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Random Hyperboxes
Thanh Tung Khuat , Student Member, IEEE, and Bogdan Gabrys , Senior Member, IEEE

Abstract—This paper proposes a simple yet powerful ensemble
classifier, called Random Hyperboxes, constructed from individ-
ual hyperbox-based classifiers trained on the random subsets of
sample and feature spaces of the training set. We also show
a generalization error bound of the proposed classifier based
on the strength of the individual hyperbox-based classifiers as
well as the correlation among them. The effectiveness of the
proposed classifier is analyzed using a carefully selected illus-
trative example and compared empirically with other popular
single and ensemble classifiers via 20 datasets using statistical
testing methods. The experimental results confirmed that our
proposed method outperformed other fuzzy min-max neural
networks, popular learning algorithms, and is competitive with
other ensemble methods. Finally, we identify the existing issues
related to the generalization error bounds of the real datasets
and inform the potential research directions.

Index Terms—General fuzzy min-max neural network, clas-
sification, random hyperboxes, randomization-based learning,
ensemble learning.

I. INTRODUCTION

ARandom Hyperboxes (RH) classifier is an ensemble
model containing many individual hyperbox-based learn-

ers, e.g., fuzzy min-max neural networks (FMNNs) [1], trained
on random subsets of both instances and feature spaces. One
of the key characteristics of hyperbox-based classifiers is the
single-pass through the training data learning ability. Based
on this incremental learning ability, new data and classes can
be added to the model without retraining the whole network.
Another interesting characteristic of hyperbox-based models
is their interpretability thanks to the human understandable
rule sets which can be extracted directly or indirectly from
hyperboxes. Interpretability is one of the key requirements
when applying machine learning algorithms to high-stakes
applications such as medical diagnostics, financial investment,
self-driving systems, and criminal justice [2].

The random hyperboxes model can be categorized into the
family of ensemble classifiers, which build many base estima-
tors and then combine them to create a final model. It is well-
known that ensemble models are usually much more accurate
than their base learners [3]. There are two main methods to
construct an ensemble model when using resampling methods
and the same type of base learners. The first one aims to build
many independent or low correlation individual estimators and
combining their predictive outputs using majority voting or
averaging approach. The representative models for this group
include Bagging [4] and Random Forests [5]. The second
paradigm consists of algorithms building base estimators in
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a sequential manner, where the newly added learner tries
to correct errors generated by previous classifiers. Adaptive
boosting (Adaboost) [6] and Gradient Boosting Machines [7]
are typical algorithms under the boosting framework. Extreme
Gradient Boosting (XGBoost) [8] and LightGBM [9] are two
recent effective and scalable implementations of the gradient
boosting algorithm.

Our random hyperboxes classifier belongs to the first group
because it shares the same principle with the bagging, i.e.,
using individual hyperbox-based learners with low correlation
and combining their outputs by the majority voting. As shown
in a recent study on hyperbox-based machine learning algo-
rithms [10], there is only one study [11] related to the use
of bagging techniques with hyperbox-based models as base
learners and another one which is concerned with method
independent learning approaches for constructing either en-
sembles or individual hyperbox-based classifiers [12]. In their
work, after training individual hyperbox-based estimators on
different subsets of the training sets, the resulting base learners
are combined at the decision level using the majority voting
or averaging of membership values or combined at the model
level into a single model. However, as it has been frequently
shown resampling methods used with bagging like algorithms
operating only in the sample space can generate a limited level
of diversity amongst the base classifiers trained in this way. As
the diversity amongst the base learners is of key importance
[13], there is another mechanism needed for making the
resulting ensembles more effective and well performing. Based
on Lemma 1, adapted from [14], it can be seen that the high
correlation between base learners leads to a high testing error
for the average classifier. To cope with this problem, we will
lower the correlation but without significantly increasing the
variance σ of individual hyperbox-based learners by using only
a subset of features when building base estimators. This fact
can be achieved by utilizing feature subsets selected randomly
for training each base classifier besides the subsets of samples.
The use of a subsampling technique for both sample and
feature spaces to construct the ensemble model constitutes
the core principle of the random hyperboxes classifier. From
surveys on hyperbox-based machine learning algorithms [10]
and fuzzy min-max neural networks [15], it can be observed
that this paper is the first study using randomized hyperbox
estimators trained on subsets of both samples and features to
construct an ensemble model.

Lemma 1. Given m identically distributed random variables
(not necessarily independent) with the variance of each
variable σ2 and positive pairwise correlation ρ, the variance
of the average random variable is:
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ρ · σ2 +
1− ρ
m
· σ2 (1)

Proof. See section I in the supplementary material.

The use of subsets of features in building classifiers re-
sults in many effective models such as randomized trees on
geometric feature selection [16], the random subspace-based
decision forests [17], and random forests [5]. Recently, there
have been several studies focusing on employing random
projections of the feature vectors into a lower-dimensional
space to form training data for classifiers such as Fisher’s
linear discriminant [18], random projection neural network
[19], or a general framework of random-projection based
ensemble models [20]. These results have provided further
motivation for the proposed random hyperboxes classifier.

One of the interesting characteristics of the proposed clas-
sifier is that it is easy to scale with large-sized training sets
because each base learner can be constructed independently,
so the learning process may be parallelised easily. Our contri-
butions in this paper can be summarized as follows:
• We propose a new ensemble classifier built from indi-

vidual hyperbox-based learners using random subsets of
both sample and feature spaces.

• We derive a generalization error bound of the RH clas-
sifier based on the strength and correlation between base
learners.

• We analyze the effectiveness of the RH classifier in
comparison to its base learners concerning the decrease
in the variance of the ensemble model and the increase
in the accuracy. We have also conducted extensive ex-
periments on 20 datasets to compare the performance of
the proposed method to other FMNNs as well as popular
single and ensemble classifiers.

• We discuss the generalization error bounds on the real
datasets and inform the open research directions.

The rest of this paper is structured as follows. Sec-
tion II presents the general fuzzy min-max neural network
(GFMMNN) and its learning algorithms used for base learners.
In section III, the formal description of the proposed method
is provided and the generalization error bounds are derived.
Section IV is devoted to experimental results. We discuss
several issues concerning the generalization error bounds on
the real datasets and identify the open problems in Section V.
Section VI concludes the findings and proposes directions for
the future work.

II. PRELIMINARIES

A. Related Work

An overview and development process of hyperbox-based
classifiers can be found in our recent survey paper [10]. In this
section, we focus only on a specific class of hyperbox-based
classifiers, i.e., fuzzy min-max neural networks. The main
purpose is to introduce briefly the main concepts and ways
of working of different FMNNs and their learning algorithms
used as baselines in the experimental section in this paper.

A fuzzy min-max neural network for classification problems
was introduced by Simpson in [21]. The FMNN uses an

incremental learning mechanism along with a membership
function to form hyperboxes covering the training input pat-
terns. There are three main steps in its learning algorithm
including expansion of the current hyperboxes or creation of
new hyperboxes, overlap test, and hyperbox contraction. In
the later studies, there were many variants aiming to enhance
the classification performance of this kind of neural network.
The GFMMNN [1] is a significant improvement of the FMNN
by building a single framework for both classification [21]
and clustering [22]. Given a training set, there are two types
of learning algorithms used to train the GFMMNN, i.e., the
incremental (online) learning [1] and agglomerative (batch)
learning [23]. The batch learning algorithm starts with all of
the training samples and then repeatedly merges hyperboxes
from the same class satisfying the maximum hyperbox size
(θ), minimum similarity threshold (σs), and no generation of
overlapping regions with hyperboxes of other classes criteria.
The training time of this algorithm can be long because of
the iterative computation of membership and similarity values
between all pairs of existing hyperboxes. In contrast, the
online learning algorithm is much faster since it uses a single
pass mechanism through learning samples to build and adjust
hyperboxes. However, the hyperbox contraction process to
resolve hyperbox overlapping areas and only a single pass
through the data can result in a decrease in predictive accuracy
[24]. In a recent study, an improved online learning algorithm
for the GFMMNN, called IOL-GFMM, has been proposed
to combine the strong points of both incremental and batch
learning algorithms to overcome the disadvantage of hyperbox
contraction process in the original online learning algorithm
[25]. It is noted that all of the existing learning algorithms
of the GFMMNN can be accelerated by taking advantage
of parallel computing power of GPUs [26] or modifying the
learning algorithms based on the mathematical lemmas [27].

As discussed in [11], GFMMNNs can be used as base
learners in forming an ensemble of GFMMNN classifiers
combined using a majority voting mechanism at the decision
level. As an alternative way of generating well performing
classifier, hyperboxes from these multiple base learners can
be used as input patterns to the GFMM learning algorithms
to construct a single GFMMNN which was referred to as a
combination at the model level. Another research [12] also
showed that both incremental and batch learning algorithms
can be used to construct the basic components with single or
multi-version GFMMNNs using a wide range of independent
statistical learning methods appropriate for problems with a
demand for dynamically adaptable models.

Another branch of studies was related to the improvements
of specific steps in the learning algorithms for the FMNN
used as baselines in the experiment section to compare the
classification performance with the proposed RH classifier. An
enhanced fuzzy min-max neural network (EFMNN) proposed
in [28] was one of such learning algorithms. It added more
conditions for the overlap test process. In the follow up study,
the same authors continued to improve the hyperbox expansion
process by employing a K-nearest neighbor principle to choose
up to K hyperbox candidates instead of only one candidate
as in the original EFMNN [29] to build a new learning
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algorithm denoted as KNEFMNN. In a recent study, a refined
fuzzy min-max neural network (RFMNN) [30] was introduced
along with a new hyperbox contraction procedure and a new
general formula covering all of the potential overlapping cases
between two hyperboxes.

In the next sections, we will present a general structure
of the GFMMNN and an improved online learning algorithm
used to train this model.

B. General Fuzzy Min-Max Neural Network

We recall that the RH classifier is constructed from base
learners which can deploy any hyperbox-based machine learn-
ing algorithms. However, in this paper, we use the GFMMNN
as base learners to assess the efficiency of the proposed
method. Therefore, this part provides the readers with some
basic knowledge of the GFMMNN and its learning algorithms.

The GFMMNN structure includes three layers, in which the
input layer can accept both crisp and fuzzy data. Therefore,
the input layer contains 2p nodes corresponding to p features
of the input data which can be represented in the form of
lower and upper bounds (i.e. as a real interval). The second
layer consists of hyperboxes dynamically created during the
learning process. The connection weights between the first
and the second layers are the minimum points V and the
maximum points W of hyperboxes, which are adjusted in the
learning process. The connection between the hyperbox Bi in
the second layer and an output node ci in the third layer uij
is stored in the matrix U such that:

uij =

{
1, if class(Bi) = cj

0, otherwise
(2)

In the GFMMNN, the degree of fit of each hyperbox
Bi = [Vi,Wi], where minimum point Vi = [vi1, . . . , vip] and
maximum point Wi = [wi1, . . . , wip], with respect to each
input pattern x = [xl,xu] is computed using a membership
function as Eq. (3).

bi(x, Bi) =
p

min
j=1

(min([1− f(xuj − wij , γj)],

[1− f(vij − xlj , γj)]))
(3)

where f(ξ, γ) is two-parameter ramp function described in
Eq. (4), γ = (γ1, γ2, ..., γp) contains the sensitivity parameters
regulating the decreasing speed of the membership values, and
0 ≤ bi(x, Bi) ≤ 1.

f(ξ, γ) =





1, if ξ · γ > 1

ξ · γ, if 0 ≤ ξ · γ ≤ 1

0, if ξ · γ < 0

(4)

In the classification phase, assuming that the membership
value between the input x and the hypberbox Bi is the highest
compared to other existing hyperboxes, the predictive class of
the model for the input x is the class of Bi.

