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Abstract 5 

Building objects is one of the principal features that are essential for updating the geospatial database. 6 

Extracting building features from high-resolution imagery automatically and accurately is challenging 7 

because of the existence of some obstacles in these images, such as shadows, trees, and cars. Although deep 8 

learning approaches have shown significant improvements in the results of image segmentation in recent 9 

years, most deep neural networks still cannot achieve highly accurate results with correct segmentation map 10 

when processing high-resolution remote sensing images. Therefore, we implemented a new deep neural 11 

network named Seg–Unet method, which is a composition of Segnet and Unet techniques, to exploit 12 

building objects from high-resolution aerial imagery. Results obtained 92.73% accuracy carried on the 13 

Massachusetts building dataset. The proposed technique improved the performance to 0.44%, 1.17%, and 14 

0.14% compared with fully convolutional neural network (FCN), Segnet, and Unet methods, respectively. 15 

Results also confirmed the superiority of the proposed method in building extraction.  16 

Keywords: building extraction; image segmentation; remote sensing; Seg–Unet approach   17 

1. Introduction 18 

Highly accurate feature extraction from high-resolution remote sensing imagery produces 19 

reliable information for various applications (Shrestha and Vanneschi 2018). The extraction of 20 

small ground objects, such as building objects from the imagery of the surface of the earth, can be 21 

a potential application (Krizhevsky et al. 2012). High-precision building extraction from high-22 

resolution satellite images can perform an essential task in several applications, such as disaster 23 

management, geospatial database updating, urban planning, and navigation (Mayer 1999). Raw 24 

data should be converted into sensible information by using geospatial information system (GIS) 25 

to enable the quantification process. The time-consuming and labor-intensive data interpretation 26 

and digitization are often required for this transformation. Although Yuan (2017) introduced a 27 

source called volunteered geographic information (VGI) as an alternative option, its availability is 28 

restricted due to the differences in positional and completeness accuracy. Participation inequality, 29 
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in terms of varying impressions, cultures, and judgments, can be the principal reasons for the 30 

aforementioned issue (Shrestha and Vanneschi 2018), thereby restricting the accessibility of 31 

dependable and up-to-date building maps. Automatic building extraction using remote sensing 32 

imagery needs a promising approach that remains underdeveloped in spite of a decade of research 33 

in this field (Marcu and Leordeanu 2016). The main elements that make this process challenging 34 

are the wide changes in building appearances in images because of various building features, such 35 

as shadows, cars, structures, various roofing materials, and illumination statuses, which are formed 36 

by buildings (Yuan and Cheriyadat 2014). Traditional methods have been mixed with genetic 37 

algorithms (Sumer and Turker 2013) and support vector machine (SVM) method (Inglada 2007) 38 

to detect buildings. Other characteristics, such as multi-spectral features, textures (Levitt and 39 

Aghdasi 1998), and shadow properties (Peng and Liu 2005); local structures, such as corners, lines, 40 

and edges (Huertas and Nevatia 1988) of remote sensing images, have been utilized as main factors 41 

for extracting building objects. The efficiency of these types of approaches is restricted due to the 42 

dependence of the method performance on low-level local characteristics. Thus, to well distinguish 43 

the features, the utilization and exploitation of representative high-level features that play a 44 

principal role in image segmentation are favorable. 45 

In recent studies, feature-based deep convolutional approaches, such as convolutional neural 46 

network (CNN), have demonstrated that they can achieve reliable results in image classification 47 

for computer vision (He et al. 2015, Szegedy et al. 2015) and feature semantic segmentation 48 

(Vakalopoulou et al. 2015, Alshehhi et al. 2017, Abdollahi et al. 2020). The CNN model is 49 

efficient in image processing because of its capability to learn from raw images without following 50 

pre-processing steps. In addition, deep convolutional network (DCNN) has become a promising 51 

technique in image processing because of its ability to efficiently mix spatial and spectral features 52 

on the basis of raw input data without preprocessing (Alshehhi et al. 2017). Recent works have 53 

revealed that different kinds of deep learning approaches, which are based on CNNs, such as deep 54 

convolutional encode–decoder architecture and fully convolutional network (FCN), have shown 55 

significant improvements in the remote sensing field. In terms of computational proficiency and 56 

accuracy, FCN is the most proficient approach for pixel-wise semantic segmentation. However, 57 

several problems restrict model performance in detection, leading to failure in generating 58 

inadequate or redundant prediction detection and in identifying numerous objects (Shrestha and 59 

