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Abstract 16 

Flood occurs as a result of high intensity rainfall, long-term rainfalls and snowmelt which flows 17 

out of the main river channel onto the floodplain areas and damages to buildings, roads, and 18 

facilities and causing life losses. This study aims to implement Extreme gradient boosting method 19 

for the first time in flood susceptibility modelling and compare its performance with three 20 

advanced benchmark models including Frequency Ratio (FR), Random Forest (RF), and 21 

Generalized Additive Model (GAM). The input factors include altitude, slope, plan curvature, 22 

profile curvature, stream power index (SPI), topographic wetness index (TWI), distance from 23 

rivers, normalized difference vegetation index (NDVI), rainfall, land use, and lithology. For 24 

running the models, 243 flood locations were detected by field surveys and national reports. The 25 

same number of locations were randomly created in the study regions and considered as non-26 

flood locations. Both flood and non-flood locations were fed into the models and output flood 27 

susceptibility maps were produced. To evaluate the efficacy of the algorithms, receiver operating 28 

characteristics (ROC) curve were implemented. The results of the current research showed that 29 

the RF model and EGB had the best performances with the area under ROC curve (AUC) of 0.985, 30 

and 0.980, followed by the GAM and FR model with AUC values of 0.97, and 0.953, respectively. 31 
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The results of factor importance by the RF model showed that distance from rivers had an 32 

important influence on flood susceptibility mapping (FSM), followed by profile curvature, slope, 33 

TWI, and altitude. Considering the high performances of the RF and EGB models in flood 34 

susceptibility modelling, application of these models is recommended for such studies.  35 

Keywords: Flood susceptibility; GIS; Generalized additive model; extreme gradient boosting; Iran 36 
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1. Introduction 38 

Flood is defined as a natural disaster that affects different areas worldwide in humid, semi-arid, 39 

and arid regions (Addabbo et al. 2016). Thus, this phenomenon causes a huge number of deaths 40 

and much damages to the cities (Bathrellos et al. 2016). In the recent past, floods have occurred 41 

more frequently as a result of climate changes like the variations in air temperature and rainfall 42 

amount and intensity. Apart from the increase of the flood frequency, inappropriate land use 43 

planning and management has enhanced both damages costs and life losses. To manage the 44 

situation and decrease the damages or even forbid them, it is essential to first determine flood-45 

prone areas (Lee et al. 2017).  46 

Regarding the complicated hydrological features of the Watershed and the ever-increasing 47 

anthropogenic impacts, floods are hard to be modelled implementing simple non-linear 48 

algorithms (Khosravi et al. 2018). For this reason, machine learning and statistical models have 49 

been implemented for flood prediction because of their higher efficiency (Tien et al. 2019). Some 50 

examples of these models are: artificial neural networks (Sahoo, Ray, and De Carlo 2006; Youssef, 51 

Pradhan, and Hassan 2011), support vector machines (Shafapour et al. 2015), logistic regression 52 

(Nandi et al. 2016), evidential belief function and decision trees (Rahmati and Pourghasemi 53 

2017), frequency ratio (Rahmati, Pourghasemi, and Zeinivand 2016) random forest and boosted-54 

tree (Lee et al. 2017), Genetic Algorithm Rule-Set Production (GARP) and Quick Unbiased Efficient 55 

Statistical Tree (QUEST) (Darabi et al. 2019), weakly labeled support vector machine (WELLSVM) 56 

(Zhao et al. 2019), Reducederror pruning trees (REPTree) with Bagging (Bag-REPTree) and 57 

Random subspace (RS-REPTree) ensemble frameworks (Chen et al. 2019), classification and 58 

regression trees and alternating decision tree (Janizadeh et al. 2019), and alternating decision 59 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/neural-networks
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/support-vector-machines
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/logistics
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/global-atmospheric-research-program
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/support-vector-machine
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/regression-tree
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tree (ADT), functional tree (FT), kernel logistic regression (KLR), multilayer perceptron (MLP) and 60 

quadratic discriminant analysis (QDA) (Janizadeh et al. 2019). Additionally, some other studies 61 

indicated that hybrid models, such as ensemble of Decision Tree, weights-of-evidence and 62 

support vector machines (Tehrany et al. 2014; Tehrany, Jones, and Shabani 2019), neuro-fuzzy 63 

system integrated with metaheuristic algorithms (Termeh et al. 2018; Tien Bui et al. 2016), 64 

logistic model tree with bagging ensembles (Chapi et al. 2017), swarm optimized neural networks 65 

