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Abstract—In this letter, we present an interactive probabilistic
mapping framework for a mobile manipulator picking objects
from a pile. The aim is to map the scene, actively decide where
to go next and which object to pick, make changes to the scene by
picking the chosen object, and then map these changes alongside.
The proposed framework uses a novel dynamic Gaussian Process
(GP) Implicit Surface method to incrementally build and update
the scene map that reflects environment changes. Actively the
framework computes the next-best-view, balancing the terms of
object reachability for picking and map information gain (IG) for
fidelity and coverage. To enforce a priority of visiting boundary
segments over unknown regions, the IG formulation includes an
uncertainty gradient-based frontier score by exploiting the GP
kernel derivative. This leads to an efficient strategy that addresses
the often conflicting requirement of unknown environment explo-
ration and object picking exploitation given a limited execution
horizon. We demonstrate the effectiveness of our framework with
software simulation and real-life experiments.

Index Terms—Gaussian Process Implicit Surfaces, Mapping,
Exploration, Mobile Manipulator, Automatic Building Construc-
tion

I. INTRODUCTION

RECENT years have seen great progress in autonomous
mobile manipulation applications. Typical examples in-

clude bin-picking for construction sites [1], automated public
space sanitisation [2] and logistic and warehousing [3]. These
applications call for interactive robotic systems that are able to
explore the scene while mapping the changing environment,
and planning their motion and manipulation tasks without
colliding with obstacles using limited on-board resources.

Scene exploration approaches often adopt an information-
theoretic strategy that aims to choose the next action to
maximise the Information Gain (IG) in an active mapping
framework [5]–[8]. For mobile manipulator tasks, active map-
ping alone is insufficient. Combining mapping and picking in
one phase is more effective and efficient than considering them
separately. Thus, the task becomes an active and interactive
mapping problem, i.e. to select and pick the “best” objects with
mapping aiding the selection, and where the next movement
expands the knowledge of the scene.
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(a) Initial map and NBV (b) Move to NBV and update map

(c) Remove object (d) Update map and NBV

Fig. 1: The Active and Interactive Mapping cycle. The projection
of GPIS mesh on the ground (red line) defines potential exploration
segments, the green bars indicate segments information utilities. The
NBV is a red bar + arrow. Dark green dots are GPIS training points
from the removed object.

This paper presents a computationally efficient environment
mapping framework for a mobile manipulator realised on low-
budget hardware for practical bin-picking applications, such as
is shown in Fig. 1. It aims to address the problems of dynamic
scene mapping, exploiting the map’s frontier and checking
manipulability to select the next best view for efficient mobile
base placement and manipulator motion planning. Here, dy-
namic mapping refers to the accurate capture of environment
changes as objects are discovered (scene exploration) and
later removed from the scene (object picking) by a mobile
manipulator.

Our proposed mapping approach is based on Gaussian
Probabilistic Implicit Surfaces (GPIS) [12], which encode
spatial correlation among input data and offer a probabilistic
yet accurate map representation of the world in continuous
form. We exploit GPIS to check if a mapped object resides in
a robot’s workspace. Also, its probabilistic formulation makes
it amenable to active mapping based on IG to analytically
search for the next-best-view (NBV) and optimal motion.

The contribution of this work is threefold. First, a dynamic
GPIS algorithm (Section IV) where each incoming sensor
scan forms an instantaneous GP hence defines a probabilistic
tolerance layer for valid samples. This detects and discards
previous GPIS training points taken from the scene, thus
producing a resultant implicit surface accurately capturing
environment changes (Fig. 1(a) and (d)). Secondly, given the
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probabilistic map representation, we develop an analytical
frontier score for each possible NBV candidate (Section V-C)
exploiting the GP kernel derivative. This greatly improves fair-
ness and flexibility in NBV selection. Ultimately, the proposed
framework is a viable means for a mobile manipulator to
interact with an environment (Section V-D): planning base
placement and generating an arm’s trajectory with obstacle
avoidance capability, and choosing the NBV that maximises
object manipulability (Fig. 1(b)). Results of the full on-line
implementation of our framework are presented in Section VI,
demonstrating its performance in simulation and real experi-
ments.

