverage path through choosing optimal starting points.
Huang [10] reduced movement cost by remaining on straight
paths as long as possible thus minimising the number of turns.
In dealing with the optimal Non-revisiting Coverage Path Plan-
ning (NCPP) problem, [3] considered the uniform coverage in
automotive spray painting problem, where the simple back-
and-force boustrophedon path was deformed in accordance
to the curvature and topology of the surface. [8] proposed

1A video illustrating the concepts hereby described can be found here:https:
//github.com/ZJUTongYang/RSS20/blob/master/supplementary video.mp4

a 3D coverage path for agricultural robots minimising the
skip/overlap areas between swaths.

Its is arguable however that for surface contact tasks
in particular, the cost incurred in joint discontinuities sig-
nificantly outweighs other metrics, moreover where unde-
sirable transitions between position and force/torque con-
trol [4] [9] [14] [18] [19] become unavoidable.

We notice that [16] considered the pose optimisation of
a mobile manipulator for coverage task, where a quality
measurement was proposed to optimally place the manipulator
in the workspace to aid coverage. The focus remained com-
plementing robot placement and CPP; the actual generation
of the coverage path simply reduced to use a randomised
path planner, BiRRT [12] among a set of “guard points”
chosen, with no specfic consideration to joint-space continuity
as ellaborated in the present manuscript.

It is worthwhile noting that despite the apparent similarities
in planning with mobile platforms, the optimal NCPP problem
with least discontinuities is inherent to the kinematics of
manipulator mechanisms, and as such beyond the scope of
bibliograpic works from the mobile robotics community. Like-
wise, affinities to graph theory are also legit. Note however that
the contact point, which can be safely regarded as a particle,
is significantly smaller than the scale of the cellular decom-
position drawn up for this problem. In seeking maximal joint-
space continuity of the coverage path travelled by a particle as
modelled by the NCPP problem, infinitesimal elements must
be considered in its most abstract form, and the existance of
infinitely narrow passages also makes a significant difference
in the resulting path solutions. Hence, it is not possible to
revert back to classical graph theory since no any area on the
surface can be seen as a whole to form the ”vertices”, and the
set of ”edges” is actualy the exact solution the NCPP problem
is seeking to solve for.

III. PROBLEM STATEMENT

Define the surface of an object by M. To simplify the
description, let M be only the coverable part of the surface.
The shape of other obstacles in the workspace and their relative
poses in the workcell are assumed static and known. Given the
kinematics of the non-redundant manipulator, we denote the
joint-space by C̄ , and the set of all singular configurations by
S. The set of all valid manipulator configurations is denoted
by C , where the validity of a configuration is evaluated by
some given quality constraints denoted by {Fk}k∈N. Classic
examples would be manipulability or the minimum distance
from an obstacle. The optimal CPP problem is to find a
joint-space path consisting of valid configurations whereby
the manipulator EE covers the workspace non-repetitively and
ensures the least number of discontinuities requiring lifting
from the object’s surface. The following settings define the
scope formally:

1) A point contact between surface and EE is assumed.
2) Let s ∈ S be a singular configuration, there exist a

threshold ε > 0 such that

d(c,s)> ε,∀c ∈ C ,∀s ∈ S (1)

https://github.com/ZJUTongYang/RSS20/blob/master/supplementary_video.mp4
https://github.com/ZJUTongYang/RSS20/blob/master/supplementary_video.mp4
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where d(·, ·) is a metric in the joint-space. This enables
us to judge the discontinuity of two configurations
coming from discretised data. For example, given two
configurations c1,c2 ∈ C corresponding to the EE cov-
ering two adjacent vertices of a triangular mesh, we say
c1 and c2 are joint-space continuous only if

d(c1,c2)< ε (2)

where d(·, ·) and ε are pre-determined.
3) {Fk}k∈N is continuously defined in the joint-space, with

thresholds satisfying strict inequalities. The k-th con-
straint can be expressed as

Fk(c)> δk = δk(c,F1, · · · , F̂k, · · · ,Fn),∀c ∈ C (3)

where “ˆ” means excluding the term. δk can be a function
of other metrics instead of a constant value, leading
to wider applications. For example, let F1 represent
the manipulability [21] and F2 represent the minimum
distance between the manipulator and all obstacles, then
an inequality such as

F2(c)> δ2 = 0.01+0.05(1−F1(c))

could be imposed to indicate that when F1(c) is small,
i.e. a “badly-conditioned” configuration, it should be far-
ther from obstacles than would be desirable otherwise.