Vanneschi 2018, Abdollahi et al. 2020). In the next section, previous studies related to applying 60 
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promising CNN methods for remote sensing image classification and building semantic 61 

segmentation are discussed.  62 

Deep neural network features have illustrated their ability in semantic segmentation (Long et 63 

al. 2015, Chen et al. 2017), object detection (Girshick et al. 2014), and visual identification (Sharif 64 

Razavian et al. 2014, Audebert et al. 2016). Deep convolutional frameworks can be utilized in 65 

different remote sensing tasks, such as data merging (Kussul et al. 2016), image classification 66 

(Yang et al. 2018), and detection (Audebert et al. 2017). These networks have been successfully  67 

utilized to label and classify high-resolution remote sensing images (Penatti et al. 2015). Marmanis 68 

et al. (2018) introduced a deep neural network on the basis of an end-to-end trainable network 69 

(DCNN) for detecting boundaries and improving semantic image segmentation. Farabet et al. 70 

(2012) mixed conditional random fields (CRFs) with multi-scale CNNs to classify dense street 71 

scenes. Vakalopoulou et al. (2015) implemented a deep convolutional model to identify building 72 

features from high-resolution multi-spectral images. Previous works have confirmed that the 73 

results of remote sensing imagery classification cannot be decisive (Wilkinson 2005) because 74 

improving the resolution of remote sensing images is more useful in the identification and 75 

detection of different features on the ground. However, the separation of certain objects with the 76 

same spectral values has become difficult due to these improvements, leading to the decrease of 77 

the inter-class difference and increase of the intra-class difference of objects such as cars, shadows, 78 

streets, and buildings (Paisitkriangkrai et al. 2016). That is, extracting sensible spatial features to 79 

solve the pixel classification in building extraction has become challenging because various 80 

objects may represent similar spectral classes in remote sensing images. Reliable results have been 81 

recently achieved by FCN for semantic image segmentation (Fu et al. 2017). The method can 82 

identify various object classes, including their shapes, such as trees, road objects, and building 83 

curves. The model can not only identify the structures of spatial objects but also learn how to 84 

categorize pixels and detect what they are (Audebert et al. 2016). However, the outcomes are 85 

visually degraded during image classification and segmentation when using FCN. The reason is 86 

that the model cannot detect objects with multiple borders or small objects because object 87 

boundaries are blurred (Maggiori et al. 2017). The structures of deep convolutional frameworks 88 

have been developed in certain research either by utilizing CRFs mixed with dilated convolution 89 

(Chen et al. 2014) or by appending skip-layer structure after up-sampling to regenerate high-90 

frequency and comprehensive image information (Marmanis et al. 2016), thereby leading to the 91 
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performance improvement of semantic segmentation and accuracy improvement of image 92 

classification (Sherrah 2016).   93 

Recent works have attempted to boost precision in areas such as pixel labeling; feature 94 

extraction from raw data; image encoding, specifically for high-resolution remote sensing imagery 95 

on the basis of deep convolutional techniques, such as FCN and CNN (Volpi and Tuia 2016). 96 

However, impervious and building objects extracted from high-resolution remote sensing images 97 

are difficult to handle due to the presence of various geometric shapes and spatial and spectral 98 

features. That is, similar objects in urban areas have various spectral values because high-99 

resolution remote sensing images are usually restricted to three or four channels, and these spectral 100 

characteristics may lack the capability to recognize objects. Various objects may also present the 101 

same spectral values (e.g., roofs and roads) (Bakhtiari et al. 2017, Abdollahi et al. 2018).  102 