II. RELATED WORK

Dynamic mapping
The choice of mapping representation is critical for object
picking tasks with mobile manipulators and needs to facilitate
efficient updates once objects are removed. The well-known
RGB-D mapping system KinectFusion [10] is an example
for this purpose. The map is a volumetric type built in the
form of Truncated Signed Distance Function (TSDF) data
structure. Each voxel in space is time-averaged to smooth
out the transient noise. As a side-effect the model handles
dynamic scenes. Dramatic topological changes, however, will
only appear after a significant delay. Occupancy maps, specif-
ically Octomap [11], are another discrete representation of the
3D world with a probability of occupancy for each voxel
in space. A known limitation of the original form is that
dynamic environments are not supported. An extension to
Octomap was introduced in [1] for a bin-picking application.
However, since structural correlations between nearby cells
are not addressed, resolution and accuracy in Octomap are
often compromised. Also, it is not easy to reason about
object shape or perform detection [15]. Gaussian Processes
Occupancy Maps (GPOM) is a method of combining GP with
occupancy mapping that is probabilistic and continuous but
incurs a large computational complexity. Hilbert Maps were
first proposed in [26] as a faster and simpler type of occupancy
map using kernel approximation methods. Later in [25], it
was extended to handle dynamic obstacles and model learning
through regression, it finds application in traffic environment
modelling.

GPIS, despite its many aforementioned advantages, shows
O(n3) computational complexity resulting in limited applica-
bility [12], [30]. Lee et al. [14] provided an online GPIS
implementation that stores data in small clusters for fast
parallel processing and incrementally fuses successive scans
from various viewpoints. Dynamic environments, however, are
not tackled in this method – once an object is mapped, it
remains in the GPIS data even if it is physically removed from
the workspace. Here, we consider the GP from a fundamental
perspective as an immediate probabilistic conditioning tool on
current training data [4]. We will show that once a mechanism
is devised to detect and filter out training points belonging to
the removed object, the map can be instantly updated in the
relevant local regions.

Other work in dynamic mapping has been focused on
detecting and tracking moving objects in static scenes [31] [32]

or eliminating dynamic objects from the environment in order
to build accurate static maps [27]. This is not relevant to
object picking with mobile manipulators.

Active Mapping
In robotic exploration, it is desirable to formulate an IG metric
to choose the optimal action. Occupancy maps and Octomaps,
with their probabilistic occupancy representation, are often
used in mapping and exploration applications [22], [23]. GP,
with its continuous uncertainty formulation, has also been used
recently for IG-based exploration works, including, entropy
reduction [5], conditional entropy reduction [16] and mutual
information maximisation [18]. In active shape modelling, [29]
proposed an efficient approach using constrained Variational
Sparse GP and online kernel learning that preserves recon-
struction accuracy.

Entropy gradient [9], [17], is another form of IG metric.
The benefit is that it directly draws the robot towards
the frontier between the explored and unexplored regions.
Authors in [17] devised an approximate gradient formulation
for discretised 3D occupancy maps. Later, Jadidi et al. [18]
generated continuous gradient frontier maps from a 2D
GPOM variant, but did not provide an analytical expression
due to its non-trivial map definition. They used the gradient
map for NBV candidate identification but not in NBV utility
calculation. In this paper, we derive the analytical gradient
expression from 3D GPIS uncertainty for NBV candidates in
2D mobile manipulator exploration. The simple yet consistent
frontier score, together with other IG metrics, ensure NBV
selection is well-balanced.

Interactivity
Interactivity refers here to the robot manipulating objects in
the environment. GPIS, with built-in surface normals [15],
has been exploited for interactive applications in areas of
shape detection, classification and validation. The GPIS-
based framework presented in [24] makes use of a robotic
arm equipped with tactile sensors to explore and map
the environment. Authors in [16] proposed to optimise a
reconstruction-aware manipulator trajectory that helps to
maximally estimate the object’s 3D geometry during a
pick-and-place action. In contrast, our work generates dense
maps and uses them for collision-free planning of manipulator
trajectories. Further, these prior works assume that every
object in the robot’s workspace is reachable by the arm. Our
framework instead selects the NBV that covers the maximum
number of manipulable objects.