IV. FINITENESS OF CELLS

For a non-redundant manipulator, ∀m∈M there exist a finite
number of valid configurations to cover m. By following the
constraints laid out in the problem statement, a topological
graph will be generated. A necessary condition to solve it is
thus guaranteeing the finitness in the number of cells on this
graph. For that, let us define a topological cell C1 (where 1
represents its index) as a maximal set of continuous points
where the valid configurations to cover them are pairwise
continuous, i.e., ∀m,m′ ∈ C1, let the valid configurations to
cover them be

Pm = {cm1, · · · ,cmN} ⊂ C (4)

Pm′ = {cm′1, · · · ,cm′N′} ⊂ C (5)

then N = N′ and ∀cmi ∈ Pm,∃cm′ j ∈ Pm′ ,cmi and cm′ j are joint-
space continuous.

A topological edge E1 (where 1 represents its index) is a
maximal set of continuous points between Ci and C j whereby

E1 = E1(Ci,C j)

=
{

m ∈M|∀(m ∈)Um,∃p, p′ ∈Um, p ∈Ci, p′ ∈C j
}

(6)

where Um is an open set containing m. Note that the intersect-
ing points of topological edges

{m|∀(m ∈)Um,∃p, p′, p′′ ∈Um, p ∈Ci, p′ ∈C j, p′′ ∈Ck} (7)

are distinct points, which is negligible when discussing the
connectivity of the cells. The topological graph is the ordered
cells and edges, G = ({Ci},{E j}).

To prove the finitness of this graph, let us randomly choose
a point m ∈ M which can be covered by a set of valid
configurations Pm defined by (4), then

Fk(cmi)> δk,∀k,∀i = 1, · · · ,N (8)

the strict inequalities (3) enable us to find valid open sets Umi
for each configuration cmi in the joint-space:

∃(cmi ∈)Umi ⊂ C ,∀i = 1, · · · ,N

s.t. Fk(c)> δk+
1
2
(Fk(cmi)−δk)> δk,∀k,∀c ∈Umi

(9)

since the kinematic function of the manipulator (FK) is con-
tinuous and cmi ∈Umi,

m ∈ FK(Umi)⊂M,∀i = 1, · · · ,N (10)

so does the intersecting area of those images,

m ∈ Am ,
N⋂

i=1

(FK(Umi))⊂M,∀i = 1, · · · ,N (11)

follow the definition of our topological cells, all points within
the intersecting area belong to a same cell.

For ∀m ∈M, the corresponding open set Am exists, as such⋃
m∈M

Am ⊇M (12)

hence the left term forms a infinite cover of M. The Heine-
Borel Theorem [17] states that if a compact region can be
covered by infinite many open regions, then one can find
finite many of them that still fully cover this region. Since
all closed sets in the Euclidean space are compact sets, so is
the manipulator task space in which the boundaries are well-
defined. Thus, we can find finite elements from {Am}m∈M that
also fully cover M. Recall that each Am belongs to only one
cell, hence the total number of cells in the graph must be finite.

V. SOLVING GRAPHS WITH SIMPLY-CONNECTED CELLS

In earlier work [20], the optimal NCPP problem with least
discontinuities was also modelled as a topological cell graph,
and the solution transformed into an optimal design strategy
of a colour (configuration) scheme whereby the strategic
placement of cutting paths would invariably lead to different
colour vertices on both sides of a partition. An illustrative
example is provided by Fig 1. In proving the finiteness of
simply-connected cells, the following claims were validated:

1) It is sufficient to consider cutting paths that start and
end at the topological edge end-points.

2) It is unnecessary to consider cutting paths that stretch
across edges.

3) Intersecting cutting paths can be discarded.
4) For a simply-connected cell with K topological edges

delineating its boundary, a binary number of length K
can uniquely specify the set of all admitted divisions.

5) To solve a simply-connected cell with K edges, the total
number of different divisions Φ is bound by

Φ(K)≤ 2K (13)

In the following sections, a generalisation to genus-n cells is
derived.