C. An Improved Online Learning Algorithm for GFMMNN

IOL-GFMM [25] is an improved learning version of the
original online learning algorithm [1] used to train the

GFMMNN, which aims to deal with the drawbacks of the
hyperbox contraction procedure. Similarly to the agglomera-
tive (batch) learning algorithm [23], this algorithm does not
allow any overlapping areas between the expanded hyperbox
candidate and the hyperboxes belonging to other classes. As
a result, the learning process of the IOL-GFMM algorithm
contains only two main steps, i.e., hyperbox expansion or
creation and hyperbox overlap test.

1) Hyperbox Expansion:
For each input pattern x = [xl,xu] with a class label cx,

the algorithm first selects all existing hyperboxes representing
the same class as cx and then computes the membership
functions between x and these hyperboxes. If the maximum
membership value is one, then it means that there is an existing
hyperbox fully containing x and thus the algorithm continues
with another input sample. Otherwise, the selected hyperboxes
will be checked if they satisfy the expansion conditions starting
from the hyperbox candidate with the maximum membership
value and, if needed, the other hyperboxes in descending order
of membership values. This process will be terminated if a
hyperbox candidate Bi meets all expansion conditions. There
are two expansion conditions, i.e., the maximum hyperbox
size shown in Eq. (5) and non-overlapping with hyperboxes
belonging to other classes.

max(wij , x
u
j )−min(vij , x

l
j) ≤ θ, ∀j ∈ [1, p] (5)

If the condition in Eq. (5) is satisfied, the hyperbox Bi will
temporarily be extended to new sizes as follows:

wij ← max(wij , x
u
j ); vij ← min(vij , x

l
j), ∀j ∈ [1, p] (6)

Then, this newly expanded hyperbox Bi will be checked
for overlap with the existing hyperboxes representing other
classes.

2) Hyperbox Overlap Test:
The overlap test procedure between the newly expanded

hyperbox Bi and the existing hyperboxes belonging to other
classes is performed using four overlap test cases presented
in our previous papers [25], [1]. If there are any overlapping
regions appearing, the coordinates of Bi are reverted to the
ones before extending, and another hyperbox candidate is
considered. Otherwise, the new size of Bi is maintained and
the learning algorithm continues with the remaining training
input patterns. We would like to refer the readers to [25], [27]
for more details of this algorithm along with its pseudo code
and complexity analysis.

III. PROPOSED METHOD

A. Formal Description

Let us denote by Tn = {(xi, ci)}ni=1 a training data where
xi ∈ X ⊂ Rp is a p-dimensional vector of observations (i.e.
features) and ci ∈ C, C is a set of categorical variables denoting
classes to which the observations fall. Given an input x, our
goal is to build an ensemble classifier which predicts class c
from x using the training data Tn.

Please note that for the theoretical considerations of the
proposed algorithm covered in this section and the discussion
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of the convergence properties and the derivation of generali-
sation error bounds presented in Section III-C, an assumption
is made that the observations are independent and identically
distributed (i.i.d.) random variables.

A random hyperboxes model with m hyperbox-based learn-
ers is a classifier including a set of randomized base hyper-
box models h(x,Φ1), . . . , h(x,Φm), where Φ1, . . . ,Φm are
i.i.d. random vectors of a randomizing vector Φ, independent
conditionally on X, C, and Tn. Each individual hyperbox-
based learner h(x,Φi) is constructed using the training set
Tn and a random vector Φi. Φi introduces the randomness to
the building process of hyperbox-based learners including the
determining of a subset TΦi

of the full training data Tn as well
as determining a subset of features xΦi

used. After a large
number of hyperbox-based learners genereated, the random
hyperboxes estimator takes the class with most votes among
base learners as its predictive result. Formally, the definition
of the random hyperboxes classifier can be stated as follows:

Definition 1. A random hyperboxes model is a classifier
including a set of hyperbox-based learners {h(x,Φi) : i =
1, . . . ,m}, where {Φi} are independent and identically dis-
tributed random vectors of a model random vector Φ inde-
pendent conditionally on sample space (X, C) and the training
set Tn. Each hyperbox-based learner gives a unit vote based
on the class of the hyperbox with the maximum membership
degree with respect to the input pattern x. The predictive
result of the random hyperboxes model is the aggregation of
predictive results from its base learners using a majority voting
method.

In particular, the predictive class (ck ∈ C) with respect to
input data x of a random hyperboxes classifier including m
base learners (let Φ(m) = {Φ1, . . . ,Φm}) can be shown as
follows:

h(x,Φ(m)) = argmax
ck∈C

1

m

m∑

i=1

1(h(x,Φi) = ck)

where 1(·) is the indicator function. According to the strong
law of large numbers, when the number of base learners in-
creases, we almost surely obtain lim

m→∞
h(x,Φ(m)) = h(x,Φ),

where h(x,Φ) = argmax
ck∈C

EΦ[1(h(x,Φ) = ck)] (Here EΦ

denotes the expectation with regard to the random variable
Φ).

Algorithm 1 Training algorithm of the Random hyperboxes
Input: training set T , sampling rate for samples rs, maximum number of used features
mf , number of base estimators m, maximum hyperbox size θ, sensitivity parameter
γ
Output: A random Hyperboxes model H

i = 1;H← ∅
for i ≤ m do
Ti ← Perform subsampling on T with rate rs
d← Generate a uniform random number in the range of [1,mf ]
Td
i ← Random sampling d features of Ti

hi ← IOL-GFMM(Td
i , γ, θ)

H← H ∪ hi

i = i+ 1
end for
return H

Each random hyperbox-based learner h(x,Φ) is formed as
follows. We select randomly a subset Tl including l < n
samples from the full training data Tn using subsampling
method without replacement under weak assumptions l → 0
and rs = l/n → 0 as n → ∞. According to [31], under
the weak convergence hypothesis, the sampling distributions
of Tl and Tn should be close, and they will converge to the
true unknown distribution of whole sample space. After that,
we will select at uniformly random d (1 ≤ d ≤ mf ≤ p)
features from p features of Tl to form a training set T (d)

l for
h(x,Φ), where mf is the maximum features used for each
base learner. There are many learning algorithms which could
be used to train the base hyperbox-based classifier h(x,Φ) on
T

(d)
l . This study uses the IOL-GFMM [25] to build the base

estimators. This is a new online learning algorithm of GFMM
which integrates the advantages of the incremental learning
and batch learning algorithms for the building process of a
GFMMNN. It is noted that the base model h(x,Φ) is trained
on only d features of Tn, so in the classification step, h(x,Φ)
only makes prediction using the same d features with respect
to the unseen sample x. The learning and classification steps
for each base learner are kept the same as in the IOL-GFMM
algorithm.

The basic steps of the building process of the random
hyperboxes classifier are shown in Algorithm 1.

B. Time Complexity
Based on Algorithm 1, it is easily observed that the time

complexity of a random hyperboxes model depends mainly
on the time complexity of the training process for each base
learner. As discussed in [27], the time complexity of the IOL-
GFMM algorithm trained on a dataset containing n samples
with p features is O(n · K · R · p), where K is the average
number of expandable hyperbox candidates and R is the
average number of hyperboxes representing classes different
from the input pattern class for each iteration in the training
process. For the random hyperboxes model, each base learner
is trained on only l < n samples with the maximum mf < p
features. Therefore, the time complexity of each base learner
in the worst case is O(l ·K ·R·mf ). We need to build m base
learners for a random hyperboxes classifier. As a result, if the
base learners are sequentially constructed, the time complexity
of training a random hyperboxes model in the worst case is
O(m · l · K · R ·mf ).

C. Properties of the Random Hyperboxes
1) The Convergence of the Random Hyperboxes Model:
Let x be a random sample, drawn from the sample space, to

be classified with true class c. Let Tn be a random training set
drawn i.i.d. from the true distribution of sample space (X, C).
Given an ensemble of m base learners h1(x), . . . , hm(x),
where hi(x) ≡ h(x,Φi), we can define a margin function
of a random hyperboxes model with m base estimators for an
input sample x as Eq. (7):

M(x, c) =
1

m

m∑

i=1

1(hi(x) = c)−max
j 6=c

1

m

m∑

i=1

1(hi(x) = j)

(7)
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where 1(·) is the indicator function.

Remark. The margin can be considered as a confidence
measure with respect to the classification result of the random
hyperboxes model. A large margin increases the confidence in
predictive results for observations and vice versa.

Based on the above margin function, the generation error
of the random hyperboxes model is defined as follows:

Definition 2. The generalization error is the probability PX,C
measured in the sample space (X, C) that gives a negative
margin: E = PX,C(M(x, c) < 0)

Lemma 2. When the number of base estimators increases
(m → ∞) and base estimators are independent, for almost
surely all i.i.d. random vectors Φ1,Φ2, . . ., the margin function
for a random hyperboxes model M(x, c) at each input x
converges to:

M∗(x, c) = PΦ(h(x,Φ) = c)−max
j 6=c

PΦ(h(x,Φ) = j) (8)

Proof. See section II in the supplementary material.

From definition 2 and lemma 2, we achieve the following
theorem for the convergence of generalization error:

Theorem 1. When the number of base learners in-
creases (m → ∞), for almost surely all random vectors
Φ1,Φ2, . . ., the generalization error E converges to: E∗ =
PX,C [M∗(x, c) < 0]

This theorem explains that the random hyperboxes model
does not overfit when more base learners are added to the
model if hyperbox-based learners are independent and under
the i.i.d. assumption. In the next subsection, the upper bound
of the generalization error will be derived.

2) Generalization Error Bound:
Based on Lemma 1, we can observe that to decrease

the variance of the average classifier, we need to reduce
the correlation of base learners. However, if the correlation
decreases, the variance of base learners usually increases, and
it makes the reduction of the prediction error harder. The
correlation among base learners can be easily decreased by
increasing base models’ randomness. However, in this way the
variance of the base learners will also be increased. Therefore,
we should not let the variance increase too fast. To cope
with this issue, we can inspect and monitor the change in
the generalization error bound.

Instead of having a fixed number of base estimators m, let
us assume that we have a fixed probability distribution for the
random vector Φ from which base models are constructed.
Similarly to random forests [5], we can define the strength of
the random hyperbox model based on the limit of the margin
function as follows:

Definition 3. The strength of the random hyperboxes model
is defined as:

S = EX,CM∗(x, c) (9)

where EX,C is the expectation through the (X, C) space.