III. SYSTEM OVERVIEW AND PROBLEM STATEMENT

The proposed framework aims to provide an efficient
pipeline for a mobile manipulator to explore and interact with
the environment. As illustrated in Fig. 2, it consists of a GP-
based dynamic mapping component that maps the changing
world, and an NBV selection module that recommends the
best action based on the map information. The robot relies on
this framework to plan its arm trajectory and base paths to
travel and make changes in the surrounding environment.
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Fig. 2: Active and interactive mapping framework overview.

Fig. 1 shows a robot’s exploration and interactivity cycle.
First, it inspects the scene to build the initial map of a multiple-
object pile, and computes the NBV that will increase map
information. Next, it moves to the recommended NBV and
updates the map. Then, it picks up an object and updates the
map again to synchronise with the changed world. Based on
the updated map, it computes the new NBV and moves towards
it, after which the inspection cycle repeats.

The notation of the paper is as follows. A line segment si
describes the robot’s pose due to its finite width, si aligns
with the base width-wise. The segment set S = {si} denotes
candidates in NBV selection. Superscript {·}[t] indicates the
item is time-dependent, and s

[t]
i is the i’th segment at t. The

sensor pose T[t] ∈ SE(3) is assumed given at all times.
U [t]( si ) denotes the information utility at time t for the i’th
segment. The selection goal is to identify the segment i[t]∗ with
the maximum utility to position the robot at t,

i
[t]
∗ = argmax

i
U [t]( s

[t]
i ), i ∈ supp(S [t] ) (1)

The calculation of a segment’s information utility depends on
its attributes such as uncertainty, frontier score, and manipu-
lability, all of which revolve around the Dynamic GPIS scene
model.

IV. DYNAMIC GAUSSIAN PROCESS IMPLICIT SURFACE

The proposed dynamic mapping representation is based on
the online GPIS fusion in [14]. In a similar way, our mapping
module consists of two GP phases. A GPIS accumulated from
multiple scans, and a frame-level 2.5D−1 map as a detector for
points removed from the scene. It also exploits independent
yet overlapping clusters [13] to store GPIS training points
for parallel processing. The main difference with [14] is the
dynamic scene handling and introduction of a virtual wall, and
is described in this section.

A. Continuous distance function as 3D map representation

We first review how GPIS is used to describe scene maps.
Let us define a point x ∈ R3 and a function fIS : R3 → R
such that

fIS =


+d outside surface
0 on surface
−d inside surface

(2)

where d is the point-to-surface distance. The GPIS is defined
by the posterior distribution of the value of f at an arbitrary
testing point x∗ given by f(x∗) ∼ N (f̄∗,P [f∗]), where the
predictive mean and variance are given by

f∗ = k>∗ (K +Kx)−1y

P[f∗] = k(x∗,x∗)− k>∗ (K +Kx)−1k∗
(3)

k∗, K and k(x∗,x∗) represent covariances between x∗ and
n training points and n× n covariance matrix of the training
points and the covariance function at x∗, respectively [4]. We
use the Matérn 3 class covariance function (ν = 3/2),

km(d)|ν=3/2 = (1+

√
3d

l
) exp(−

√
3d

l
), d = ‖x−x′‖ (4)

B. Instantaneous Scan 2.5D−1 Map

For each incoming depth image, a stand-alone elevation map
GP is defined in the form of non-linear regression of inverse
depth (IDP) on bearing angles θ. We call it a 2.5D−1 map in
this paper:

fIDP : θ → r−1, θ = [θu, θv]
T (5)

where r is measurement range. IDP is chosen for its i.i.d.
Gaussian noise distribution ηIDP ∼ N (0, σ2

IDP). Note that every
over-limit depth value should be replaced by a large user-
defined number. As in [14], the Ornstein-Uhlenbeck (OU)
covariance function is used to model IDP observations,

kOU(d) =
1

2α
exp(−αd), d = ‖x− x′‖

since the OU kernel is best suited for modelling random walk
curves [4] without excessive smoothing.