4

Fig. 3. Example showing that the unconnectable inner part (marked by the
grey solid circle) is negligible when solving the outer part. ω and ω ′ are
directly drawn as concentric circles so ϕ(ω ′) = ω ′. In this simple example
the direct solutions are straightforward, and they are equivalent to first solving
the outer part without the inner part, and then arbitrarily replacing back the
inner part. It can also be observed how the inner part can be placed “on”
a cutting path (dashed block), yet there is no need not consider these cases
since they are effectively equivalent to the three divisions shown on the left
under a continuous cutting path transformation.

VI. SOLUTION OF GENUS-ONE CELLS

A cutting path connecting the inner part and the outer part
of a genus-one cell will transform the cell into a simply-
connected cell, proven to be finitely solvable. In this section
we consider two cases: keeping the genus-one structure or
transforming the genus-one cell into simply-connected sub-
cells. In the former case, we prove that the inner part and the
outer part can be seen as two independent problems. While
in the later case, by efficiently discarding equivalent cellular
decompositions, the number of possible subdivisions is proven
to be finite, and all optimal solutions thus finitely solvable. An
upper-bound on the complexity of solving a genus-one cell is
also derived.

For notation, a genus-one cell is denoted by Ω, with its
inner boundary and outer boundary denoted by ω and ω ′,
respectively. The edges and cutting paths are denoted by α .

A. Independence of Inner and Outer Parts

The situation when inner part and the outer part of Ω are
not connected arises when the inner part is a physical hole,
the inner part can only be covered with a totally different
colour from that of the outer part, or when all the edges in ω

must be retained. In these cases, first we prove that the inner
part of Ω is negligible when solving the outer part. To show
this equivalence, let ϕ be a homeomorphic mapping from Ω

to the standard unit disk D, with its boundaries mapped onto
concentric circles,

ϕ : Ω→ D,ω ′ 7→ S1(1),ω 7→ S1(δ ),δ → 0+ (14)

(a) (b) (c)

Fig. 4. (a) Topological graph with a genus-one cell enforced to be kept
(the area between concentric squares). (b) A stereographics projection using
a sphere lying within the inner boundary. (c) Let the radius of the sphere be
small enough, then the inner part of graph and the outer part interchange near
the north pole of the sphere.

then the inner part becomes an infinitesimal open neighbour-
hood of the origin. See Fig. 3 for illustration. Let a cutting
path of D, ϕ(α), start and end at ϕ(ω ′), then it must be one
of the following two cases:

(0,0) /∈ ϕ(α)

⇒∃ε > 0,B(0,ε)∩ϕ(α) =∅
⇒let δ < ε, then ϕ(ω)∩ϕ(α) =∅
⇒ω ∩α =∅

(15)

or
(0,0) ∈ ϕ(α)

⇒ϕ(ω)∩ϕ(α) 6=∅,∀δ
⇒ω ∩α 6=∅

(16)

All the different topological divisions described by (15)
and (16) correspond to those listed in Fig. 3.

Next, we prove the inverse claim that the outer part of Ω

is negligible when solving the inner part. Let a sphere with
radius r stand within the inner part (anywhere is applicable but
a place within the inner part will simplify the description), and
ψ be the stereographic projection

ψ : R2→ S2\N

(x,y,0) 7→ (
4r2x

x2 + y2 +4r2 ,
4r2y

x2 + y2 +4r2 ,
2r(x2 + y2)

x2 + y2 +4r2 )
(17)

where N denotes the arctic point. See Fig. 4 for illustration.
Since ψ is homeomorphic, the transformed graph on the sphere
is equivalent to the original graph. ψ maps the outer part
(including the uncoverable ambient space) to a neighbourhood
of the arctic point (the ∞ point to the arctic point), and the
inner part to a neighbourhood of the antarctic point. Let r→ 0,
the roles of the inner part and the outer part interchange near
the arctic point. Recalling the observation of the negligibility
of the inner part, we finish the proof.

In summary, when the inner part and the outer part are not
connected, they can be solved independently and their results
can be merged directly.

B. Negligibility of Cyclic and Single Cutting Paths

Cutting paths connecting ω and ω ′ can be classified based
on their number of cycles, as depicted by Fig. 5(a). However,
Fig. 5(b) shows that all cyclic cutting paths have the same
topological function as the acyclic one, thus can be safely
disregarded. Note however that unlike the case for other
equivalences, the physical cellular decomposition using the
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(a) Each acyclic cutting path corresponds to a family of cyclic cutting
paths that go through different cycles.