Assuming that S > 0, according to Chebyshev’s inequality,
we have:

E∗ = PX,C [M∗(x, c) < 0] ≤ PX,C [S −M∗(x, c) ≥ S]

= PX,C [|M∗(x, c)− S| ≥ S] ≤ VarX,C(M∗(x, c))
S2

This is a weak upper bound of the generalization error, and
it indicates that the prediction error is always lower than an
explicit but unknown limit. The value of S can be estimated
over the training set Tn as follows:

S =
1

n

n∑

i=1

M(xi, ci)

=
1

nm

n∑

i=1

( m∑

k=1

1(hk(xi) = ci)−max
j 6=ci

m∑

k=1

1(hk(xi) = j)
)

Let J(x, c) = argmax
j 6=c

PΦ(h(x,Φ) = j) be the class j

leading to the most incorrect classification of base learners
with respect to the input x. Then, we can define a raw margin
function for each base learner at each input x as follows:

Definition 4. The raw margin function is defined by:

R(Φ) = R(x, c,Φ) =1(h(x,Φ) = c)

− 1(h(x,Φ) = J(x, c))
(10)

Following from the above definition,

M∗(x, c) = PΦ(h(x,Φ) = c)−PΦ(h(x,Φ) = J(x, c))

= EΦ [1(h(x,Φ) = c)− 1(h(x,Φ) = J(x, c))]

= EΦR(Φ)

It means that the limit of the margin values is the expectation
of raw margin values computed over all realizations of Φ.

From the above raw margin function, we now can define
the correlation between two hyperbox-based learners h(x,Φi)
and h(x,Φj) generated from two i.i.d. random vectors Φi and
Φj as follows:

Definition 5. The correlation between two hyperbox-based
learners h(x,Φi) and h(x,Φj) of a random hyperboxes model
can be calculated from the raw margin function through all
observations as follows:

ρX,C(Φi,Φj) =
CovX,C(R(Φi),R(Φj))

σX,C(R(Φi))σX,C(R(Φj))
(11)

where Cov is the covariance, σX,C(R(Φi)) denotes the
standard deviation of R(Φi), holding Φi fixed, computed over
observations.

Generally, the average correlation between base learners in
the random hyperboxes models is computed through all pairs
of two i.i.d. random vectors Φ and Φ′ as follows:

ρ = EΦ,Φ′ [ρX,C(Φ,Φ
′)] (12)

From the average correlation between base learners and the
strength S, we have the following theorem for the upper bound
of the generalization error:

Theorem 2. An upper bound of the generalization error
for the random hyperboxes model can be estimated from
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the strength of base learners and correlation between base
learners as follows:

E∗ ≤ ρ
( 1

S2
− 1
)

(13)

Proof. See section III in the supplementary material.

IV. EXPERIMENTAL RESULTS

It is noted that the derivations and proofs in the previous
section have been carried out under the i.i.d. assumption
which in practice is difficult to verify and is very often
not satisfied. In this section and the supplementary materials
we are, therefore, conducting extensive bench-marking and
experimental evaluation of the proposed method to also verify
its practical characteristics and performance. In this study, we
consider the multi-class imbalanced classification problem, so
the weighted-F1 measure has been used as a more suitable
and less biased performance assessment measure than the often
used classification accuracy. This measure was effectively used
in many recent studies to assess the classification performance
of predictive models on many practical multi-class imbalanced
datasets [32], [33], [34], [35]. Weighted-F1 score is the average
F1 score of each class weighted by the support which is the
number of patterns of each class. Formally, the weighted-F1
score is defined as Eq. (14):

Weighted F1 =

|C|∑

i=1

ni

nt
· 2 · precisioni · recalli
precisioni + recalli

(14)

where |C| is the number of classes, nt is the total number of
testing samples, and ni is the number of samples for the i-th
class in the testing set.

A. Analyzing the Random Hyperboxes Classifier

1) The Decrease in the Variance Compared to Base Learn-
ers:

To conduct this experiment, we used six datasets with
diversity in the numbers of samples, features, and classes.
All of the experimental results are shown in subsection IV.A
in the supplemental material. This section only illustrates the
results for a dataset of the one-hundred plant species leaves
for margin [36]. This dataset includes 1600 samples with 64
features and 100 classes. We performed 10 times repeated 4-
fold cross-validation to evaluate the ensemble model with 100
base learners. Therefore, there are 4000 base learners using
the IOL-GFMM algorithm and 40 random hyperboxes models
generated. The variance values in terms of weighted-F1 scores
of base learners and the random hyperboxes models are shown
in Fig. 1. The variance values of other datasets are shown in
Fig. S1 in the supplemental material. These results confirmed
that the variance of random hyperboxes models using simple
majority voting is significantly reduced compared to their base
learners, so its classification accuracy is also higher than that
of base estimators.

In this experiment, we set the maximum number of used fea-
tures mf = 2

√
p = 16 (for the plant species leaves margin

dataset) and 50% of the training data samples were randomly
selected to train each base learner. The probability of the
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Fig. 1. The variances of RH models and their base learners
(plant species leaves margin dataset).

number of features, d, used to build the 4000 base learners
is shown in Fig. S2 in the supplementary document. The
importance scores of features through all base learners can
be identified using the used probability of each feature, as
shown in Fig. S3 in the supplementary file.

Based on the probability that each feature is used in
4000 base learners, we can determine the contribution of
the combination of features to the performance of each
classifier. Therefore, we have trained a single model using
the IOL-GFMM algorithm using top-K most used features
(K = 1, . . . , p) (p = 64 for the plant species leaves margin
dataset) in each iteration. Fig. 2 shows the average weighted-
F1 scores for 40 testing folds (10 times repeated 4-fold cross-
validation) for each top-K of the most often used features in
the plant species leaves margin dataset. The results for the
other datasets can be found in Fig. S4 in the supplemental
document. It can be seen that the single model usually
achieves the best performance if it is trained on all features.
However, by using the random hyperboxes method with base
learners trained on only a maximum of mf features, we can
obtain a higher accuracy than the single model trained on all
features. Furthermore, in several datasets such as ringnorm
and connectionist bench sonar, the best performance is often
obtained when using a subset of the most crucial features.
It is due to the fact that the redundant features can prevent
the single GFMM model from learning the true distribution
of the underlying data with a given finite number of training
samples. Therefore, the use of the random hyperboxes model
of which base learners are trained on a subset of features
can capture the data distribution more effectively and achieve
better classification performance compared to the case of
employing of a single GFMM model.

In general, the RH classifier can achieve much better
performance compared to the single GFMMNN using the IOL-
GFMM algorithm with a full feature space, especially for
very high dimensional datasets. These results are shown in
subsection IV.B in the supplementary material.

2) The Roles of the Number of Base Learners and Maximum
Number of Used Features:

This experiment is to assess the sensitivity of hyper-
parameters such as the number of base learners and the
maximum number of used features on the performance of
the random hyperboxes model. We used eight datasets with
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Fig. 2. Average weighted-F1 scores through 40 testing folds of
a single model using training sets with top-k most used features
(plant species leaves margin dataset).

diversity in the numbers of samples, classes, and features for
this purpose. All of the empirical results can be found in
subsection IV.C in the supplemental material. This section only
illustrates the outcomes of the same dataset used in subsection
IV-A1. To evaluate the impact of the number of base learners
on the performance of the random hyperboxes model, we kept
the maximum number of used features mf = 2 ·√p (mf = 16
in this case), the maximum hyperbox size of each base learner
θ = 0.1, and 50% of samples were randomly selected to train
each base estimator. The number of base learners is set from
5 to 200 with step 5. Fig. 3 shows the average weighted-
F1 scores over 10 times repeated 4-fold cross-validation at
each threshold for the plant species leaves margin dataset.
The results for the other datasets can be found in Fig. S7 in
the supplemental document. It can be observed that the per-
formance of the random hyperboxes classifier is not reduced
as more base learners are added. These figures confirm that
the random hyperboxes classifier does not overfit when adding
more base learners.

0 50 100 150 200
Number of base learners

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
ve

ra
ge

 w
ei

gh
te

d-
F

1 
sc

or
e

plant_species_leaves_margin dataset

Fig. 3. The change in the average weighted-F1 scores when increasing the
number of base learners (plant species leaves margin dataset).

To assess the influence of the maximum number of used
features mf , we kept the number of base learners m = 100,
θ = 0.1, rs = 0.5, and changed the maximum numbers of
used features from 1 to p (p = 64 in this case). Fig. 4 depicts
the average weighted-F1 scores for 10 times repeated 4-fold
cross-validation at each value of the maximum number of
used features for the plant species leaves margin dataset. The

outcomes for the remaining datasets are shown in Fig. S8 in
the supplemental material.
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Fig. 4. The change in the average weighted-F1 scores when increasing the
maximum number of used dimensions (plant species leaves margin dataset).
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Fig. 5. Average correlation scores between base learners when increasing the
maximum number of used dimensions (plant species leaves margin dataset).

It can be easily observed that the overall trend when
increasing the maximum number of used features is that the
accuracy of the random hyperboxes classifier only increases
to a certain threshold, and then its accuracy will decrease. It
is due to the fact that the correlation between base learners
will be higher when we use too many features for each base
learner. In contrast, if too few features are used, the strength
of each base learner gets a low value, so the error of the
ensemble model will increase. This fact confirms that the
maximum number of used features is an important parameter,
which needs to be carefully selected to achieve the high
accuracy for the random hyperboxes classifier. To demonstrate
the increase of the correlation between base learners when
many features are used for each of the base learners, we
computed the average correlation scores (using Eq. (12)) of
all base learners generated from 10 times repeated 4-fold
cross-validation on the plant species leaves margin dataset
and based on the testing prediction results. In this experiment,
we used all training samples to train base learners aiming
to eliminate the impact of the numbers of used samples on
the correlation score. Therefore, the correlation scores, in this
case, are only impacted by the maximum number of used
features. Fig. 5 shows the average correlation scores for 100
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base learners trained and evaluated within 40 cross-validatory
iterations.

3) The Impact of the Maximum Hypebox Size Parameter:
The experimental results in [25], [37] indicated that

the GFMMNN’s classification performance usually decreases
when increasing the values of the maximum hyperbox size
(θ). Therefore, in this section, we assess the impact of θ on
the classification performance of the RH models. We kept the
number of base learners m = 100, mf = 2

√
p, rs = 0.5, and

changed the values of θ from 0.1 to 0.7 with a step of 0.1. We
conducted this experiment on eight datasets with a diversity
in numbers of samples, features, and classes.

Fig. 6 describes the average weighted-F1 scores over 10
times repeated 4-fold cross-validation at each threshold of
θ for the movement libras dataset. The results for the other
datasets can be found in Fig. S9 in the supplemental document.
In most of the datasets (six out of eight datasets), the clas-
sification performance of the RH models slightly decreased
when increasing the values of θ, while the remaining two
datasets only slightly increased in the classification perfor-
mance. Generally, it can be seen that the performance of
the RH models is less impacted by the choice of the values
of θ than other single hyperbox-based classifiers (as shown
in subsection IV-B1), and the difference in the classification
performance between different values of θ is usually smaller
than 5%. This relative insensitivity to the choice of hyper-
parameter θ can be regarded as additional advantage of RH
method.
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Fig. 6. The change in the average weighted-F1 scores when increasing the
maximum hyperbox size (movement libras dataset).

B. Comparing the Performance of the Random Hyperboxes to
Other Classifiers

The datasets used and parameter settings for models are
presented in subsection IV.D.1 in the supplementary document.
The following results are the average weighted-F1 scores using
10 times repeated 4-fold cross-validation. In each iteration,
three folds were used for training and hyper-parameter tuning
(if used), and one remaining fold was used as a testing set.