Given the bearings θs, one can infer its inverse depth
rIDP(θs) and uncertainty σIDP(θs) pair, then obtain direction
vs and coordinates of the corresponding point xs

(rIDP, σIDP) = fIDP(θs),

xs =
1

rIDP
vs, vs =

us
‖us‖

, us =
[
θs 1

]> (6)

The uncertainty σIDP obtained defines a tolerance blanket of
allowed range values from the sensor’s viewing pose. Any test
point in the field of view (FOV), yet falling outside the blanket,
is considered an anomaly. This property will be exploited to
detect removed objects in Section IV-C.

C. Data fusion in Dynamic GPs

In this stage, the GPIS map is updated with new scan data.
We delete samples from the existing GPIS training set that fall
outside the tolerance layers defined by the 2.5D−1 map. Then
fuse or insert new scan points to the GPIS. This results in an
immediately clean GPIS data structure that can be conditioned
to infer the expanded environment map. The procedure is
described in Algorithm 1.

We first identify all GPIS samples that fall into the sensor’s
FOV at the current pose. For each point in GPIS we transform
its coordinates to the local camera’s frame xIS = (T[t])−1x

(w)
IS .

The bearing angles θIS are obtained after homogeneous nor-
malisation. For points inside the FOV, we infer its IDP and
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xs = f−1IDP(θIS)vIS

(‖xIS‖−1 − gσ)−1 vIS
xIS

(‖xIS‖−1 + gσ)−1 vIS

(a) Map before and
after object remove

(b) Delete point xIS if range significantly
different from its 2.5D−1 correspondence:
‖xIS‖−1 − fIDP(

xIS
‖xIS‖

)� σIDP

Fig. 3: Map update in Dynamic GP. Using ray-casting a warped
tolerance layer is formed from GPIS points: +σIDP (blue) and −σIDP
(violet). Removed object points (green) are detected and deleted from
GPIS, forming a new map. The 2.5D−1 map with the virtual wall at
“infinity” is shown in dark yellow. An example FOV ray is shown
in yellow.

uncertainty pair (rIDP, σIDP) as described in Section IV-B. Then
we examine the difference 4IS between the stored inverse
depth r−1IS = ‖xIS‖−1 and the inferred one rIDP:

4IS = r−1IS − rIDP(θIS) , (7)

to apply three possible treatments: delete, fuse or ignore.
Delete: For regions containing removed objects, the new scan
reveals what is lying behind the old object along its light
ray. The range measured would be either larger or outside
the sensor range. We delete this point using the anomaly
detection criterion, 4IS ≥ g σIDP, where g is a constant scale
factor. However, this simple check fails if the background is
empty since it destroys the 2.5D−1 map model. Here, using a
method similar to [1], we artificially replace every over-limit
measurement in the scanned depth with a very large number,
effectively creating a virtual wall at “infinity”, see Fig. 3 for
illustration. The virtual wall is processed together with the
rest of the scan data to form the 2.5D−1 map, allowing valid
inferences for every bearing angle.
Fuse: For 4IS within a small range, the old GPIS point xIS
will be fused with its corresponding point on the 2.5D−1

surface as described in [14].
Ignore: Points outside the above categories are occluded scene
points and should be left unchanged.

With the old GPIS training points cleaned up, the new scan
samples are now added for map expansion. The modified local
GPIS clusters from both ends are processed further (covariance
inversion) for fast future inference. For a full treatment of
online GPIS formulation please refer to [14].

V. NBV SELECTION

To select an optimal next pose, we first identify a set of
candidate poses, then compute its utility function, incorporat-
ing various GPIS based metrics including gradient frontier and
manipulability.