(b) Continuous transformation between the 0-cycle division and 1-cycle
division, with similar results for the n-cycles case.

Fig. 5. Examples of negligible cutting paths.

cyclic cutting paths cannot be generated through continu-
ously modifying the position of the acyclic ones. Here the
equivalence means that only the acyclic situations require
explicit consideration. Once an acyclic solution is optimal,
all equivalent solutions using the cyclic cutting paths are all
optimal and automatically considered.

Next, we observe that if there is only one cutting path that
connects ω and ω ′, then Ω is transformed into a single simply-
connected sub-cell. However, this becomes a contradiction
since both sides of the cutting paths are effectively the same
cell, thus impossible to have different colors. It is therefore
apparent that it is not the cutting path but the connected
area what determines the division of Ω. More precisely, an
area connecting the inner part and the outer part of Ω. This
observation motivates us to directly consider the connectivities
between cells. Based on the remarks in Section V, we only
need to judge whether keeping or removing each edge. Let
the indices of J edges in ω and K edges in ω ′ be (in cyclic
order)

ω = (α1, · · · ,αJ) (18)

ω
′ = (α ′1, · · · ,α ′K). (19)

Arbitrarily choosing some edges in ω and ω ′ to generate a
connectivity, like

({αi1 , · · · ,αir},{α ′j1 , · · · ,α
′
js}),1≤ r ≤ J,1≤ s≤ K (20)

where {} means the order has no meaning, leads to valid
divisions of the Ω. An example is shown in Fig. 6, where
it is apparent that results are not unique. The finiteness of this
approach is discussed next.

C. Assignment of Cutting Paths Based on Connectivity

Extracting all combinations from (20) does not necessarily
mean listing all different divisions. In Fig. 6, various divisions

Fig. 6. In this example, cells 1, 3, 7 and 10 are enforced to be connected.
The four distinct divisions shown on the right are all valid, exemplifying the
non-uniqueness of the subdivision problem.

are created from the same connectivity. In order to address
this issue, the whole division of Ω is regarded as a two-stage
process, first transforming into simply-connected sub-cells and
then undertaking further divisions in these sub-cells. We prove
that in the first stage, only two cutting paths are required which
connect ω and ω ′.

First, all cutting paths that do not connect ω and ω ′ do not
appear in the first stage, because they can be seen as further
divisions in the generated sub-cells. Refer to Fig. 7 for an
illustration of this phenomenon. Then, let there be three cutting
paths that connect ω and ω ′, then Ω is divided into three
simply-connected cells. However, the resulting topological
structure is equivalent to Ω being firstly divided into two
sub-cells, then another cutting path creating further divisions
iteratively. Hence, there need to be at most two cutting paths
in the first-stage.

In summary, let ω and ω ′ be defined by (18) and (19),
during the first stage a continuous subset is identified in ω ,
and another one in ω ′. The total number of different divisions
is the number of different choices of these continuous subsets.
To relieve the problem of the cyclic choices, we enforce the
sub-cell 1 be the one containing α1. So all choices in ω are
described by

{α1}
{α1,α2},{αJ ,α1}
· · ·
{α1, · · · ,αJ−1}, · · · ,{α3, · · · ,αJ ,α1}.

(21)

Likewise, all choices in ω ′ are given by
{α ′1},{α ′2}, · · · ,{α ′K}
{α ′1,α ′2}, · · · ,{α ′K ,α ′1}
· · ·
{α ′1, · · · ,α ′K−1},{α ′K ,α ′1, · · · ,α ′K−2}, · · · ,{α ′2, · · · ,α ′K}

(22)

D. Complexity Analysis

When ω and ω ′ are connected, there are r methods to
choose r continuous edges in ω containing α1, i.e.,

{αJ−r+1, · · · ,αJ ,α1}, · · · ,{α1, · · · ,αr} (23)
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(a) Illustration of cutting paths that start and end at the same
boundary, which can be seen as further divisions (in sub-cell 2, shown
in red).

(b) Example shows that the third (and later) cutting paths connecting
ω and ω ′ can be seen as further divisions (in sub-cell 2, shown in
red).