Although prior scholars have presented helpful insights into different approaches, which can be 103 

utilized in pixel labeling, these approaches misclassify certain pixels with the same spectral values 104 

and lack the capability to eliminate salt-and-pepper classification noise and to clearly identify 105 

object boundary. To solve these issues, we present a new deep neural network called SegUnet, a 106 

combination of Segnet and Unet architectures for building objects extraction by using high-107 

resolution aerial imagery. The proposed network is dedicated to restoring pixel position 108 

information and produces a high-resolution segmentation map. The model has an encoder–decoder 109 

architecture that incorporates index pooling (Segnet) and skip connection (Unet) to generate and 110 

disseminate image spatial information. As can be seen in the aforementioned literature review, the 111 

proposed method has not been used before, and this study is the first to propose this kind of 112 

approach for a given task. The proposed approach is compared with other state-of-the-art deep 113 

learning-based techniques, such as FCN (Long et al. 2015), Segnet (Badrinarayanan et al. 2017), 114 

and Unet (Ronneberger et al. 2015) on the basis of a similar dataset to demonstrate the ability of 115 

the method in building extraction. Such outcomes prove that the new proposed network is efficient 116 

in building extraction. The remainder of the paper is organized in the following manner. Section 2 117 

outlines the methodology of the suggested SegUnet approach. Section 3 highlights the results and 118 

discussion. Section 4 provides the conclusion.  119 

2. Materials and methodology 120 

 121 
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In this section, we explain the overall framework of Unet, Segnet, and SegUnet models (Figure 122 

1). Subsequently, the prepared high-resolution remote sensing aerial dataset for applying the 123 

proposed approach is explained. Finally, the common metrics for calculating the performance of 124 

state-of-the-art techniques applied for building extraction are described. 125 

Figure 1. around here 126 

2.1. Unet architecture 127 

The Unet model is an elegant DCNN that can yield accurate image segmentations. The main 128 

concept of the Unet model is the replacement of pooling layers with up-sampling operators to 129 

complete a typical contracting network by continuous layers, followed by the enhancement of 130 

output layer resolution. For localization, the high-resolution features of the contracting part are 131 

mixed with up-sampled output. Finally, continuous convolution layer can be used to assemble an 132 

accurate outcome on the basis of this information (Long et al. 2015). One significant factor in the 133 

Unet model is the several feature channels in the up-sampling section where the network can 134 

spread context information to layers with high resolution. The Unet deep learning model comprises 135 

two principal sections: expansive part (right side) and contracting part (left side). Given that the 136 

contracting and expansive parts are symmetric, a U-shaped CNN is formed. The model only 137 

utilizes the right part of every convolution and does not have any fully connected layers. For 138 

example, considering that the segmentation map only contains pixels, the entire context is 139 

accessible in the input image. Therefore, an overlap-tile strategy is utilized to provide a monolithic 140 

and random segmentation of large images. For extrapolating the missing context and foretelling 141 

pixels in the border section of images, input image mirroring is also utilized. The resolution can 142 

be restricted by the GPU memory unless the tiling strategy implements the network to extensive 143 

images. 144 

The generic framework of a Unet model is followed by a contracting path that includes two 145 

repeated convolution layers of 3×3 window size, followed by a down-sampling layer of 2×2 146 

window size. Activation function (1), which is a kind of transformation function, is used in the 147 

convolution process. Assuming that a weight vector is w; a bias vector is b; xk (ii, jj) is the input of 148 

activation function and the output of convolution operation, respectively.                                                          149 
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For ( )f  , activation function (2), that is, rectified linear unit (ReLU) is used in the Unet model. 151 

Neurons do not confront the gradient vanishing issue, which arises when the gradient norm declines 152 

after sequential updates in the back-propagation process. Neurons also efficiently operate with 153 

rectified function because this function encourages sparsity in the hidden layers and prevents 154 

saturation during the learning process (Zhou et al. 2014). In each down-sampling stage, the number 155 

of feature channels is doubled. As previously mentioned, max-pooling layers are utilized to 156 

decrease image size, parameter number, and network computing. In the down-sampling method, 157 

images are sampled using their principle local correlations. This approach retains efficient 158 

information while lessening data processing and allowing the features taken through convolution to 159 

have spatial uniformity (Maggiori et al. 2017). 160 

An up-sampling, followed by a convolution with a stride of 2×2 that halves the number of 161 

feature channels, is used in each step of the expansive path. Two convolution layers of 3×3 kernel 162 

size, followed by the ReLU activation function and a concatenation with the correspondingly 163 

cropped feature map from the contracting path, are utilized in the expansive path. Eventually, a 164 

convolution layer of 1×1 window size and a sigmoid function (3) are utilized for mapping every 165 