1) A Comparison of the Random Hyperboxes With Other
FMNNs:

This experiment compares the RH model with FMNN
[21], online learning version of GFMMNN (Onln-GFMM)
[1], agglomerative learning algorithm version 2 of GFMMNN
(AGGLO-2) [23], combination of Onln-GFMM at θ =
0.05 and AGGLO-2 [23], IOL-GFMM [25], EFMNN [28],
KNEFMNN [29], and RFMNN [30]. The classification accu-
racy results of fuzzy min-max neural networks at low values
of θ are usually better than those at high values of θ [37].
Therefore, in this experiment, we will compare the RH model
with other FMNNs using θ = 0.1 and θ = 0.7. For the RH
model, we set up mf = 2

√
p, rs = 0.5, and m = 100. We

have implemented all of these fuzzy min-max neural networks
in Python.

The average weighted-F1 scores of classifiers using 10
times repeated 4-fold cross-validation are shown in Table I
for the maximum hyperbox size θ = 0.1 and Table II for
θ = 0.7. The best result for each dataset is highlighted in
bold in the respective Tables. To facilitate the process of
evaluating the performance and performing statistical testing,
the performance of classifiers on each dataset is ranked with
the best classifier with the highest average weighted-F1 score
ranked first, and the next best performing classifier ranked
second and so on. The classifiers with the same average
weighted-F1 scores are assigned the average value of their
ranks.

Fig. 7 summarizes these results by comparing the results of
the RH classifier with the best values of other FMNNs. We
can see that in both subplots most points are located above the
diagonal line. In addition, the random hyperboxes classifier
obtains the highest average weighted-F1 scores on almost all
considered datasets. These figures illustrate the efficiency and
robustness of the random hyperboxes for both low and high
thresholds of θ. It can also be seen that the random hyperboxes
classifier achieves the best rank for both high and low values
of θ. Its average ranks are nearly twice as low as those of
the second-best classifiers. These figures show the superior
performance of the RH classifier in comparison to other types
of fuzzy min-max neural networks.
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Fig. 7. Comparison of average weighted-F1 scores of the random hyperboxes
and the best value from single FMNNs.

Using the Friedman rank-sum test [38], we can compute the
F-distribution value FF = 8.0166 from the average ranks of
models at θ = 0.1. Since the critical value of F (8, 152) for
the significance level α = 0.05 is 1.9998, the null hypothesis
is rejected. It means that there are significant differences
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TABLE I
THE AVERAGE WEIGHTED-F1 SCORES OF THE RANDOM HYPERBOXES (RH) AND OTHER FUZZY MIN-MAX NEURAL NETWORKS (θ = 0.1)

ID Dataset RH IOL-
GFMM

Onln-
GFMM

FMNN EFMNN KNEFMNN RFMNN AGGLO-2 Onln-GFMM
+ AGGLO-2

1 Balance scale 0.84976 0.85166 0.78643 0.75247 0.78619 0.78619 0.78619 0.85332 0.85166
2 banknote authentication 0.99723 0.99774 0.99774 0.99854 0.99891 0.99884 0.99898 0.99796 0.9976
3 blood transfusion 0.71903 0.7089 0.66383 0.68116 0.67464 0.66669 0.66774 0.71737 0.6728
4 breast cancer wisconsin 0.96807 0.94863 0.95227 0.96502 0.96281 0.96281 0.96281 0.94758 0.94863
5 BreastCancerCoimbra 0.69199 0.68361 0.6722 0.64681 0.66408 0.66408 0.66408 0.6722 0.68361
6 connectionist bench sonar 0.8528 0.79679 0.79725 0.81323 0.83993 0.83993 0.83993 0.79725 0.79679
7 haberman 0.66515 0.64908 0.63228 0.62469 0.64068 0.63899 0.64002 0.65031 0.65209
8 heart 0.82781 0.73711 0.76455 0.80191 0.78621 0.78621 0.78621 0.75117 0.73711
9 movement libras 0.82799 0.81226 0.8152 0.80345 0.81816 0.8164 0.81816 0.8152 0.81251
10 pima diabetes 0.71234 0.6999 0.69686 0.67605 0.70184 0.70664 0.70184 0.69394 0.6989
11 plant species leaves margin 0.74348 0.58294 0.58413 0.69625 0.7712 0.7712 0.7712 0.57974 0.58294
12 plant species leaves shape 0.60077 0.5552 0.55773 0.5003 0.50534 0.53708 0.49769 0.57325 0.57101
13 ringnorm 0.94761 0.61643 0.61425 0.78111 0.6391 0.5809 0.6391 0.61594 0.61924
14 landsat satellite 0.89232 0.88035 0.88104 0.82841 0.87867 0.88315 0.87984 0.88145 0.88177
15 twonorm 0.96986 0.93642 0.93703 0.94191 0.94523 0.94523 0.94523 0.93703 0.93642
16 vehicle silhouettes 0.70157 0.66154 0.66417 0.66377 0.68376 0.67881 0.68376 0.66505 0.66419
17 vertebral column 0.7743 0.72024 0.74241 0.73968 0.74319 0.74631 0.74283 0.75287 0.72582
18 vowel 0.96492 0.96504 0.96333 0.95463 0.96909 0.96818 0.96909 0.96312 0.9655
19 waveform 0.83075 0.75629 0.75849 0.75236 0.76704 0.76704 0.76704 0.75838 0.75629
20 wireless indoor localization 0.98361 0.97906 0.97937 0.9779 0.9811 0.9841 0.981 0.97831 0.97831

Average rank 2 6.275 6.175 6.65 4.025 4.25 4.275 5.425 5.925

TABLE II
THE AVERAGE WEIGHTED-F1 SCORES OF THE RANDOM HYPERBOXES (RH) AND OTHER FUZZY MIN-MAX NEURAL NETWORKS (θ = 0.7)

ID Dataset RH IOL-
GFMM

Onln-
GFMM

FMNN EFMNN KNEFMNN RFMNN AGGLO-2 Onln-GFMM
+ AGGLO-2

1 Balance scale 0.84206 0.72088 0.72088 0.65996 0.74475 0.71665 0.78225 0.83147 0.82594
2 banknote authentication 0.95216 0.7017 0.75738 0.84161 0.74829 0.76439 0.82741 0.9949 0.99351
3 blood transfusion 0.68629 0.71283 0.50747 0.51013 0.60178 0.59096 0.66797 0.70812 0.66711
4 breast cancer wisconsin 0.96644 0.96098 0.92804 0.91483 0.92646 0.9492 0.96119 0.95651 0.95757
5 BreastCancerCoimbra 0.72403 0.61573 0.63197 0.55274 0.54407 0.64074 0.55574 0.6853 0.67133
6 connectionist bench sonar 0.78649 0.75466 0.73908 0.55492 0.61079 0.71767 0.60349 0.76568 0.76265
7 haberman 0.6439 0.6666 0.64321 0.65691 0.62859 0.62292 0.64803 0.64683 0.62664
8 heart 0.81813 0.76232 0.78471 0.69063 0.78213 0.7959 0.78248 0.76214 0.75531
9 movement libras 0.82251 0.73695 0.70277 0.56669 0.68259 0.7102 0.655 0.79195 0.79407
10 pima diabetes 0.67864 0.67542 0.64567 0.62277 0.61957 0.64848 0.66615 0.67683 0.6853
11 plant species leaves margin 0.78233 0.643 0.648 0.79197 0.78218 0.78603 0.68474 0.6291 0.63016
12 plant species leaves shape 0.6142 0.51384 0.44816 0.42757 0.43559 0.43559 0.44598 0.55561 0.56121
13 ringnorm 0.85772 0.77197 0.75873 0.81912 0.60252 0.70688 0.7151 0.86597 0.90358
14 landsat satellite 0.86986 0.85073 0.68601 0.61078 0.54928 0.67686 0.77834 0.88479 0.88965
15 twonorm 0.97102 0.9153 0.78093 0.76907 0.81234 0.7598 0.74947 0.9583 0.95802
16 vehicle silhouettes 0.69017 0.65234 0.56617 0.30581 0.51839 0.53064 0.56136 0.65224 0.64578
17 vertebral column 0.77232 0.62315 0.7489 0.75078 0.74176 0.75121 0.71126 0.75619 0.75988
18 vowel 0.91093 0.86002 0.57575 0.44263 0.53349 0.5673 0.72508 0.92471 0.92902
19 waveform 0.8301 0.80398 0.74535 0.70421 0.71902 0.72766 0.54723 0.81008 0.80806
20 wireless indoor localization 0.98213 0.85241 0.92548 0.92129 0.84104 0.84739 0.84548 0.97823 0.97715

Average rank 1.85 4.55 5.85 7 7.275 6.125 5.95 3.05 3.35

between the average weighted-F1 scores of these models. To
further compare the peformance of the RH model to other
FMNNs at θ = 0.1, the Critical Difference (CD) diagram
with Bonferroni-Dunn test [39] for α = 0.05 is computed and
shown in Fig. 8.

CD = 2.359
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6.275IOL-GFMM

6.65FMNN

Fig. 8. Critical difference diagram for the performance of the RH classifier
and other FMNNs (θ = 0.1).

Similarly, with results of average ranks at θ = 0.7, we

can calculate the F-distribution value using the Friedman test
FF = 17.4406 > F (8, 152) = 1.9998. Therefore, there
are significant differences among models using θ = 0.7.
By applying the Bonferroni-Dunn test, we can draw the CD
diagram shown in Fig. 9.

CD = 2.359
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Fig. 9. Critical difference diagram for the performance of the RH classifier
and other FMNNs (θ = 0.7).

It can be seen that at the low value of θ, the RH classifier
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is significantly better than Onln-GFMM, IOL-GFMM, FMNN,
AGGLO-2, and Onln-GFMM + AGGLO2 in terms of average
weighted-F1 score. However, its performance still has no
significant difference compared to EFMNN, KNEFMNN, and
RFMNN, although the average ranking of RH classifier is
lowest among nine fuzzy min-max models over 20 considered
datasets. With a high value of θ, the RH model is signif-
icantly better than KNEFMNN, IOL-GFMM, Onln-GFMM,
RFMNN, EFMNN, and FMNN. In this case, however, there
is no statistical difference in the accuracy among the RH
model, Onln-GFMM + AGGLO2 and AGGLO-2, although the
performance of the RH classifier outperforms those of Onln-
GFMM + AGGLO2 and AGGLO-2.

2) A Comparison of the Random Hyperboxes With Other
Ensemble Classifiers:

This experiment compares the perfomance of the random
hyperboxes classifier (with and without hyperparameter tun-
ing) to other prevalent ensemble models including Random
Forest [5], Rotation Forest [40], XGBoost [8], LightGBM [9],
Gradient Boosting [7], and ensemble of GFMMNNs using
the IOL-GFMM algorithm at the decision level (Ens-IOL-
GFMM (DL)) and at the model level (Ens-IOL-GFMM (ML))
[11]. The hyperparameters of these models were tuned using
the settings presented in the supplemental document. The
Ens-IOL-GFMM (DL) model was formed by training many
individual GFMMNNs using the IOL-GFMM algorithm with
all of the training features. Then, the predictive results of
this model are aggregation of predictions from all of its base
learners using a majority voting mechanism. The Ens-IOL-
GFMM (ML) model also trains many base learners with all
features using the IOL-GFMM learning algorithm in the first
step. Unlike the Ens-IOL-GFMM (DL) model, however, first
for all the resulting hyperboxes from all of these base learners
the undesired overlapping regions are eliminated before they
are used as input patterns to build a single GFMMNN adopting
the IOL-GFMM learning algorithm.