Algorithm 1: Dynamic GPIS Update

1: fIDP ← Regress2.5D−1(Scan[t]);
2: for x

(w)
IS ∈ GPIS[t] do

xIS = (T[t])−1 x
(w)
IS ;

(rIDP, σIDP)← fIDP(θIS ) ; // Eq. (5)

4IS ← Compare(rIDP, ‖xIS‖−1) ; // Eq. (7)

if 4IS ≥ gσIDP then
/* point removed from scene */
x
(w)
IS ← ∅ ;

else
if −gσIDP ≤ 4IS ≤ gσIDP then

/* old and new fusable */
xs ← Invert(r IDP,θIS ) ; // Eq. (6)

x
(w)
IS ← T[t] Fuse(xIS,xs) ; // Ref. [14]

end
end

end
3: GPIS[t+1] ← GPIS[t]⋃Scan[t];

A. Candidate Poses

Since the robot needs to explore objects in a pile, the next
position to place the robot should be around the circumference
of the partially explored pile, as shown in Fig. 4. We first query
the GPIS to obtain a probabilistic implicit surface representing
the scene, then use the marching cubes algorithm [28] to form
a dense map. The map can be assumed to have a roughly
conical shape which is generically the case when stacking
objects to maintain stability. We project the surface points
onto the ground to form a 2D occupancy map. Using image
processing methods, we obtain the contour of the occupancy,
(see Fig. 4(a)), which is composed of a set of piece-wise
linear segments {si} of the map base. These segments are the
candidates for positioning the robot in the next step. Half of
{si} are from the unseen surface area without full exploration,
hence have high uncertainty, referred to as “imaginary”. The
remaining half are genuine base outline segments and have low
uncertainty. Using this uncertainty we classify each segment
si as real or imaginary.

B. Utility Formulation

Many factors (or attributes) from si can affect the utility.
We use {·}[ s[t]i ] to denote the attribute {·} of segment i. For
the sake of simplicity, from now on the time superscript in
segment attributes will be omitted. These attributes are:

• Uncertainty σ2[si]: encourages information collection
for noisy regions. Only the real segments are considered
here. The imaginary ones are addressed below.

• Frontier f∇σ2 [si]: for unexplored regions, this attribute
gives preference to the boundary segments over other
imaginary segments.

• Arm manipulability m[si]: produces a quantitative mea-
sure of the taskspace volume reachable by the manipula-
tor that is retrieved from the GPIS.
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• Interact order h[si]: gives a preference for picking order
and can be in the form of segment height, which is avail-
able from the GPIS. This factor is useful since picking
in an order from high to low positions causes minimum
disruption to the object pile. Further, this encourages the
pile to maintain a convex-shaped outline, convenient for
base navigation.

• Travel distance d[si]: preference is given to visit close-by
scanned segments. It is computed as the Dijkstra mini-
mum distance from the current location to the candidate.

• Avoid repeated failure p( si, t ): avoids locations where
previous pick/detect attempts failed within a time win-
dow, and is a function of time.

Considering these factors, let us define the utility formula-
tion to select the optimal candidate segment i∗:

i
[t]
∗ = argmax

i
U [t]( si ), i ∈ supp(S [t] ),

U [t]( si ) = (1− p( t )[si]) I( si ),

I( si ) = β1 L1(m[si] ) + β2 L2(h[si] )

+ β3 L3(−d[si] ) + β4 L4(σ2[si] )

+ β5 L5( f∇σ2 [si] ),

1 =
∑
k

βk, βk ≥ 0,

p( t )[si] = γ t−tf [si] , γ < 1

S [t+1] ← action( i
[t]
∗ )

(8)

where

si := (m, σ2, f∇σ2 , h, d, p(t) )[si],

I(·) : information gain
∀ k = 1, 2, 3, 4, 5

βk : user defined weightings
Lk(x ) : logistic function, maps to probability

=
lk

1 + exp(−akx+ bk )
,

(lk, ak, bk) : empirically obtained parameters

(9)

Note that p(si, t) takes the form of a discounted future penalty.
It depends on the duration between the last failure time tf and
the current time. Initially, we set tf to −∞ for zero penalty
and update it once a failure occurs. This activates the penalty
and deactivates the segment for a small time frame.
During runtime, all imaginary segments have their manipula-
bility, height, and uncertainty set to zero, resulting in zero
utility. This prevents the robot from landing in unknown
regions. The frontier segments with valid m, h and σ2 scores,
compete with other real segments for NBV selection. Once the
frontier is explored, its surrounding imaginary regions become
“real” with the frontier shifted. The new segments are added
to the next round of NBV selection.