32-component feature vector to the desired number of classes (road and non-road) and for mapping 166 

the predicted values to probabilities, respectively (Hu et al. 2015). The generic framework of the 167 

Unet model is illustrated in Figure 2.  168 

( ( , ) max(0, ( ( , ))k kA x ii jj Z x ii jj= ,   (2) 169 

where xk (ii, jj) is utilized as the input to the activation function and the output of convolution 170 

operation, respectively. 171 

1
( )
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+
,           (3) 172 

 173 

where S is the output between 0 and 1, and z is the input. 174 

 175 

Figure 2. around here 176 
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 177 

2.2. Segnet architecture 178 

The Segnet model consists of encoder and corresponding decoder parts, followed by the last layer 179 

of pixel-wise classification (Badrinarayanan et al. 2017). The overall architecture of deep 180 

convolutional Segnet model is illustrated in Figure 3. Each layer in the encoder part has a 181 

corresponding layer in the decoder part, and both sections include 13 convolutional layers that 182 

correspond to the initial 13 convolutional layers in the model named the VGG16 network 183 

(Simonyan and Zisserman 2014), which is outlined for feature classification. A multi-class 184 

classifier named Softmax (Equation 4) is fed into the last decoder network to generate independent 185 

classification possibilities for individual pixels. Softmax output transforms into possibility 186 

dispensation as it always ranges [0–1] and adds up to 1. The n channel of image possibility is the 187 

output of the Softmax classifier, where n presents the number of classes, x is the output vector of 188 

the model, and index i is in the range (0, ..., n-1). 

1

( )
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i

x

i n
x

j

e
s x

e
=

=


.   (4) 189 

For producing and batch normalizing a collection of feature maps, every encoder in the encoder 190 

network implements a filter bank with a convolution. Subsequently, ReLU is utilized as an 191 

activation function, followed by max-pooling layers with a kernel size of 2×2. Using a factor of 2, 192 

the outcoming output is sub-sampled. For achieving translation invariance over tiny spatial 193 

changes in the input data, max-pooling layers are utilized. Although additional translation 194 

invariance for strong classification can be obtained by multiple map-pooling layers, a 195 

corresponding spatial resolution loss of feature maps occurs. Therefore, before implementing sub-196 

sampling, storing, and capturing, boundary information is essential in encoder feature maps. For 197 

up-sampling the input feature maps in the decoder network, the memorized sub-sampling indices 198 

from the corresponding encoder feature maps are utilized. Dense feature maps are produced by 199 

convolving a trainable decoder filter back with these feature maps. Subsequently, a batch 200 

normalization step is implemented to each map. The whole feature map in the Unet model 201 

(Ronneberger et al. 2015) is first transferred to the corresponding decoders, and then is 202 

concatenated to up-sample decoder feature maps (using deconvolution), whereas the Segnet model 203 

reutilizes pooling indices. In addition, the Segnet model utilizes the whole weights of the pre-204 
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trained convolutional layer from the VGG network as pre-trained weights, whereas no max-pool 205 

5 block and conv 5 exist in the Unet model as in the architecture of the VGG network.  206 

 207 

Figure 3. around here 208 

 209 

 210 

2.3 Seg-Unet architecture 211 

Similar to the Unet architecture, the SegUnet model comprises three sections (Do et al. 2019): 212 

1) The encoder or contracting part, which is similar to the VGG network, has four blocks. In every 213 

block, two convolution layers are followed by batch normalization and max-pooling layers. After 214 

every max-pooling index, the number of features is doubled in the convolutional layer. 2) 215 