The average weighted-F1 scores of classifiers obtained from
10 times repeated 4-fold cross-validation and their ranking
are given in Table III. It can be observed that the average
performance of the RH without hyperparameter tuning is much
better than the results of the tuned Rotation Forest and the
ensemble models of IOL-GFMM learners using all features in
their training. It is also slightly better than the tuned Random
Forest and the tuned Gradient Boosting, but the RH classifier
cannot outperform the tuned XGBoost and LightGBM models
on 20 considered datasets. In spite of using the same base
learners and sampling method, the RH classifier is much better
than the Ens-IOL-GFMM with decision and model combina-
tion levels. It is due to the fact that the random hyperboxes
classifier uses only a subset of features to train each base
learner. This method reduces the correlation between base
learners, and so it leads to the reduction of the generalization
error. These empirical results are consistent with the theoretical
results presented in subsection III-C. However, it is also noted
that the correlation is linked with variance, so achieving a low
correlation but high variance will not decrease the prediction
error. In addition, when reducing correlation by using a smaller
number of features, it will also increase the variance of each

base learner. Therefore, to achieve the reduction of prediction
error, the correlation between base learners has to decrease
faster than the growth of the variance. This issue needs to be
analyzed in more details in the future study, especially the
relationship between the maximum number of used features
and the number of base learners.

Based on their average rank for 20 datasets, we can apply
Friedman rank-sum test to calculate the F-distribution value
FF = 5.4609 > F (8, 152) = 1.9998. Therefore, there
are differences in the performance of classifiers. Using the
Bonferroni-Dunn test, we have the CD diagram of the RH
model and other ensemble classifiers as Fig. 10.
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Fig. 10. Critical difference diagram for the performance of the RH classifier
and other ensemble models.

Although the average rank of over 20 datasets of the RH
model without hyperparameter tuning is higher than XGBoost
and Light GBM, there are no significant differences in the
accuracy values among Random hyperboxes, XGBoost, Light-
GBM, Random Forest, and Gradient Boosting. In contrast, the
RH classifier (without hyperparameter tuning) is statistically
better than ensemble at the model level of IOL-GFMM base
learners using full features and hyperparamenter tuning on 20
considered datasets. We can also see that the performance of
the RH model without hyperparameter tuning outperforms that
of the RH model using hyperparameter tuning. This result
indicates that the RH model can achieve high accuracy without
the need for tuning hyperparameters.

3) A Comparison of the Random Hyperboxes With Other
Machine Learning Algorithms:

This experiment compares the RH classifier (with and with-
out hyperparameter tuning) to other popular machine learning
algorithms including Decision Tree [41], Naive Bayes (NB)
[42], support vector machine (SVM) [43], K-nearest neighbors
(KNN) [44], and Linear Discriminant Analysis (LDA) [45].
Apart from LDA and NB which do not have any hyperpa-
rameters, the remaining models were tuned using the settings
shown in the supplementary document. Table IV shows the
average weighted-F1 scores and average rank of the random
hyperboxes and other classifiers for the 20 datasets.

Using Friedman rank-sum test, we get the F-distribution
value FF = 2.6833 > F (6, 114) = 2.1791. Hence, there
are statistical differences in the performance of classifiers.
Similarly, using the Bonferroni-Dunn test, we obtain the CD
diagram in this case as Fig. 11.

In this case, there is no statistically significant difference
in the performance between the RH model using default pa-
rameters and other learning algorithms using hyperparameter
tuning mechanisms on the considered datasets.
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TABLE III
THE AVERAGE WEIGHTED-F1 SCORES OF THE RANDOM HYPERBOX MODEL AND OTHER ENSEMBLE MODELS

ID Dataset Tuned
Random

Forest

Tuned
Rotation

Forest

Tuned
XGBoost

Tuned
LightGBM

Tuned
Gradient
Boosting

Tuned Ens-
IOL-GFMM

(DL)

Tuned Ens-
IOL-GFMM

(ML)

Non-
Tuned

RH

Tuned
RH

1 Balance scale 0.84657 0.8354 0.8734 0.92132 0.85399 0.85086 0.84168 0.84976 0.74308
2 banknote authentication 0.99111 0.99388 0.99636 0.99417 0.99432 0.9984 0.99767 0.99723 0.99213
3 blood transfusion 0.75383 0.74006 0.73982 0.7259 0.73938 0.74451 0.7176 0.71903 0.70569
4 breast cancer wisconsin 0.96947 0.96873 0.96484 0.96862 0.96802 0.9585 0.94801 0.96807 0.96455
5 BreastCancerCoimbra 0.71956 0.68227 0.65512 0.6952 0.70325 0.67474 0.69184 0.69199 0.66304
6 connectionist bench sonar 0.78173 0.81073 0.81911 0.84303 0.80998 0.80103 0.8061 0.8528 0.83608
7 haberman 0.68526 0.666 0.69473 0.69598 0.66856 0.65809 0.65013 0.66515 0.66565
8 heart 0.82876 0.81862 0.83217 0.83983 0.8219 0.74656 0.75032 0.82781 0.79963
9 movement libras 0.76902 0.80929 0.74371 0.77936 0.70987 0.80231 0.82094 0.82799 0.82326
10 pima diabetes 0.75671 0.73857 0.73753 0.73702 0.73593 0.71999 0.69793 0.71234 0.70386
11 plant species leaves margin 0.72804 0.63063 0.80826 0.81833 0.55679 0.61404 0.58517 0.74348 0.78007
12 plant species leaves shape 0.52327 0.48445 0.56407 0.57754 0.4511 0.59155 0.58127 0.60077 0.61721
13 ringnorm 0.95029 0.92298 0.98059 0.98219 0.97848 0.61796 0.58931 0.94761 0.9688
14 landsat satellite 0.89042 0.89798 0.91841 0.92102 0.91814 0.88653 0.88049 0.89232 0.89756
15 twonorm 0.971 0.967 0.97265 0.97267 0.97351 0.96516 0.93608 0.96986 0.97486
16 vehicle silhouettes 0.73042 0.72433 0.75314 0.75702 0.75157 0.67201 0.66082 0.70157 0.70334
17 vertebral column 0.83331 0.78491 0.8123 0.82625 0.82524 0.75397 0.74838 0.7743 0.74919
18 vowel 0.90091 0.91476 0.91602 0.92655 0.94053 0.95669 0.96234 0.96492 0.96633
19 waveform 0.85043 0.85038 0.85297 0.85667 0.85461 0.80326 0.75615 0.83075 0.8403
20 wireless indoor localization 0.98281 0.97651 0.9837 0.98289 0.9828 0.98243 0.9799 0.98361 0.9816

Average rank 4.6 5.6 3.85 2.85 4.65 6.25 7.2 4.55 5.45

TABLE IV
THE AVERAGE WEIGHTED-F1 SCORES OF THE RANDOM HYPERBOXES AND OTHER MACHINE LEARNING ALGORITHMS

ID Dataset Tuned
Decision trees

Tuned SVM Tuned KNN LDA Naive Bayes Non-Tuned
RH

Tuned RH

1 Balance scale 0.75988 0.97229 0.84967 0.83725 0.86568 0.84976 0.74308
2 banknote authentication 0.98193 0.98908 0.99854 0.97644 0.84001 0.99723 0.99213
3 blood transfusion 0.75683 0.71825 0.75453 0.70104 0.70773 0.71903 0.70569
4 breast cancer wisconsin 0.93955 0.95973 0.96679 0.9568 0.9594 0.96807 0.96455
5 BreastCancerCoimbra 0.68505 0.683 0.66734 0.69417 0.60585 0.69199 0.66304
6 connectionist bench sonar 0.72193 0.87293 0.8236 0.74465 0.67663 0.8528 0.83608
7 haberman 0.68624 0.69068 0.66489 0.69172 0.69973 0.66515 0.66565
8 heart 0.78853 0.7936 0.80693 0.83762 0.83939 0.82781 0.79963
9 movement libras 0.635 0.84433 0.82906 0.60429 0.61467 0.82799 0.82326
10 pima diabetes 0.74638 0.73151 0.72352 0.75864 0.74742 0.71234 0.70386
11 plant species leaves margin 0.44808 0.83169 0.75339 0.79402 0.72753 0.74348 0.78007
12 plant species leaves shape 0.41721 0.69639 0.61528 0.48546 0.51983 0.60077 0.61721
13 ringnorm 0.88983 0.98099 0.72459 0.76902 0.9867 0.94761 0.9688
14 landsat satellite 0.85382 0.91031 0.90658 0.83205 0.80403 0.89232 0.89756
15 twonorm 0.84042 0.97524 0.97295 0.97735 0.97819 0.96986 0.97486
16 vehicle silhouettes 0.68481 0.82559 0.6881 0.77492 0.41933 0.70157 0.70334
17 vertebral column 0.80737 0.80516 0.76791 0.81346 0.82186 0.7743 0.74919
18 vowel 0.72827 0.93225 0.97308 0.58748 0.66367 0.96492 0.96633
19 waveform 0.7629 0.85382 0.84054 0.85945 0.79677 0.83075 0.8403
20 wireless indoor localization 0.9689 0.97921 0.98311 0.97161 0.98321 0.98361 0.9816

Average rank 5.3 2.8 3.75 4.1 4.25 3.6 4.2

CD = 1.802

7 6 5 4 3 2 1

2.8 Tuned SVM
3.6 Non-Tuned RH

3.75 Tuned KNN
4.1 LDA

4.2Tuned RH

4.25NB

5.3Tuned Decision Tree

Fig. 11. Critical difference diagram for the performance of the RH classifier
and other popular learning algorithms.