(Ngo et al. 2018), RF,ANN, SVM (Zhao et al. 2018), ensemble of evolutionary models and ANFIS 66 

(Hong et al. 2018), ensemble of multivariate discriminant analysis, CART, and SVM (Choubin et 67 

al. 2019), ensemble of multi-criteria decision making (Wang et al. 2019), fuzzy rule based 68 

ensembles (Bui et al. 2019), ensemble of RF, Stochastic Gradient Boosted Model, and Extreme 69 

Learning Machine (Shin et al. 2019), had better performances than their single models. 70 

Investigating the literature refers that different kinds of algorithms have been used for modelling 71 

flood susceptibility, but there still need to use newer and more advanced models to find the best 72 

solution to control flood disaster regarding its complicated behaviour. Therefore,this study aims 73 

to model flood susceptibility by the new model EGB and compare its performance with three 74 

benchmark models i.e., FR, RF, and GAM. The FR, RF, and GAM models have been successfully 75 

implemented in flood susceptibility modelling and different other fields of spatial assessment 76 

such as groundwater potential mapping (Golkarian et al. 2018; Motevalli et al. 2019; Naghibi et 77 

al. 2019; Rahmati et al. 2016) as well as landslide (Dou et al. 2019; Hong et al. 2019), gully, and 78 

forest fire susceptibility mapping (Gigović et al. 2019). Therefore, the main novelty of this 79 

research is the application of the EGB in flood susceptibility mapping (FSM). The fundamental 80 

advantage of the EGB is the implementation of the boosting method, which produces strong 81 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/weight-of-evidence
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/swarms
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/discriminant-analysis
Prof. Biswajeet Pradhan
You have cited a lot of papers for different types of models used in the literature. But its important to highlight their pros and cons in order to show the problem statement and research gap. Why such a need of developing a new model when plenty of them are already available? This question needs to be addressed. 

DC
Please see the changes as below:
“Investigating the literature refers that different kinds of algorithms have been used for modelling flood susceptibility, but there still need to use newer and more advanced models to find the best solution to control flood disaster regarding its complicated behaviour. Therefore, this study aims to model flood susceptibility by the new model EGB and compare its performance with three benchmark models i.e., FR, RF, and GAM.”

Prof. Biswajeet Pradhan
Why? What is the rationale behind it? 

DC
It was corrected. 
EGB has not been used in modelling flood susceptibility. It was compared with three previously applied models.

Prof. Biswajeet Pradhan
If it is already applied in flood modelling then whats new in this manuscript? 

DC
It was corrected. 
EGB has not been used in modelling flood susceptibility. It was compared with three previously applied models.

Prof. Biswajeet Pradhan
This statement is contradicting to what has been said earlier. 

DC
It was corrected. 
EGB has not been used in modelling flood susceptibility. It was compared with three previously applied models.
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predictions by “combining several weak learners”. Application of the EGB can diminish the impact 82 

of “over-fitting issue” in the final model and produce more generalized outputs.  83 

 84 

2. Material and Methods 85 

This study first determines flood locations based on field surveys and national reports. 86 

Additionally, non-flood locations are produced with a “random-systematic” strategy. Then, we 87 

prepare the flood conditioning factors and classify them into training and validation datasets. 88 

These datasets are used in order to model flood susceptibility. The output susceptibility maps are 89 

validated by Accuracy, and Kappa indices as well as ROC curve. A detailed methodology flow chart 90 

is shown in Fig. 1. 91 

92 

Fig. 1 Flowchart of the methodology in the current study. 93 
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2.1. Study area 94 

The study area has an area of about 1,765 km2. The elevation in the Talar River Watershed differs 95 

from 221 to 3,944m with an average value of 1,966m. The average width of the Talar River at the 96 

outlet of the basin is about 25.5m (Fig. 2). The investigations of (Yousefi et al. 2017) showed that 97 

this river has been impacted by floods in the past years. There are different land-use classes in 98 

the Talar Watershed including bare land, agriculture, forest, rangeland, and residential areas (Fig. 99 