Bottleneck, which only comprises two convolution layers, is a place for storing sparse feature 216 

maps. 3) The decoder or expanding part restores the input image resolution by using up-sampling 217 

layers. For transferring local contextual information into the decoder part, each encoder layer is 218 

connected to the corresponding decoder layer. Unlike the Unet model, the same padding is utilized 219 

instead of valid padding. For classifying each pixel and generating the segmentation map, a 1×1 220 

convolution layer with sigmoid function is utilized at the last decoder block. The loss function of 221 

binary cross-entropy is also applied to quantify the contrast between two possibility spreads and 222 

assess the efficiency of the technique whose output value may be between 0 and 1. The over-fitting 223 

issue can be prevented from using the new network because data normalization uses the batch 224 

normalization layer, which is placed after the convolutional layer. Moreover, the sparse feature 225 

map can be well restored using an up-sampling layer on the basis of the max-pooling index in the 226 

decoder network. The overall framework of the proposed SegUnet deep neural network is 227 

demonstrated in Figure 4.  228 

 229 

Figure 4. around here 230 

2.4. Dataset 231 
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To apply the proposed SegUnet model for building extraction, the Massachusetts building 232 

dataset (Mnih 2013) is used. Given the computational restriction, the original dataset that contains 233 

10, 4, and 137 aerial images for test, validation, and training with a spatial dimension of 1500×1500 234 

pixel dimension is divided into the size of 384×384, respectively. The total number of images used 235 

in this study is 1,564, where 1,532, 24, and 8 images are considered for training, validation, and 236 

test, respectively. Certain samples of a building dataset with various scenes are depicted in Figure 237 

5.  238 

 239 

Figure 5. around here 240 

2.5. Evaluation metrics 241 

In this study, four principal calculation measurements, namely, overall accuracy (OA) (5), F1 242 

score (6), recall (7), and precision (8) are utilized on the basis of the confusion matrix 243 

(Ghasemkhani et al. 2020) with four main factors, such as false negative (FN), false positive (FP), 244 

true negative (TN), and true positive (TP), to assess the model performance for extracting building 245 

features from high-resolution aerial imagery. OA is specified as the sum of rightly identified pixels 246 

divided by the entire number of pixels. Precision is calculated as a percentage of precisely 247 

identified pixels among the identified pixels of the building. Meanwhile, F1 score is the 248 

combination of recall and precision metrics. Recall is specified as a percentage of correctly 249 

predicted pixels among all the actual pixels of building, whereas F1 score is the combination of 250 

recall and precision (Wang et al. 2020).   251 
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3. Results and performance evaluation 257 

In this part, the quantitative and visual results of the proposed SegUnet model and other state-258 

of-the-art building extraction approaches, such as the Segnet model for semantic pixel-wise 259 

segmentation, the FCN model for image semantic segmentation, and the deep convolutional Unet 260 

model, are discussed.  261 

3.1. Experiment results 262 

By considering a representative section for the images with a specific attention on various 263 

surroundings and building features, the visual inspection of classification maps achieved by the 264 

proposed SegUnet model was implemented for qualitative analysis. For training the proposed model, 265 

the ground truth labels, and all the prepared samples were treated as inputs to the model. The 266 

parameters and framework of the proposed approach, such as the number of blocks and size of each 267 

block, are illustrated in Figure 4. For updating the parameters of the proposed model and minimizing 268 

the energy function while training the network, an exceptional optimization algorithm is needed. 269 

Therefore, in our network, we utilized one of the most common optimizers called adaptive moment 270 

estimation (Adam) to update parameters such as biases and weights and to lessen the losses. We set 271 

the learning rate of the SegUnet network to 1 4e −  during training to speed up the processing and 272 

achieve an improved performance. In this study, the whole process of the introduced network for 273 

extracting building features from aerial imagery was performed on a GPU Nvidia Quadro P5000 274 

with a computation capacity of 6.1 and a memory of 16 GB under the framework of Keras with 275 

TensorFlow backend. 276 

Figure 6 depicts the results of two images obtained by the proposed approach for building 277 

extraction. The figure is presented in three columns and four rows. The first, second, and third 278 

columns respectively represent the original image, the ground truth image, and the building 279 

segmentation results, which were obtained by the SegUnet model. Meanwhile, the second and fourth 280 

rows represent the zoomed results. Figure 6 shows that the proposed SegUnet model achieves the 281 

OA of 92.33% and 91.3% for Image 1 and Image 2, respectively, proving that the model can 282 

generally extract buildings from high-resolution aerial images accurately. However, the FN 283 