C. Gaussian Process Frontier

We now propose our GP based frontier metric which gives
higher precedence for boundary segments over unexplored

(a) Complete utility (b) Manipulability factor

c) Interact order factor (d) Travel distance factor

(e) Uncertainty factor (f ) Frontier factor

Fig. 4: An illustration of full formulation and single factor utilities.
First, identify pile segments (red contour) and compute the utilities
(green bars). Max utility gives NBV (red bar+arrow). (b) shows
samples (blue dots) from the manipulability annulus. (c) shows
heights (orange bars). Grey bars on the ground are uncertainty for
imaginary segments.

regions. The uncertainty gradient for an arbitrary point x can
be defined as

‖∇σ2(x)‖2

The robot base motion is confined to the 2D ground plane.
During manipulation the base is aligned width-wise with the
pile segment. Due to the segment’s finite length, it is necessary
to integrate the gradients along the segment direction to obtain
the overall uncertainty variation.

Let li = [lx, ly, 0]> denote the direction of segment si,
transversal to the robot heading. Let Pi denote the set of 3D
points in si. Denote δα as the infinitesimal segment length
along li. Then, for a point xij ∈ Pi, a small perturbation
results in a neighbour point xij + δαli. We define the frontier
metric as the Sum of Directional Squared Difference (SDSD)
in uncertainty for all points in Pi along li:

f∇σ2 =
∑

xi
j∈Pi

∥∥∥∥ ∂(σ2(xij + δαli)− σ2(xij) )

∂δα

∥∥∥∥2

=
∑

xi
j∈Pi

∥∥∥∥ ∂(σ2(xij) + δα∇σ2(xij)
> li − σ2(xij) )

∂δα

∥∥∥∥2

=
∑

xi
j∈Pi

∥∥∥∥ ∇σ2(xij)
> li

∥∥∥∥2
(10)

For the gradient at point xij , we use the GPIS definition (3)



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2021

and Matérn kernel (4) to compute as follows:

∇σ2(xij)
> = 2k>∗ (K +Kx)−1∇k∗(xij)>

∇k∗(xij)> =
[
..., ∇km(x′,xij)

>, ...
]>

∇km(x′,xij)
> =

∂km(d)

∂d

∂d

∂xij

(11)

where: d =

∥∥∥∥ xij − x′
∥∥∥∥, ∂km(d)

∂d
= −3d

l2
exp(−

√
3d

l
).

This GP-based definition is continuous and mathematically
rigorous. It contrasts to the discretised frontier metric in [17].
Its simple formulation is more tractable and deployable
than [18], which is only for 2D maps and relies on an
auto-jacobian method from optimisation libraries, due to the
hybrid GPOM world model used.

D. Manipulability
This section presents a metric to determine whether the

manipulator is capable of reaching and picking the objects
in the environment. This metric filters out object poses that
minimise the manipulability index [19] of the arm during
picking. The filter uses the geometric volume of an annulus
(donut-like) sector as a heuristic to determine which poses are
viable. The frame of this region is fixed to the manipulator
base frame and all poses outside this region are rejected by
the filter.

Let ξE = (R,p) ∈ R3 × SO(3) represent the arm’s end-
effector pose, and q the joint rotations. We use the determinant
of the Jacobian matrix J that relates the robot end-effector’s
Cartesian velocity ṗ with the joint velocities q̇ to calculate the
robot’s measure of manipulability m:

m =
√

det(JJT (θ)) ∈ R (12)

The annulus sector used in the pose manipulability filter is
derived from the manipulator’s kinematics by sampling valid
end-effector discrete poses. For each configuration q in the
configuration space, we calculate the end-effector pose ξE
in taskspace T ⊂ SE(3) using forward kinematics and the
manipulability index m.