3).  100 

 101 

Fig. 2 Location of the study area in Iran, Mazandaran province, and location of the training (flood 102 

and non-flood) and validation (flood and non-flood). 103 
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Fig. 3 Photos were taken at four different flood affected locations in Talar watershed (photo by 104 
Sajjad Mirzaei, Zirab City).  105 

 106 

2.2. Flood dataset 107 

In order to detect flood locations in the Talar Watershed, several field surveys were carried out 108 

to detect flood marks in lowland areas of the watershed. In addition, hydrology and flood reports 109 

14   February 2018 14   February 2018 

14   February 2018 16   July 2019 
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as well as the findings of (Motevalli and Vafakhah 2016; Yousefi et al. 2017) were used. Overall, 110 

243 flood locations were detected in the study area. In order to apply the machine learning 111 

models, which need non-occurrence or in this study non-flood locations, 243 locations were 112 

systematic-randomly selected. First, the points were generated in ArcGIS, and then were 113 

investigated in order to check whether they have been selected correctly. Then, flood and non-114 

flood locations were categorized into groups of training and validation covering 70 and 30% of 115 

the points, respectively (Fig. 2). 116 

 117 

2.3. Flood conditioning factors 118 

This study considered several flood susceptibility conditioning factors based on the literature 119 

(Hong et al. 2018; Khosravi et al. 2018; Rahmati et al. 2016; Shafapour et al. 2015; Tehrany et al. 120 

2014; Termeh et al. 2018) and data availability. The input factors include altitude, slope, plan 121 

curvature, profile curvature, stream power index (SPI), topographic wetness index (TWI), 122 

distance from rivers, normalized difference vegetation index (NDVI), rainfall, land use, and 123 

lithology.  124 

The altitude of the study region was obtained from the ASTER-Global digital elevation model 125 

(DEM) having a 30*30m spatial resolution. Altitude determines the level of drainage 126 

development in an area. Generally, higher altitudes have high river density and low discharge, 127 

while the situation is different in lowland areas. Altitude in the study basin ranges from 221 to 128 

3,944 m (Fig. 4a). Slope impacts of water flow velocity over the ground surface and in the 129 

channels. This factor was calculated using DEM and is presented in Figure 5b. The study area has 130 
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slopes ranging from 0 to 69 degrees. Plan and profile curvature were created using the DEM of 131 

the study region and used in the modelling process (Fig. 4c). These curvatures influence the water 132 

flow velocity as well as erosion and deposition processes (Fig. 4d).  133 

SPI presents the river strength for the erosion process. SPI has a direct influence on flood 134 

occurrence because it increases with slope and upland Watershed area (Lee et al. 2018). 135 

 SPI can be computed as follows (Dewan and Yamaguchi 2008) (Fig.5e): 136 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐴𝐴𝐴𝐴 × tan 𝑏𝑏                       (1) 137 

where, As depicts certain basin area, and b slope degree at each point of the basin.  138 

TWI can be calculated as follows (Beven and Kirkby 1979) (Fig. 4f): 139 

𝑇𝑇𝑇𝑇𝑇𝑇 = ln � 𝑎𝑎
tan𝑏𝑏

�                       (2) 140 

where, 𝑎𝑎 is the cumulative area to a specific pixel, and b is slope angle at any given pixel. 141 

Distance from river influences the discharge and spread of the flooding in a given area (Glenn et 142 

al. 2012; Wan, Lei, and Chou 2010). Distance from river layer was created by the Euclidean 143 

distance function in ArcGIS 10.2 (Fig. 4g).  144 

Land use and NDVI are indicators of land cover in an area. Land use was created by a "supervised 145 

learning algorithm" which is a common way of classifying land use (Alganci et al. 2013; Basukala 146 

et al. 2017; Kantakumar and Neelamsetti 2015; Myint et al. 2011; Thakkar et al. 2017). The Talar 147 

River Watershed was classified into five classes of rangeland, agriculture, forest, residential areas 148 

and barren lands (Fig. 4h). Vegetated parts of the watershed have a lower susceptibility to flood 149 
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incidence because there is a reverse relationship between flooding incidence probability and 150 

vegetation cover (Tehrany, Pradhan, and Jebur 2013). NDVI was computed regarding the red and 151 

infrared bands of an image on 2 July 2017 (Row: 35, Path: 163) from Landsat OLI-IRS. 152 