(illustrated as blue pixel) and FP (illustrated as green pixel) of the identified pixels illustrate multiple 284 

failures for our suggested approach and show multiple issues with the data. The proposed approach 285 

can identify a building where tiny nearby buildings emerge as a joined area, which increases the FP 286 
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between the spaces of the building. However, the proposed model cannot make a right building 287 

prediction where no building is found in the label image, but one exists in the original image that 288 

appears as an FP prediction. 289 

 290 

Figure 6. around here 291 

 292 

3.2. Discussion 293 

To verify the performance of the proposed SegUnet technique for extracting building objects 294 

from high-resolution remotely sensing aerial imagery, we compared the method with other 295 

DCNNs. Specifically, we compared the suggested SegUnet model with the deep convolutional 296 

encoder–decoder approach called the Segnet model, FCN technique, and deep convolutional Unet 297 

model. By comparing the results achieved via Segnet and Unet models with the results of the 298 

proposed SegUnet model, the difference in the accuracy for building extraction can be witnessed.  299 

The visual outcomes of building extraction by using the suggested SegUnet model and other 300 

comparative techniques for calculating the efficiency of the SegUnet approach in building 301 

extraction are illustrated in Figure 7. The obtained outcomes demonstrate that the influence of 302 

shortcomings can be reduced to a specific degree by using the proposed methods because these 303 

methods consider the spatial information for semantic segmentation. However, FCN and Segnet 304 

approaches predict additional FNs and FPs, which are depicted by blue and green colors, 305 

respectively. Thus, these methods cannot precisely preserve and achieve boundary information, 306 

leading to the detection of FNs and FPs and production of a low-resolution segmentation map. The 307 

Unet model, which utilizes deconvolution layers and skip connection, can also achieve and 308 

preserve boundary information with higher accuracy than FCN and Segnet methods, thus obtaining 309 

a correct segmentation map. By contrast, the proposed SegUnet model, which utilizes skip 310 

connection (Unet) and index pooling (Segnet), can predict fewer FNs and FPs, preserve boundary 311 

information, and produce a correct segmentation map compared to other comparative approaches. 312 

 313 

Figure 7. around here 314 
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To test the efficiency of the introduced SegUnet approach for building extraction in comparison 315 

with other DCNNs, we demonstrated the quantitative results of the techniques in Table 1. The first 316 

eight rows of Table 1 present the quantitative accuracy of the four main metrics achieved by the 317 

comparative approaches for the eight images, whereas the last row presents the average accuracy of 318 

the metrics. As shown in Table 1, the FCN model can obtain higher accuracy for the recall factor 319 

than other methods because the model predicts many FNs. By contrast, the Unet method can obtain 320 

higher accuracy for precision and OA factors than FCN and Segnet methods. Moreover, the Unet 321 

method is the second-best approach in building extraction and can obtain a correct segmentation 322 

map. Finally, the average accuracy for F1 score and OA factors achieved by the proposed SegUnet 323 

model is higher than those by other techniques with almost 0.14%, 1.17%, and 0.44% higher than 324 

the Unet, Segnet, and FCN approaches, respectively. These results indicate that the proposed model 325 

can improve the results and exceed other state-of-the-art techniques in building extraction from high-326 

resolution remote sensing imagery. Figure 8 plots the clear differences between the introduced 327 

SegUnet model and other deep learning approaches for building object segmentation. Figure 8 also 328 

illustrates that the proposed SegUnet network achieves higher precision for the OA factor than other 329 

techniques.   330 

 331 

Figure 8. around here 332 

Table 1 around here 333 

4. Conclusion 334 

For extracting building objects from high-resolution aerial imagery, we presented a new deep 335 

neural network called the SegUnet model, which is a combination of Segnet and Unet techniques, in 336 

this work. We applied the proposed model on the Massachusetts building dataset. After training and 337 

validating the method, we utilized four accuracy metrics to assess the efficiency of the indicated 338 

technique in building extraction, which achieved a 92.73% accuracy on average for OA. This result 339 

indicated that the proposed model can produce a correct segmentation map and can accurately extract 340 

building objects. Furthermore, we compared the visual and quantitative results of the proposed 341 

SegUnet model with those of other deep learning techniques, such as Segnet, FCN, and Unet models, 342 

to show its effectiveness. The results confirmed that the proposed method obtained the best 343 
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quantitative and visual performances and outperformed other DCNNs in building extraction from 344 

high-resolution aerial imagery.  345 
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