V. ON THE ESTIMATION OF GENERALIZATION ERROR
BOUNDS AND OPEN PROBLEMS

The upper generalization error bound of the random hy-
perboxes model is computed based on the i.i.d. assumption
of samples in both training and testing sets. However, in

practice, this assumption is usually violated for the real world
datasets. This means that it is very difficult to obtain the
training and testing sets which are representatives of a true
distribution of the sample space. In this section, we will
estimate the upper generalization error bounds of datasets used
for the experiments in section IV. The purpose of this section
is to identify the effectiveness of the upper generalization
error bound on real datasets and the existing problems when
applying a strong assumption from the theoretical derivations
to the practical issues. The upper bound values were estimated
from the training set and 100 base learners trained by the IOL-
GFMM algorithm with θ = 0.1. The estimated results of the
upper generalization error bound are the average values from
40 iterations (10 times repeated 4-fold cross-validation). To
strengthen the comparison and conclusion, we also estimated
the upper generalization error bounds from the base learners
trained in turn on each of four folds generated by using the
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TABLE V
ESTIMATED UPPER GENERALIZATION ERROR BOUNDS (%), REAL TESTING ERROR (%), AND THEIR STANDARD DEVIATIONS COMPUTED FROM

DIFFERENT ASSESSMENT METHODS

ID Dataset 10 times repeated 4-fold cross-validation 4-DPS fold cross-validation
Testing error (%) Estimated upper error bound (%) Testing error (%) Estimated upper error bound (%)

1 Balance scale 12.224 ± 1.188 55.093 ± 3.694 11.839 ± 1.98 42.744 ± 2.242
2 banknote authentication 0.269 ± 0.259 2.448 ± 0.397 0.219 ± 0.279 2.251 ± 0.331
3 blood transfusion 22.915 ± 1.445 89.405 ± 6.018 21.39 ± 0.617 82.004 ± 1.409
4 breast cancer wisconsin 3.404 ± 1.312 13.014 ± 1.708 3.29 ± 1.265 12.638 ± 3.668
5 BreastCancerCoimbra 30.259 ± 8.319 10.048 ± 1.012 24.138 ± 5.631 10.278 ± 1.145
6 connectionist bench sonar 14.415 ± 3.501 7.076 ± 0.54 11.538 ± 2.72 7.579 ± 0.516
7 haberman 27.752 ± 3.223 56.919 ± 4.751 23.855 ± 1.214 51.372 ± 5.858
8 heart 17.475 ± 4.021 19.2 ± 1.987 17.395 ± 4.16 16.737 ± 1.852
9 movement libras 16.5 ± 3.545 11.477 ± 0.864 13.333 ± 3.741 14.421 ± 1.649

10 pima diabetes 26.38 ± 2.501 27.373 ± 2.02 23.698 ± 0.672 24.799 ± 0.6
11 plant species leaves margin 24.113 ± 1.778 12.479 ± 0.575 22.938 ± 3.098 11.565 ± 0.353
12 plant species leaves shape 37.606 ± 2.25 17.615 ± 0.444 34.5 ± 2.908 19.155 ± 0.769
13 ringnorm 5.191 ± 0.566 4.76 ± 0.134 5.824 ± 0.222 5.103 ± 0.104
14 landsat satellite 10.409 ± 0.678 17.224 ± 0.355 10.287 ± 0.507 16.95 ± 0.227
15 twonorm 2.972 ± 0.419 3.798 ± 0.064 2.919 ± 0.153 3.838 ± 0.118
16 vehicle silhouettes 28.238 ± 2.054 19.644 ± 0.982 27.181 ± 3.81 20.148 ± 1.029
17 vertebral column 21.32 ± 3.029 12.526 ± 0.702 19.68 ± 2.221 14.431 ± 1.493
18 vowel 3.545 ± 0.962 5.226 ± 0.231 2.022 ± 0.994 5.808 ± 0.244
19 waveform 16.322 ± 0.926 8.396 ± 0.172 15.98 ± 0.734 8.296 ± 0.088
20 wireless indoor localization 1.66 ± 0.486 10.102 ± 0.466 1.85 ± 0.252 9.827 ± 0.638

density preserving sampling (DPS) method [46]. The DPS
method aims to preserve the data density and the classes
shapes when splitting an original dataset into many folds, so it
is possible to create the testing sets which are representatives
for the training data. Hence, the testing errors on the DPS folds
are usually smaller than those calculated from folds of the
cross-validation method. This fact is confirmed with the results
shown in Table V. This table presents the real average testing
errors of 4-DPS fold cross-validation and 10 times repeated
4-fold cross-validation as well as their upper generalization
error bounds estimated from corresponding training sets.

In general, we have eleven datasets in which the estimated
upper bounds are higher than real testing errors. Among
them, there are a number of datasets with real errors close
to the estimated upper bounds, such as pima diabetes,
banknote authentication, vowel, and twonorm. One ex-
planation for these good estimations is that the training sets
and testing sets are good representatives of each other and the
whole sample space. It can be seen that, for these datasets, the
real testing errors of 10 times repeated 4-fold cross-validation
and 4-DPS fold cross-validation are relatively close to each
other.

In the nine remaining datasets, the estimated values of upper
bounds are lower than the real testing errors when applying the
10 times repeated 4-fold cross-validation method. The same
behavior but with a smaller error can be found with the 4-DPS
fold cross-validation method on nine datasets. Interestingly,
there are two datasets, heart and movement libras, in which
the estimated values are bad when using 10 times repeated 4-
fold cross-validation, but we can obtain very good estimated
upper bounds when deploying the 4-DPS fold cross-validation.
This fact indicates that if the representativeness of training
sets with regard to the whole sample space is good, we can
achieve a much better estimation of the upper generalization
error bounds which is close to the testing error on unseen data
with the same distribution.

One general characteristic of datasets resulting in the poor
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Fig. 12. The relationship of the difference in the estimated upper error bound
and actual testing error with respect to the ratio of the average number of
training samples per class and the number of features.

estimated upper bounds is their sparsity with regard to a
small number of samples and a relatively high number of
dimensions. For these datasets, we do not have sufficient num-
ber of samples to accurately enough capture the underlying
distribution of the whole sample space. As a result, the base
estimators overfit with their training data, and the estimated
values of the upper error bounds are usually small. Meanwhile,
the testing errors on unseen data are fairly high. Here, one
open problem identified is the relationship between the number
of samples, classes, and dimensions so that we can obtain a
good estimation of the generalization error bounds from the
training data. This is a critical issue that needs to be tackled in
future work. As an example demonstration for this issue, Fig.
12 shows the relationship of the difference in the estimated
upper error bound and actual testing error to the ratio of the
average training samples per class and the number of features
for 20 datasets used in this experiment. We can see that a good
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estimation of the upper error bound can be obtained if the ratio
of the average training samples per class and the number of
features is larger than 20. If this ratio is higher than 120, it is
more likely to achieve an estimated upper error bound close
to the actual testing error.

In summary, the i.i.d. assumption of training and testing
sets is usually not met in practical datasets. Therefore, to
reduce the classification error on unseen data, we need to
use several methods to guarantee the representativeness of the
training and testing sets when assessing the performance of
models. Moreover, identification of the relationship between
the numbers of samples, classes, and features is crucial to
building a representative training set.

One of the strong points of the general fuzzy min-max
neural network is the interpretability. However, the signifi-
cantly improved predictive accuracy of the proposed random
hyperboxes method comes at a price of loss of interpretability
as is common with other ensemble methods. As previously
shown in [11], hyperbox representation allows for combination
at the model level rather than the decision level and therefore
retaining the interpretability of the final model. Nonetheless,
the combination of the individual hyperbox-based learners
which are built from different random subspaces of features is
not a trivial problem. Therefore, the future study should focus
on building interpretable random hyperboxes models.

VI. CONCLUSION AND FUTURE WORK

This paper proposed a novel random hyperboxes classifier,
discussed its properties and provided derivations of its gen-
eralization error bounds. The experimental results confirmed
the efficiency of the proposed method in comparison to other
single fuzzy min-max neural networks as well as single
learning algorithms. The random hyperboxes model is also
competitive with other popular ensemble methods. Further-
more, we provided several discussion on the estimation of the
upper generalization error bounds for real-world datasets, and
identified some open issues for future work.

There are still many opportunities for improvement of the
proposed classifier. The relationship between correlation and
variance between base learners as well as the trade-off between
variance and bias of the random hyperboxes model need to
be analyzed in more details. In addition, the influence of
hyperparameters of the random hyperboxes model should be
assessed by a comparative study. In this paper, we assumed
that the strength S > 0 when analyzing the generalization
error bound. In the case of highly imbalanced classes, this
assumption may be false because the strength usually focuses
on the majority class. Therefore, the efficiency of the random
hyperboxes classifier and its theoretical results should be
investigated and extended for imbalanced datasets.
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Supplemental Material for the Paper:
Random Hyperboxes

Thanh Tung Khuat , Student Member, IEEE, and Bogdan Gabrys , Senior Member, IEEE

I. PROOF OF LEMMA 1
This section provides the readers with the proof of Lemma 1 in the main paper.

Lemma 1. Given m identically distributed random variables (not necessarily independent) with the variance of each variable
σ2 and positive pairwise correlation ρ, the variance of the average random variable is:

ρ · σ2 +
1− ρ
m
· σ2

Proof. Supposing that Φ = (Φ1, . . . ,Φm) is a set of m random variables with given covariances σij = Cov(Φi,Φj), we need
to find variance of an average variable L(Φ1, . . . ,Φm) obtained as a linear combination of m random variables, i.e.,

L(Φ1, . . . ,Φm) =
m∑

i=1

(λi · Φi)

We can rewrite this formula in a compact way using matrix and vector notations as follows:

L(Φ) = ΛT · Φ
where ΛT = (λ1, . . . , λm). And then, we have the expected value:

E(L(Φ)) = E(ΛT · Φ) = ΛT · E(Φ)

and the variance:

Var(L(Φ)) = E(L2(Φ))− [E(L(Φ))]2

= E(ΛTΦΦTΛ)− E(ΛTΦ)[E(ΛTΦ)]T

= ΛTE(ΦΦT )Λ−ΛTE(Φ)(E(Φ))TΛ

= ΛT [E(ΦΦT )− E(Φ)(E(Φ))T ]Λ

= ΛT Cov(Φ)Λ

= ΛTΣΛ

where Σ = (σij) is the covariance of Φ
In this lemma, σij = ρ ·σ2 when i 6= j. We also have σii = Cov(Φi,Φi) = σ2 = [ρ+(1−ρ)]σ2. Hence, we may decompose

the covariance matrix Σ into the sum of two matrices, i.e., one includes ρ in every entry and the other includes (1− ρ) on the
main diagonal and zeros for the rest. Formally, we achieve:

Σ = σ2[ρ1m1Tm + (1− ρ)Im]

where 1m is a column vector containing m 1’s and Im is an identity matrix with size m×m. Then we get:

Var(L(Φ)) = ΛTσ2[ρ1m1Tm + (1− ρ)Im]Λ

= (ΛT1m1TmΛ)ρσ2 + (ΛT ImΛ)(1− ρ)σ2

For ΛT = (1/m, . . . , 1/m), we get:

ΛT1m1TmΛ = (ΛT1m)2 = (m · 1/m)2 = 1

and

ΛT ImΛ = 1/m2 + . . .+ 1/m2 = m · 1/m2 = 1/m

Therefore,

Var(L(Φ)) = ρσ2 +
1− ρ
m

σ2

The lemma is proved.
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II. PROOF OF LEMMA 2

This section provides the proof of Lemma 2 in the main paper.

Lemma 2. When the number of base estimators increases (m→∞) and base estimators are independent, for almost surely
all i.i.d. random vectors Φ1,Φ2, . . ., the margin function for a random hyperboxes model M(x, c) at each input x converges
to:

M∗(x, c) = PΦ(h(x,Φ) = c)−max
j 6=c

PΦ(h(x,Φ) = j)

Proof. We have the margin function of the random hyperboxes model with m base learners at each input sample x as follows:

M(x, c) =
1

m

m∑

i=1

1(hi(x) = c)−max
j 6=c

1

m

m∑

i=1

1(hi(x) = j)

For random vectors Φ1,Φ2, . . . and for all input vectors x, to prove Lemma 2, it suffices to show

1

m

m∑

i=1

1(hi(x) = j)
m→∞−−−−→ PΦ(h(x,Φ) = j)

where hi(x) ≡ h(x,Φi), and 1(·) is an indicator function.
For each hyperbox-based learner, h(x,Φi) = j is union of hyerboxes with class j and their neighborhood regions which

generate the maximum membership value from these hyperboxes to an input x in comparison to hyperboxes representing other
classes. Assuming a finite number of random vectors Φ (the finite number of sample subsets and finite number of feature
subsets) from which any hyperbox-based learner h(x,Φi) (Φi ⊂ Φ) is constructed, then there exists a finite number K of such
unions of hyperboxes and neighbourhood regions, called S1, . . . , SK .