We select only the configurations with manipulability index
m ≥ mthres. The remaining points are used to determine the
minimum and maximum bounds of the manipulable Cartesian
workspace Tm ⊂ T . This allows us to differentiate between
the reachable region of the manipulator workspace and the
manipulable region of the workspace.

With a robot located at the i’th pile segment, we define the
segment’s manipulability as the overlapping region between
an arm’s annulus sector and the mapped pile. Specifically, for
each sample point in the annulus sector, we query the GPIS
for its occupancy probability [13] using its inferred signed
distance µ, variance σ2 and normal n. The sum of weighted
occupancy for all samples defines the manipulability score:

m[si] =
∑

pj∈Tm

wj p(o = 1|pj) =
∑

wjΦ(
αµj + β√
1 + α2σ2

i

);µjσj
nj

 =fIS(p
(w)
j ), wj =

nj · p(w)
j

‖p(w)
j ‖

, p
(w)
j = T[si]pj

(13)

The more objects that are reachable by the robot in alignment
with its orientation at the segment, the higher its m score.
Fig. 4(b) shows an example of the pose with the highest m
score.

VI. EVALUATION

We evaluated the performance of our framework with
extensive simulated and real-life experiments. We built our
mobile manipulator using a Neobotix MP700 [20] as the base
and a UR5e [21] for the arm with a magnetic contact end-
effector. An RGB-D camera is mounted on the mobile base.
Our active mapping framework is developed according to the
description in Section III. It is written in C++/ROS and runs
on a 6-core laptop. Our test environment consists of piles
of bricks on flat terrain. All piles are roughly 4m2 in size
with ∼50 segments considered in the optimisation, which
is trivially performed by finding the maximum amongst all
candidate utility scores. The bricks are labelled with AR-tags
for easy pose detection with metal plates attached for magnetic
grasping. This scenario resembles the necessary exploration
and object picking components of an automatic construction
task. A video accompanying our results can be found at
https://tinyurl.com/y5qwn864.

A. Simulation
A simulated Gazebo environment was created to contain

brick piles as shown in Fig. 5. Gazebo models of the base and
arm were also designed with accurate mechanical properties to
mimic the real-life system. An ablation study and benchmark
tests are performed for the simulated environment.

(a) simu case 1 (b) simu case 2 (c) simu case 3

Fig. 5: Three Gazebo simulation scenarios.

1) Ablation Study: We analysed the importance of each
factor in our NBV selection scheme, by removing it from
the framework and observing the performance results as given
in Table I. We run each variant in a fixed time interval and
collect the average number of picked bricks, map coverage
percentage, number of object falls and collisions between
robot and environment. The “Pick Order” row is important
in maintaining a balanced pile shape. Failing to do that
would mean the test has a high collapse count as seen in the
“Falls” column – a scenario to be avoided for warehousing
or construction applications. The completion rate in “Travel
Distance” and “Frontier” rows are related to collisions. The
robot should never enter an unknown region before mapping it.
Further, without the frontier factor, map coverage is affected;
hence, achieving 100% can take a protracted time. Without the
“Failure Penalty” factor, the robot can get stuck indefinitely
on a seemingly good spot that does not host pick-able objects.
Considering all results, the complete utility function (row 1)
case performs the best in each test category.
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TABLE I: Ablation analysis on Utility factors.

Part removed Output
Bricks # Map % Falls # Collision ?