Rainfall data were obtained from 14 rainfall and climatology stations in and around the study 153 

region (Table 1). in this study Universal and ordinary Kriging and Co-kriging interpolation methods 154 

were evaluated by circular, spherical, exponential, Gaussian, Stable, J-Bessel, K-Bessel, Hole 155 

Effect, Rational Quadratic models and Inverse Distance Weighting (IDW), Radial Basis Function 156 

(RBF), Global Polynomial Interpolation (GPI), Local Polynomial Interpolation (LPI), General and 157 

local estimators using Arc GIS software.  158 

Table 1 Average annual rainfall at the rain-gauge stations, their location and height 159 

Station name Average annual 
rainfall  (mm) 

Latitude Longitude Height 
(m) 

Talar 1032 36° 18' 52° 46' 102 
Babol  668 36° 31' 52° 40' 0 
Vastan 614 36° 20' 53° 9' 378 
Shirgah 1033 36° 17' 52° 53' 270 
Kiakola 677 36° 33' 52° 48' -5 
Sangdeh 853 36° 3' 53° 13' 1337 
Babolsar 896 36° 43' 52° 39' -21 
Gharakhil 559 36° 27' 52° 46' 14.7 
Doshan Tappeh 264 35° 42' 51° 20' 1209.2 
Abali 537 35° 45' 51° 53' 2465.2 
Firouzkooh 290 35° 55' 52° 50' 1975.6 
Semnan 145 35° 35' 53° 33' 1130.8 
Firouzkooh bridge 412 35° 43' 52° 24' 2985.7 
Baladeh 304 36° 12' 51° 48' 2120 

 160 
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After performing the interpolation operation by geostatistical and deterministic methods for 161 

comparing, evaluating and selecting suitable interpolation method of five statistical parameters 162 

of Maen Error (ME), Root Mean Square (RMS), Average Standard Error (ASE), Mean Standardized 163 

(MS) and Root Mean Square Standard (RMSS) were used (Eq. (1, 2 , 3, 4 and5)). 164 

MAE =
1

n
��Qi − Qm�

n

i=1

 
  (1) 

RMSS =
1
n
�RMSE𝑖𝑖

n

i=1

 
(2) 

RMSE = �∑(Qi − Qm)2

n
 

(3) 

MS =
∑(Qi − Qm)

𝑆𝑆𝑆𝑆
 (4) 

ASE =
1
n
�  𝑆𝑆𝑆𝑆 (5)     

 165 

In which SE (standard error) (SD
√𝑛𝑛

), SD (Standard deviation), Qi (observations), Qm (Estimated) and i 166 

= 1, ..., n where n is the number of observational data. 167 

In each method, the lowest rank was devoted to the lowest statistical error and the highest rank 168 

was devoted to the highest statistical error, and then sum of the ranks was used to compare the 169 

interpolation methods (Table 2). 170 

Table 2 Selected of the best model in interpolation methods . 171 

Interpolation method Model ASE RMSS MS RMS Mean Rank Select 

Co-Kriging  
 

(Correlation with latitude) 
(R=0.65)  

 
 

Circular 
218.84 1.3426 0.093 279.47 45.54 31 

 

7 5 8 6 5 

Spherical 
221.81 1.3210 0.084 279.16 42.32 27 

 

9 4 6 4 4 

Tetraspherical 
221.29 1.3085 0.087 278.97 41.89 23 

 

10 2 5 3 3 

Pentaspherical 218.61 1.3115 0.090 279.12 41.35 23  
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6 3 7 5 2 