Let define:
ϕ(Φ) = k if {x : h(x,Φ) = j} = Sk

Let Nk be the number of times that ϕ(Φi) = k in the first m trials, then we obtain:

1

m

m∑

i=1

1(h(x,Φi) = j) =
1

m

∑

k

Nk1(x ∈ Sk)

According to the strong law of large numbers when m increases,

Nk =
1

m

m∑

i=1

1(ϕ(Φi) = k)

converges almost surely (a.s.) with probability 1 to

EΦ[1(ϕ(Φ) = k)] = PΦ(ϕ(Φ) = k)

Therefore,

1

m

m∑

i=1

1(h(x,Φi) = j)
a.s.−−→

∑

k

PΦ(ϕ(Φ) = k)1(x ∈ Sk)

= PΦ(h(x,Φ) = j)

The lemma is proved.

III. PROOF OF THEOREM 2

This section shows the proof for Theorem 2 from the main paper.

Theorem 2. An upper bound of the generalization error for the random hyperboxes model can be estimated from the strength
of base learners and correlation between base learners as follows:

E∗ ≤ ρ
( 1

S2
− 1
)

Proof. From lemma 2, we have:

M∗(x, c) = PΦ(h(x,Φ) = c)−max
j 6=c

PΦ(h(x,Φ) = j)
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With the assumption of the strength S = EX,CM∗(x, c) > 0, according to Chebyshev’s inequality, we have:

E∗ = PX,C [M∗(x, c) < 0] ≤ PX,C [S −M∗(x, c) ≥ S]

= PX,C [|M∗(x, c)− S| ≥ S] ≤ VarX,C(M∗(x, c))
S2

For any function f and two i.i.d. random variables Φ and Φ′, we have:

EΦ[f(Φ)]2 = EΦ,Φ′ [f(Φ)f(Φ′)]

In the main paper, we get M∗(x, c) = EΦR(Φ), thus

[M∗(x, c)]2 = EΦR(Φ)2 = EΦ,Φ′ [R(Φ)R(Φ′)]

Now, we can compute VarX,C(M∗(x, c)) as follows:

VarX,C(M∗(x, c)) = EX,C([M∗(x, c)]2)−
[
EX,C(M∗(x, c))

]2

= EX,C
[
EΦ,Φ′ [R(Φ)R(Φ′)]

]
−
[
EX,C(EΦR(Φ))

]2

= EΦ,Φ′

[
EX,C [R(Φ)R(Φ′)]

]
−
[
EΦ(EX,CR(Φ))

]2

= EΦ,Φ′

[
EX,C [R(Φ)R(Φ′)]

]
− EΦ,Φ′

[
EX,CR(Φ)EX,CR(Φ′)

]

= EΦ,Φ′

[
EX,C [R(Φ)R(Φ′)]− EX,CR(Φ)EX,CR(Φ′)

]

= EΦ,Φ′

[
CovX,C(R(Φ)R(Φ′))

]

= EΦ,Φ′

[
ρX,C(Φ,Φ

′)σX,C(R(Φ))σX,C(R(Φ′))
]

= ρ
[
EΦ(σX,C(R(Φ)))

]2

where ρ = EΦ,Φ′ [ρX,C(Φ,Φ′)]
For any random variable Z, Var(Z) ≥ 0⇒ E(Z2)− E(Z)2 ≥ 0⇒ E(Z)2 ≤ E(Z2). Therefore,

VarX,C(M∗(x, c)) = ρ
[
EΦ(σX,C(R(Φ)))

]2
≤ ρ EΦ(σX,C(R(Φ))2) = ρ EΦ(VarX,C(R(Φ)))

In addition, using the definition of the variance for a random variable and inequality E(Z)2 ≤ E(Z2), we can write:

EΦ(VarX,C(R(Φ))) = EΦ

[
EX,C [R(Φ)2]− EX,C [R(Φ)]2

]

= EΦ

[
EX,C [R(Φ)2]

]
− EΦ

[
[EX,CR(Φ)]2

]

≤ EΦ

[
EX,C [R(Φ)2]

]
−
[
EΦ(EX,C [R(Φ)])

]2

= EΦ

[
EX,C [R(Φ)2]

]
−
[
EX,C(EΦ[R(Φ)])

]2

= EΦ

[
EX,C [R(Φ)2]

]
−
[
EX,CM∗(x, c)

]2

≤ 1− S2

due to R(Φ) ≤ 1 and S = EX,CM∗(x, c). As a result,

E∗ ≤ VarX,C(M∗(x, c))
S2

≤ ρ EΦ(VarX,C(R(Φ)))

S2
≤ ρ (1− S2)

S2
= ρ

( 1

S2
− 1
)

The theorem is proved.

IV. ADDITIONAL EXPERIMENTAL RESULTS

A. Supplementary Part for Analyzing the Variance of the Random Hyperboxes Classifier

This part provides some supplementary figures for subsection IV.A.1 from the main paper. This experiment was per-
formed on six datasets with diversity in the numbers of samples, features, and classes, i.e., plant species leaves margin,
plant species leaves shape, heart, vowel, ringnorm, and connectionist bench sonar. Fig. S1 shows the variance values in
terms of weighted-F1 scores using the 10 times repeated 4-fold cross-validation of base classifiers and the random hyperboxes
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Fig. S1. The variances of the random hyperboxes models and their base learners for different datasets.
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Fig. S2. The probability of the number of used features for all base learners over different datasets.

models over different datasets. These results confirm that the random hyperboxes model is able to reduce the variance in its
base learners, and so it can achieve better performance than its base models.

Fig. S2 shows the probability of the number of features, d, used to build the 4000 base learners for the experiment shown
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in subsection IV.A.1 from the main paper. It can be observed that the probability distribution of the number of used features
is nearly uniform in all 4000 base learners.

We can also identify the used probability of each feature over 4000 base learners to find the importance scores of features
with respect to the performance of the ensemble model. This information is given in Fig. S3. From the importance scores of
features, we built a single model using top-K of the most important features to assess the performance of the random hyperboxes
and the use of single models. We can observe that in many datasets, the single model often achieves better performance when
it is trained on more features. However, in several cases such as in ringnorm and connectionist bench sonar datasets, the best
performance of the single model is obtained if it is trained on a subset of the most important features. From Figs. S1 and
S4, it is easily seen that the random hyperboxes model trained using a subset of features usually achieves higher classification
accuracy than the single model trained on the same dataset using all of the available features.
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Fig. S3. The probability of each feature used for all base learners over different datasets.

B. Analyzing the Effectiveness of the Random Hyperboxes on High Dimensional Data

When building predictive models for problems with very high dimensional data, the performance of models is negatively
influenced by the redundancy of features. This problem is known as the Curse of Dimensionality [1]. This experiment is to
assess the robustness of the random hyperboxes classifier for high dimensional data in comparison to the single IOL-GFMM
model. We used two very high dimensional dataset, i.e., PEMS database [2] and Complex Hydraulic System [3]. 80% of
samples in each dataset were used as training data and the remaining 20% of samples were testing data. The summaries of
these datasets are shown in Table S.I.

TABLE S.I
SUMMARIZE INFORMATION OF HIGH DIMENSIONAL DATASETS

Dataset #samples #features #classes #training #testing
PEMS
database

440 138 672 7 352 88

Complex
Hydraulic
System

2205 43 680 2 1764 441

In this experiment, each base learner in the random hyperboxes model is trained on 50% of samples randomly selected
from the training data. The maximum number of used features for each base learner is set to 2

√
p, where p is the number
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(f) Connectionist bench sonar

Fig. S4. Average weighted-F1 scores over 40 testing folds of a single model using training sets with top-k most used features over different datasets.

of dimensions of the dataset. The number of base learners for each random hyperboxes model is m = 100. The weighted-F1
scores of the random hyperboxes and single IOL-GFMM model through different values of θ are given in Fig. S5 for the
PEMS database dataset and in Fig. S6 for the Complex Hydraulic System dataset.
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Fig. S5. Weighted-F1 score of the random hyperboxes and IOL-GFMM for the PEMS database dataset

It can be observed that the IOL-GFMM has consistently lower performance than RH with the very high dimensional data.
In contrast, the random hyperboxes can achieve high accuracy using only 2

√
p random features at most for each base learner.

The diversity in the base learners and the use of a low number of features allow the random hyperboxes to obtain better
performance across the maximum hyperbox size values. Because each base learner in the random hyperboxes model uses a
much smaller number of features compared to the IOL-GFMM model trained using all features, training time and testing time
of the random hyperboxes is faster than that of the IOL-GFMM model. The training and testing time of each classifier is given
in Tables S.II and S.III. Fast training and testing time along with better accuracy confirm the efficiency of the ensemble model
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Fig. S6. Weighted-F1 score of the random hyperboxes and IOL-GFMM for the Complex Hydraulic System dataset

in comparison to the single model using the same learning algorithm.

TABLE S.II
TRAINING TIME (S) OF THE IOL-GFMM AND RANDOM HYPERBOXES MODEL ON THE HIGH DIMENSIONAL DATASETS

Dataset Algorithm θ = 0.1 θ = 0.2 θ = 0.3 θ = 0.4 θ = 0.5 θ = 0.6

PEMS database IOL-GFMM 51.3784 56.5849 52.6432 52.12905 56.7359 57.1392
Random hyperboxes 26.2364 26.4292 27.0474 27.3853 29.3139 28.7593

Complex Hydraulic System IOL-GFMM 2093.5169 2235.3104 2045.8519 1914.7439 1987.5575 1785.5609
Random hyperboxes 154.9104 125.8966 100.0234 84.0987 75.5298 66.7039

TABLE S.III
TESTING TIME (S) OF THE IOL-GFMM AND RANDOM HYPERBOXES MODEL ON THE HIGH DIMENSIONAL DATASETS

Dataset Algorithm θ = 0.1 θ = 0.2 θ = 0.3 θ = 0.4 θ = 0.5 θ = 0.6

PEMS database IOL-GFMM 121.2674 126.1965 121.4517 122.0169 126.4106 126.3136
Random hyperboxes 11.3272 11.3308 12.8158 11.6774 12.3205 10.8228

Complex Hydraulic System IOL-GFMM 1440.4623 1506.2449 1467.3662 1357.6034 1277.8380 1083.6029
Random hyperboxes 118.4271 69.8559 44.8562 29.9445 23.3218 17.1749

C. Supplementary Part for Analyzing the Roles of the Number of Base Learners, Maximum Number of Used Features, and
Maximum hyperbox size in the Random Hyperboxes models

This part provides some supplementary figures for subsection IV.A.2 from the main paper. This experiment was performed
on eight different datasets with diversity in the numbers of samples, features, and classes, i.e., plant species leaves margin,
plant species leaves shape, movement libras, connectionist bench sonar, vehicle sihouettes, breast cancer wisconsin, heart,
and vowel. The purpose of this experiment is to study the impacts of the number of base learners, the maximum number of
used features, and the maximum hyperbox size threshold on the classification performance of the random hyperboxes model.