NONE 17 100 1 N
Manipulability 14.5 100 2 N
Pick Order 13 100 6 N
Travel Distance 11 80 3 Y
Uncertainty 15 100 1 N
Frontier 16 90 4 Y
Failure penalty 7 60 1 N

2) Benchmark Test: Benchmark testing was performed by
comparing task throughput and map coverage between our
system and two other systems for three test scenarios, five
times each (Fig. 5). The other systems are: (1) Octomap + [1]
(dynamic) + [17] (discrete gradient frontier), and (2) Octomap
+ [1] (dynamic) + random (RDM) strategy. The results are
shown in Table II, showing the number of bricks picked (task)
and map coverage. From the results, our framework outper-
forms (1) and (2) in mission completion rate. We observed in
(1) and (2) that the robot frequently went to locations that do
not host pick-able objects. This can be explained by the fact
that our framework uses a GPIS-based manipulability factor
that chooses more promising locations for picking. (1) has the
best map coverage but can occasionally lead the robot into
the obstacle zone, this can be explained by its approximate
frontier calculation. (2) has the lowest map coverage as it
tends to stay in already explored regions. We also illustrate
the execution progress of the three systems for test case 2 in
Fig. 6. Our approach has the best performance for the object
picking task and equivalent performance for map coverage,
compared to Octomap+[1]+[17], but with smaller variations
over the different runs.

TABLE II: Benchmark Test

Simu Ours (1) Octmp+ [1]+ [17] (2) Octmp+ [1]+RDM
case Bricks% Map% Bricks% Map% Bricks% Map%
#1 95±5.0 100±10 63±17 100±5.0 45±12 90±10
#2 100±6.0 82±8.5 72±8.0 85±9.0 61±12 71±19
#3 100±3.0 61±3.5 66±13 70±16 57±6.8 57±12

(a) Objects picked (b) Map coverage %

Fig. 6: Comparison of task and map coverage for simu case 2.

B. Real-life Experiment

In the real-life experiment, we tested the accuracy of the
dynamic GPIS mapping component and the effectiveness of
NBV selection in our framework.

(a) Scene set up (b) Initial GPIS (c) Remove brick, delete
GPIS samples (green)

(d) Dynamic GPIS map vs [14],
(note the smooth surface),
obtain distance errors:
µdist = 0.005 cm, σdist = 0.012

(e) Apply [1], obtain before
and after Octomaps, (note the
artifacts), obtain distance errors:
µdist = 0.033 cm, σdist = 0.015

Fig. 7: Real-life experiment: comparing map accuracy between ours,
[14] and [1].

1) Dynamic GPIS accuracy: We set up a real-life scene
Fig. 7(a) to evaluate the accuracy of dynamic GPIS by
comparing with the methods of [14] and [1]. We first generated
a map using our Dynamic GPIS with a 2-step process: initialise
using the original scene (b), then update after removing a brick
(c). For reference, we generated a map by feeding the depth
image in step 2 directly to [14]. We compared the signed
distance values in the two maps using CloudCompare (d),
and the error was insignificant (e). Further, we applied the
same procedure for the Octomap variant [1] and our results
are shown to be superior (e). For the fairness of comparison,
we chose the leaf size of Octomap (0.03m) that most resembles
the configuration of the Octree in our Dynamic GPIS.

2) NBV test:
In real-life test scene 2 (Fig. 8(a)), we evaluated the

effectiveness of our NBV selection. We set the scene to have
two rows of bricks with the top two lying side by side. Initially,
the robot was set to face the top two bricks (b). Then the robot
detected and picked the top left brick, the map was updated
and the NBV marker shifted towards the high brick on the
right (c). The robot then moved to the NBV position, (d).
Finally, it picks up the right brick (e). This shows our NBV
strategy behaved in the desired order.

VII. CONCLUSION

We presented an interactive and active mapping framework
for a mobile manipulator platform based on dynamic GPIS.
Since the framework is probabilistic, it is able to perform
immediate mapping updates for a dynamically changing en-
vironment. Using the probabilistic map, our NBV selection
scheme has been shown to balance the needs of information
gain in visited regions, frontier driven map expansion, as
well as object manipulability. Most importantly, the dense
map generated enables a robot to safely move around in, and
apply changes to, the environment. Both simulation and real-
life experiments show our system can efficiently explore and
interact with a large pile of objects in an environment.
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(a) Test scene 2 (b) Initial map (c) Picked one brick (d) Moved to NBV (e) Picked another brick

Fig. 8: Real-life experiment, active and interactive mapping cycle.
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