Fig. 7. The placement of cutting paths can be seen as a two-stage processes:
First we only place two cutting paths that connect the inner boundary and
the outer boundary, and then place all other cutting paths within the simply-
connected sub-cells, seen as further divisions of the sub-cells.

and K methods to choose s continuous edges in ω ′. Summaris-
ing all possible r and s we get

Ψ(J,K) =
J−1

∑
r=1

K−1

∑
s=1

rKΦ(r+ s)Φ(J+K− r− s) (24)

with Φ defined by (13). Moreover, from Section VI-A, the
number of different divisions keeping a genus-one structure is

Φ0(J,K) = Φ(J)+Φ(K) = 2J +2K (25)

hence the total number of different divisions for a genus-one
cell with J edges in the inner boundary and K edges in the
outer boundary is given by

Φ(J,K) = Φ0(J,K)+Ψ(J,K) (26)

VII. SOLUTION OF LARGE GENUS CELLS

There are n inner boundaries in a genus-n cell. Taking the
outer boundary into consideration, there are C2

n+1 possible
“starting- ending-point” pairs for the possible cutting paths,
which are impractical to enumerate and deal with. Hence,
a multi-stage iterative strategy is once again proposed to
transform a genus-n cell into sub-cells with genus no more
than n−1.

A. Genus-Two Cell Case

Following a deduction process similar to the one in Sec-
tion VI-A), the ensuing equivalence states arise:

1) The disconnected inner part can be safely discarded and
the remaining becomes a genus-one cell which has been
proved solvable. After solving both the genus-one cell
and the unconnectable part independently, we can arbi-
trarily place the resulting division of the disconnected
inner part in the result of the genus-one cell.

2) When both inner parts are unconnectable, the genus-two
cell can be seen as three simply-connected parts. And
the solution comes from the arbitrary placements of the
solution of the inner parts in the result of the outer part.

Fig. 8. Example showing that at each stage, cost-wise it is unnecessary to
place the second inner part on the cutting paths created earlier (in blue).

For a genus-n cell, if any of its inner part is disconnected,
the genus-n problem becomes a genus-(n−1) problem which
is proven solvable under induction. Hence, in this section the
focus is on the case when all boundaries are forced to be
connected.

Following the notation of a genus-one cell, a genus-two cell
is denoted by Ω, with its outer boundary described by

ω = (α1, · · · ,αK) (27)

and the inner boundaries given by

ω
1 = (α1

1 , · · · ,α1
J1
) (28)

ω
2 = (α2

1 , · · · ,α2
J2
) (29)

where α∗ are the edges in each boundary listed in cyclic order.
Similar to the process illustrated in Section VI, we regard

the whole division of Ω as a three-stage process. In the
first stage, we consider the generation of the cutting paths
connecting ω and ω1. As per the discussion in Section VI-C,
at this point there are only two cutting paths, generating two
sub-cells. In the second stage, we place ω2 in each of the
sub-cells. In either case, the sub-cell containing ω2 becomes a
genus-one cell. Then it can be solved through further division.
After creating other two cutting paths, Ω is transformed into
three simply-connected sub-cells. In the third stage, all other
cutting paths are created.

B. Negligibility of Putting Inner Part on the Cutting Paths

A special case may first appear to arise when placing ω2

within each sub-cell generated in the first stage intersecting
the actual cutting path created (seen in blue in Fig. 8) Yet
this is a case that requires no consideration given the equiv-
alence shown in the same Figure. Since ω2 is not assumed
unconnectable, if a cutting path lies on the existing topological
edges, it prevents further connections (such as the one shown
in red in Fig. 8), leading to higher cost. Recalling the result
from Section VI-C, there are only two cutting paths dividing
Ω into two parts, so there are exactly two different places to
put ω2, i.e., in either sub-cell created in the first stage.

C. Complexity Analysis of Solving Genus-2 Cells

When ω1 and ω2 are both disconnected, similar to (25), we
have

Φ00(J1,J2,K) = 2J1 +2J2 +2K (30)
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Fig. 9. Iterative transformation process of the genus-n case.