Fig. S7 shows the change in the average weighted-F1 score when we increase the number of base estimators. We can observe
a general trend over all experimental datasets which is that the increase in the number of base learners does not lead to the
decrease in the classification accuracy. These empirical results are consistent with the statements in the theoretical part (section
III.C.1) from the main paper.

Fig. S8 presents the change in the classification performance when the maximum number of used features increases. A
general trend can be observed in which the classification accuracy only increases up to a certain value of the maximum
number of used features, and then decreases if the maximum number of features available for the base classifiers is increased.
The reason for this trend is explained by the correlation between base learners as shown in subsection IV.A.2 from the main
paper.

Fig. S9 describes the change in the classification performance when the maximum hyperbox size threshold increases. We
can see that the performance of six out of eight datasets slightly decreases when increasing the values of θ. The remaining
two datasets slightly increases the classification accuracy when the value of θ goes up. However, in general, the change of
the average weighted-F1 score between the different values of θ is small (lower than 5%). These outcomes indicated that the
random hyperboxes models are less impacted by the change in the values of the maximum hyperbox size parameter.
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Fig. S7. The change in the average weighted-F1 scores when increasing the number of base learners for different datasets.
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Fig. S8. The change in the average weighted-F1 scores when increasing the maximum number of used dimensions for different datasets.
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Fig. S9. The change in the average weighted-F1 scores when increasing the maximum hyperbox size threshold for different datasets.
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D. Comparing the Performance of the Random Hyperboxes to Other Classifiers
1) Datasets and Parameter Settings:
In this paper, we used 20 datasets with diversity in the numbers of samples, features, and classes taken from the UCI

repository [4]. Table S.IV summarizes the information of these datasets. Each dataset is normalized to the range of [0, 1]
according to the requirement of the fuzzy min-max neural networks. The experiments were executed on the computer using
Red Hat Enterprise Linux 7.5 with Intel Xeon Gold 6150 2.7GHz CPU and 64GB RAM.

TABLE S.IV
THE DESCRIPTIONS OF THE USED DATASETS

ID Dataset # samples # features # classes
1 Balance scale 625 4 3
2 banknote authentication 1372 4 2
3 blood transfusion 748 4 2
4 breast cancer wisconsin 699 9 2
5 BreastCancerCoimbra 116 9 2
6 connectionist bench sonar 208 60 2
7 haberman 306 3 2
8 heart 270 13 2
9 movement libras 360 90 15
10 pima diabetes 768 8 2
11 plant species leaves margin 1600 64 100
12 plant species leaves shape 1600 64 100
13 ringnorm 7400 20 2
14 landsat satellite 6435 36 6
15 twonorm 7400 20 2
16 vehicle silhouettes 846 18 4
17 vertebral column 310 6 3
18 vowel 990 10 11
19 waveform 5000 21 3
20 wireless indoor localization 2000 7 4

For experiments, the maximum hyperbox size of based learners in the random hyperboxes model, as well as different types
of FMNNs, is set to θ = 0.1 and the sensitivity parameter of the membership function is fixed at γ = 1. In terms of default
settings for the RH model without hyperparameter tuning, this study deployed the threshold 2

√
p for the maximum number of

used features and 50% of training samples were randomly sampled to train base learners (rs = 0.5), we also set the number
of base learners m = 100.

To compare the performance of the RH model to other ensemble models, we employed the grid-search method along with 3-
fold cross-validation for each training fold to discover the best setting combination. After that, each ensemble model was trained
on the full training set using the best hyperparameters. We tuned three hyperparameters for ensemble models, i.e., number of
base learners (m ∈ {30, 50, 70, 100, 150, 200}), the maximum number of used features (mf ∈ {0.2, 0.3, 0.4, 0.5, 0.6} · n), and
sampling rate for samples (rs ∈ {0.3, 0.5, 0.7}). The other paramaters got default settings of libraries such as scikit-learn [5],
XGBoost [6], LightGBM [7] apart from the maximum tree depth of decision trees and tree-based ensemble methods is set to
the value of 8 to prevent overfitting [8], [6].

For support vector machines, we the Radial Basis function (RBF) as a kernel and adjusted two hyperparameters, i.e., the
penalty parameter (C ∈ {2−5, 2−3, . . . , 215}) and the gamma parameter (γ ∈ {2−15, 2−13, . . . , 23}) as shown in [9]. For
K-nearest neighbours (KNN) model, we set the searching range of K in the range of {1, 3, . . . , 15}. In terms of decision trees,
the minimum number of samples in each leaf was searched in the range of {1, . . . , 50}.

2) A Comparison of the Random Hyperboxes With Other FMNNs:
This subsection provides the extra results of the average standard deviation of weighted-F1 scores for fuzzy min-max

classifiers mentioned in subsection IV.B.1 from the main paper. Tables S.V and S.VI shows the average standard deviation of
weighted-F1 scores of the random hyperboxes and other classifiers for the 20 experimental datasets using θ = 0.1 and θ = 0.7
respectively.

3) A Comparison of the Random Hyperboxes With Other Ensemble Classifiers:
This subsection supplements the experimental results of the random hyperboxes and other popular ensemble classifiers

mentioned in subsection IV.B.2 from the main paper. The base learners of the random hyperboxes model used the threshold
θ = 0.1 for the maximum hyperbox size. Table S.VII shows the average standard deviation of weighted-F1 scores for classifiers
through 40 iterations with different testing folds (10 times repeated 4-fold cross-validation).

4) A Comparison of the Random Hyperboxes With Other Machine Learning Algorithms:
This part supplements the empirical results of the random hyperboxes classifier and other popular machine learning algorithms

shown in subsection IV.B.3 from the main paper. Table S.VIII shows the average standard deviation of weighted-F1 scores of
the random hyperboxes and other classifiers for the 20 datasets.
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TABLE S.VII
THE AVERAGE STANDARD DEVIATION OF WEIGHTED-F1 SCORES FOR THE RANDOM HYPERBOX MODEL AND OTHER ENSEMBLE MODELS

ID Dataset Tuned
Random

Forest

Tuned
Rotation

Forest

Tuned
XGBoost

Tuned
LightGBM

Tuned
Gradient
Boosting

Tuned Ens-
IOL-GFMM

(DL)

Tuned Ens-
IOL-GFMM

(ML)

Non-
Tuned

RH

Tuned
RH

1 Balance scale 0.02125 0.02632 0.01384 0.02292 0.01173 0.0121 0.00911 0.01137 0.04012
2 banknote authentication 0.00486 0.005 0.00411 0.00341 0.00428 0.00221 0.00261 0.00258 0.00655
3 blood transfusion 0.02438 0.02248 0.02393 0.02521 0.0222 0.02209 0.02619 0.02574 0.02526
4 breast cancer wisconsin 0.01096 0.01136 0.01261 0.01309 0.0085 0.01097 0.01193 0.00997 0.01216
5 BreastCancerCoimbra 0.07169 0.08691 0.12051 0.12024 0.09546 0.07775 0.08786 0.08548 0.08597
6 connectionist bench sonar 0.05492 0.05064 0.0517 0.04627 0.05798 0.0478 0.04983 0.02863 0.06303
7 haberman 0.0451 0.03697 0.03891 0.04152 0.03358 0.03387 0.02854 0.03371 0.0342
8 heart 0.04548 0.04215 0.03345 0.03635 0.04095 0.04261 0.04338 0.04267 0.04379
9 movement libras 0.04689 0.04181 0.03758 0.05133 0.04944 0.03514 0.0374 0.03349 0.02914
10 pima diabetes 0.03426 0.03202 0.03071 0.03696 0.02515 0.02505 0.02675 0.02412 0.03095
11 plant species leaves margin 0.01665 0.02928 0.02184 0.02623 0.0302 0.02377 0.01641 0.02015 0.016
12 plant species leaves shape 0.02212 0.0239 0.01753 0.0212 0.0294 0.02147 0.01758 0.02362 0.01435
13 ringnorm 0.00535 0.00965 0.00439 0.0029 0.00457 0.01238 0.01216 0.00634 0.00524
14 landsat satellite 0.00757 0.0062 0.00458 0.00609 0.00617 0.00826 0.00716 0.00718 0.00874
15 twonorm 0.0037 0.0056 0.00337 0.0041 0.00346 0.00448 0.00596 0.00446 0.00375
16 vehicle silhouettes 0.02677 0.02599 0.02559 0.02201 0.02436 0.03467 0.02754 0.02015 0.03618
17 vertebral column 0.0447 0.05643 0.04209 0.047 0.04341 0.0354 0.04538 0.03057 0.05581
18 vowel 0.01939 0.02165 0.02458 0.01783 0.01548 0.02165 0.01468 0.00893 0.01399
19 waveform 0.00977 0.01025 0.01108 0.01013 0.00941 0.007 0.00996 0.00977 0.00887
20 wireless indoor localization 0.00475 0.00658 0.00614 0.00611 0.00552 0.00568 0.00756 0.00381 0.00629

TABLE S.VIII
THE AVERAGE STANDARD DEVIATION OF WEIGHTED-F1 SCORES FOR THE RANDOM HYPERBOXES AND OTHER MACHINE LEARNING ALGORITHMS

ID Dataset Tuned
Decision trees

Tuned SVM Tuned KNN Tuned LDA Tuned Naive
Bayes

Non-Tuned
RH

Tuned RH

1 Balance scale 0.03893 0.01839 0.01385 0.01629 0.01098 0.01137 0.04012
2 banknote authentication 0.0088 0.00783 0.00177 0.00711 0.02722 0.00258 0.00655
3 blood transfusion 0.02813 0.03431 0.01555 0.02352 0.02384 0.02574 0.02526
4 breast cancer wisconsin 0.01448 0.02005 0.01033 0.01358 0.01125 0.00997 0.01216
5 BreastCancerCoimbra 0.0943 0.0789 0.08171 0.08177 0.0845 0.08548 0.08597
6 connectionist bench sonar 0.05461 0.0587 0.07941 0.05023 0.05584 0.02863 0.06303
7 haberman 0.03372 0.0356 0.02701 0.03133 0.032 0.03371 0.0342
8 heart 0.05826 0.03544 0.04318 0.05059 0.04158 0.04267 0.04379
9 movement libras 0.635 0.02901 0.04632 0.04944 0.04534 0.03349 0.02914
10 pima diabetes 0.03521 0.04139 0.01723 0.03129 0.03254 0.02412 0.03095
11 plant species leaves margin 0.0336 0.02171 0.02455 0.02653 0.01691 0.02015 0.016
12 plant species leaves shape 0.02898 0.01434 0.0183 0.02104 0.01596 0.02362 0.01435
13 ringnorm 0.00708 0.00397 0.01467 0.01038 0.00326 0.00634 0.00524
14 landsat satellite 0.0076 0.00698 0.00825 0.00715 0.00525 0.00718 0.00874
15 twonorm 0.00830 0.00693 0.00333 0.00301 0.00350 0.00446 0.00375
16 vehicle silhouettes 0.02929 0.02476 0.03287 0.03036 0.0379 0.02015 0.03618
17 vertebral column 0.04586 0.03636 0.03951 0.0355 0.03009 0.03057 0.05581
18 vowel 0.05136 0.0461 0.02299 0.02277 0.02607 0.00893 0.01399
19 waveform 0.01546 0.02853 0.0104 0.00954 0.00965 0.00977 0.00887
20 wireless indoor localization 0.00837 0.00794 0.00443 0.00549 0.0048 0.00381 0.00629