Exponential 
232.76 1.1010 0.073 260.13 33.80 18 √ 

11 1 3 2 1 

Gaussian 
200.74 6.0659 -0.005 484.98 126.19 25 

 
3 7 1 7 7 

Rational 
Quadratic 

220.43 1.3830 0.095 259.05 48.77 30 
 

8 6 9 1 6 

Hole Effect 135.07 70.562 -13.05 1057.78 199.19 42 
 

2 10 10 10 10 

K-Bessel 203 9.49 -0.779 503.5 129.87 36  
5 9 4 9 9 

J-Bessel 109.1 349 -69.56 2216.2 262.49 45  
1 11 11 11 11 

Stable 200.7 6.06 -0.005 484.98 126.19 30  
4 8 2 8 8 

Kiriging 

Circular 261.42 1.045 0.069 270.46 34.19 37  
2 9 8 9 9 

Spherical 261.94 1.0469 0.075 271.58 36.34 43 
 

3 10 10 10 10 

Tetraspherical 265.33 0.941 0.0532 242.50 29.48 28  
9 6 4 6 3 

Pentaspherical 267.57 0.902 0.049 237.23 27.53 21 
 

10 3 2 4 2 

Exponential 262.15 0.946 0.078 249.8 37.35 40 
 

4 7 11 7 11 

Gaussian 269.29 1.032 0.049 267.76 27.48 29 
 

11 8 1 8 1 

Rational 
Quadratic 

264.22 0.864 0.067 225.5 33.96 25 
 

8 1 7 2 7 

Hole Effect 262.71 1.0775 0.073 275.9 33.54 42 
 

5 11 9 11 6 

K-Bessel 263 0.907 0.061 234.15 32.15 23 
 

6 4 5 3 5 

Bessel-J 260.6 0.9014 0.052 220.5 29.82 11 √ 
1 2 3 1 4 

Stable 263.11 0.928 0.0641 240.17 32.98 31  
7 5 6 5 8 

RBF 

Completely 
Regularized 

Spline 

- - - 246.62 46.81 
5 

 

   2 3 

Spline with 
Tension 

- - - 249.83 43.07 4 
√ 

   3 1 

Multiquadric - - - 264.77 44.97 6  
   4 2 

Inverse 
Multiquadric 

- - - 244.99 51.83 5 
 

   1 4 
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Thin Plate 
Spline 

- - - 298.96 57.82 10 
 

      5 5 

LPI 

Exponential 
- - - 260.25 19.08 12 

 
   6 6 

polynomial - - - 253.45 8.18 8  
   4 4 

Gaussian - - - 257.22 11.80 10 
 

   5 5 

Epanechnikov 
- - - 250.44 3.66 4 

 
   2 2 

quartic - - - 253.18 7.87 6  
   3 3 

constant - - - 246.11 -1.81 2 √ 
      1 1 

GPI - - - - 267.86 20.22    

IDW - - - - 253.96 91.07    
 Models marked with √ (bold) have the minimum error in each interpolation methods. 172 

 173 

Results showed that, in the case of annual rainfall, ordinary kriging by J-Bessel model with the 174 

lowest ranks were the most appropriate (Table 3). Interpolation method in estimating the spatial 175 

variation of annual rainfall (Fig.6k). 176 

 177 

Table 3 Results of comparing interpolation methods (statistical and deterministic) with annual 178 
rainfall interpolation 179 

Comparing Interpolation 
method Model ASE RMSS MS RMS Mea

n 
Ran
k 

Selec
t 

(1) 

Co-Kriging Exponentia
l 

232 1.1 0.07 260.1 33.8 
9 

 

1 2 2 2 2 

Kriging Bessel-J 
260 0.9 0.05 220.5 29.8 

6 
√ 

2 1 1 1 1 

(2) 

RBF Spline with 
Tension 

- - - 249.8 43 
5 

 

      2 3 

LPI constant 
- - - 246.1 -1.81 

2 
√ 

      1 1 

GPI - 
- - - 267.8 20.2 

6 
 

      4 2 

IDW - - - - 253.9 91 7  
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      3 4 

(1) With 
(2) 

“Final” 

Kriging Bessel-J 
260.6

0 0.901 0.05 220.5 29 
3 

√ 

- - - 1 2 

LPI constant 
- - - 246.1 -1.8 

3 
 

- - - 2 1 

(1) comparing tow best model in interpolation Statistical methods; (2) comparing four best model in 180 
interpolation Certain methods and (1) with (2) choice the best model in interpolation Certain and 181 
statistical methods (final stage). 182 

The lithology: of the study basin was obtained from the Geology Survey of Iran (GSI) (1997). 183 

Lithology impacts on soil permeability and has an important role in flooding and its magnitude. 184 

There are 26 different lithology classes in the study region (Table 4; Fig, 6j). 185 

 186 

Table 4 Lithological characteristics of the study area 187 

FID Lithological description 
1 Alternation of dolomite, limestone and shale 
2 Basaltic volcanic tuff 
3 Conglomerate and sandstone 
4 Conglomerate, sandstone and shale with coal seams 
5 Dark grey medium - bedded to massive limestone 
6 Dark grey shale and sandstone 
7 High level piedmont fan and valley terrace deposits 