If ω and ω1 are connected, but ω2 is disconnected,

Φ10(J1,J2,K) = Ψ(J1,K)+Φ(J2) (31)

exchanging the role of ω1 and ω2,

Φ01(J1,J2,K) = Ψ(J2,K)+Φ(J1) (32)

When both ω1 and ω2 are connected, the complexity can
be calculated by considering ω2 being placed in different sub-
cells separately. Using Ξ1 for the situations that ω2 is placed
in sub-cell 1, and Ξ2 for sub-cell 2 give rise to

Ξ1(J2;r1,J1,s,K) = Ψ(J2,r1 + s)Φ(J1 +K− r1− s) (33)

Ξ0(J2;r1,J1,s,K) = Φ(r1 + s)Ψ(J2,J1 +K− r1− s) (34)

Going through all possible r1 and s, we have

Ψ(J1,J2,K) =
J1−1

∑
r1=1

K−1

∑
s=1

r1K [Ξ1 (J2;r1,J1,s,K)+Ξ0 (J2;r1,J1,s,K)]

(35)

Summarising (30), (31), (32) and (35), the final result is
compouned by

Φ(J1,J2,K) =Φ00(J1,J2,K)+Φ01(J1,J2,K)

+Φ10(J1,J2,K)+Ψ(J1,J2,K)
(36)

D. Genus-n Cell Case

Let Ω be a genus-n cell, with its outer boundary denoted
by ω and inner boundaries denoted by ω1, · · · ,ωn. The edges
and their order in each boundary are given by (27) and

ω
i = (α i

1, · · · ,α i
Ji
),∀i = 1, · · · ,n (37)

Again, we assume that all ω i must be connected, or else the
disconnected inner parts can be safely discarded, then the
genus-n problem becomes a lower-genus problem.

Similar to our discussion of the genus-two cell, the whole
division of a genus-n cell can be seen as an (n + 1)-stage
process. At each stage, ω i is added to one of the sub-cells,
transforming it into a genus-one sub-cell. Then, exactly two
new cutting paths are required to transform this sub-cell
again into two simply-connected sub-cells. After n stages,
Ω becomes an enssemble of simply-connected sub-cells. The
process is illustrated by Fig. 9.

E. Complexity Analysis of Solving Genus-n Cells

The number of different divisions can be classified based on
whether each inner part is connected. For a genus-n cell, define
the subscript Tn as a binary string with length n, where the
digit sum of Tn is N(Tn). For example, N(Tn) = 0 represents
the case that none of the inner boundaries are connected. In
this case,

Φ0···0(J1, · · · ,Jn,K) = 2J1 + · · ·+2Jn +2K (38)

If N(Tn) = 1, e.g., ω and ω1 are connected - and a genus-
(n−1) structure is kept after the whole division - the number
of divisions are

Φ10···0(J1, · · · ,Jn,K) = Ψ(J1,K)+2J2 + · · ·+2Jn (39)

There are (C1
n − 1) terms with N(Tn) = 1, e.g., Φ010···0 to

Φ0···01, that can be calculated through exchanging the indices.
Similarily, an example for N(Tn) = 2 can be given by

Φ110···0(J1, · · · ,Jn,K) = Ψ(J1,J2,K)+2J3 + · · ·+2Jn (40)

and (C2
n −1) terms can be calculated through exchanging the

indices,
· · ·

Φ1···10(J1, · · · ,Jn,K) = Ψ(J1, · · · ,Jn−1,K)+2Jn (41)

with other (Cn−1
n −1) similar terms satisfying N(Tn) = n−1.

By induction, all the above mentioned terms can be calcu-
lated except for the one satisfying N(Tn) = n. After the first
stage, we can choose which sub-cell each ω i, i = 2, · · · ,n will
eventually lie in, and ΞTn−1 are used to consider each situation,
with the i-th binary digit in Tn−1 representing that ω i lies in
sub-cell 1 or sub-cell 2. Let B(T, i) be the value of the i-th
digit in T ,

B(T, i) =
T

2n−i mod 2 (42)

then

ΞTn−1(J2, · · · ,Jn;r1,J,s,K)

=Ψ(Ji2 , · · · ,JiP ,r1 + s)Ψ(JiP+1 , · · · ,Jin ,J+K− r1− s)
(43)

where i2, · · · , in are specified by{
B(Tn−1, i j) = 1, j = 2, · · · ,P
B(Tn−1, i j) = 0, j = P+1, · · · ,n.

(44)

It is easy to see that the order of Ji∗ does not effect the
result in (43). So

Ψ(J1, · · · ,Jn,K) =
J1−1

∑
r1=1

K−1

∑
s=1(

r1K
2n−1−1

∑
Tn−1=0

ΞTn−1(J2, · · · ,Jn;r1,J,s,K)

) (45)

Summarising the results from (38), (39), (40), (41), (45),

Φ(J1, · · · ,Jn,K) =
2n−2

∑
Tn=0

ΦTn(J1, · · · ,Jn,K)

+Ψ(J1, · · · ,Jn,K)

(46)
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(a) (b) (c) (d)

Fig. 10. Proposed NCPP applied to a Mobiüs strip (a) Examples of
different configurations. (b) Coverable area of each the corresponding (colour)
configuration. (c) Topological graph (d) One optimal solution requiring 1 lift-
offs.

(a) (b) (c) (d)

Fig. 11. Proposed NCPP applied to a closed surface ring(a) Examples of
different configurations, where it becomes apparent that significant discon-
tinuities will be inevitable without proper planning should the manipulator
motion stretch in and out of the ring. (b) Continuous coverable area of three
(colour) configurations, all of them being genus-one cells. (c) Topological
graph generated. (d) One optimal solution, where only 1 lift-off is required.

VIII. EXPERIMENTAL RESULTS

Several representative simulation works have been imple-
mented to validate the proposed algorithm on challenging
arbitrarily-shaped objects.

Fig. 10 presents the solution of polishing a Mobiüs strip,
whose surface is non-orientable. The manipulator is required
to maintain the EE normal to the surface for proper operation
simulating a contact task such as polishing. This is rather
challenging in this case since the strip is twisted, hence the
orientation of the normal vector varies over the full 2π rads.
However, the proposed algorithm is able to come up with an
configuration mapping leading to an optimal solution where
only 1 lift-off is required over the entire object.

Fig. 11 depicts the process of covering the surface of a
“swimming” ring, another closed surface with no boundary.
This is a particularly challenging case, it can be seen how the
topological graph is formed by cells which are all multiply-
connected, yet the proposed algorithm is able to come up with
an effective solution with a single configuration discontinuity
to the NCPP problem.

The examples in Fig. 2, Fig. 12 and Fig. 13 illustrate the
solutions of covering a “hilly terrain” with varying degrees
of desirable manipulability [21]. For a given configuration
(colour) cell, the manipulability is explicitly depicted brighter
for increasing manipulability for the given configuration. The
threshold varies from a minium of 0.06 (Fig. 2) to at least 0.10
(Fig. 12), up to at least 0.16, the maximum where a solution
can be found for the object (in Fig. 13).

As one would expect, a sharp reduction on the reachable
area is observed as the manipulability tightens (mainly due
to the limited mobility of the wrist-flipped configurations,
shown in the bottom two configurations in Fig. 12(a)), causing
large fluctuations in the structure of the resulting cells and
topology graphs. When the threshold goes to 0.16, most of the

(a) (b) (c) (d)

Fig. 12. (a) Examples of configurations belonging to different colours, where
the threshold of manipulability at each point is set to > 0.1. (b) Coverable
area of the corresponding colours. We can see the wrist-flipped configurations
can only cover reduced areas, and the configurations can no longer reach the
area near the base of the manipulator (as compared with Fig. 2, where the
minimum threshold is set to > 0.06). (c) Topological graph. (d) An optimal
solution with 1 lift-off.

(a) (b) (c) (d)

Fig. 13. Like Fig. 12, where the threshold of manipulability is set to > 0.16.

kinematic-valid wrist-unflipped configurations are no longer
valid, as depicted in Fig. 13.

IX. CONCLUSION

This paper has proposed a theoretical complete solution to
the optimal non-revisting coverage task problem of arbitrarily
shaped objects with a non-redundant manipulator. Given topo-
logical graphs of surface cells corresponding to feasible and
continuous manipulator configurations, the scheme ensures
optimality with respect to the number of surface discontinu-
ities, and is able to deal with non simply-connected space
topologies, which arise for complex objects and as the number
of task constraints limit the set of feasible configurations.

In considering the generic solution to non simply-connected
cells found in realistic environments, the proposed scheme ef-
fectively transforms the optimal CPP problem into an optimal
colour designing problem of a topological configuration graph
where a systematic solution for all genus cells is proposed.
Through efficiently discarding equivalent and non-optimal
cellular decompositions, the finiteness of divisions has been
proven, and an upper bound in the number of divisions is
calculated.

Challenging simulation scenarios suplemented by a video
are provided to validate the proposed scheme.
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