8 Light-red coarse grained, polygenic conglomerate with sandstone 
intercalations 

9 Light grey, thin - bedded to massive limestone ( LAR FM ) 

10 Light- red to brown marl and gypsiferous marl with sandstone 
intercalations 

11 Low level piedmont fan and valley terrace deposits 
12 Marl, calcareous sandstone, sandy limestone and minor conglomerate 
13 Marl, gypsiferous marl and limestone 
14 limestone 
15 Polymictic conglomerate and sandstone 
16 Red conglomerate and sandstone 
17 Red marl, gypsiferous marl, sandstone and conglomerate (Upper red Fm.) 
18 Thick - bedded to massive limestone 
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19 
thick bedded grey o'olitic limestone; thin - platy, yellow to pinkish 
limestone with worm tracks and well to thick - bedded dolomite and 
dolomitic limestone 

20 Thick bedded to massive, white to pinkish orbitolina bearing limestone 
21 Undifferentiated limestone, shale and marl 
22 Undifferentiated lower Paleozoic rocks 

23 Undifferentiated unit, composed of dark red micaceous siltstone and 
sandstone 

24 Upper cretaceous, undifferentiated rocks 

25 Well - bedded to thin - bedded, greenish - grey argillaceous limestone with 
intercalations of calcareous shale ( DALICHAI FM ) 

26 Well bedded green tuff and tuffaceous shale 
 188 

 189 
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 190 

Fig. 4 Input predictor variables: (a) altitude, (b) slope angle, (c) plan curvature, (d) profile curvature, 191 
€ SPI, (g) distance from the river, (h) land-use, (i) NDVI, (k) lithology, and (k) rainfall. 192 
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 193 
Fig. 4 continue 194 

2.4. Classification models 195 

2.4.1. Frequency ratio 196 

FR was introduced by (Bonham-Carter 1994) and is explained as the probability of incidence of a 197 

specific event. This model has been used in many studies in order to define the relationship 198 

between target factors such as flood, gully, forest fire, and groundwater spring and their 199 

conditioning factors. The output of the FR is simple and helps managers and stakeholders 200 

understand the relationships between input and output factors (Nourani and Komasi 2013). FR 201 

can be calculated as below: 202 

 203 

𝐹𝐹𝐹𝐹 = 𝐹𝐹 𝐹𝐹𝐹𝐹⁄
𝐴𝐴 𝐴𝐴𝐴𝐴⁄                       (1) 204 



18 
 

where, F is the number of floods in each class, FF is the total number of floods in the study region, 205 

A is the number of pixels in each class, and AA is the total number of pixels in the study region. It 206 

is noteworthy to mention that the final FR value is obtained by summing the FR values for all 207 

factors. FR values are assigned to the pixels by “lookup” function in ArcMap and they are summed 208 

by the “weightedsum” function. 209 

2.4.2. Random forest 210 

RF could be regarded as an ensemble created by several decision trees as predictors and is 211 

implemented for classification and regression topics (Breiman 2001). RF is a flexible and strong 212 

algorithm that applies random trees by a set of cases through a bootstrapping method. The cases 213 

that are not considered in constructing each tree is called out of bag (Catani et al. 2013; Hong et 214 

al. 2017). There are two indices to define the contribution of the factors in RF model such as 215 

“mean decrease accuracy and mean decrease Gini” (Naghibi, Pourghasemi, and Dixon 2016). RF 216 

is appropriate for working with large data sets and produces satisfactory outputs (Arabameri, 217 

Pradhan, and Rezaei 2019). In RF, a voting is done between the outputs of the constructed trees 218 

and predicts the target variable, in this case, flood susceptibility. To run this model, random 219 

Forest package in R software was implemented and the maps were prepared and classified in 220 

ArcMap 10.2.  221 

2.4.3. Generalized additive model 222 

GAM is categorized as a “semi-parametric” regression method (Chambers and Hastie 1992; 223 

Hastie and Tibshirani 1990). Response curves of this model are predicted by smooth functions; 224 

this leads to an extensive variety of response curves to be predicted (Maggini et al. 2006; 225 
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Pourtaghi et al. 2016). An advantage of the GAM is that it could be interpreted easily, unlike other 226 

data mining, black-box, complex models (Goetz, Guthrie, and Brenning 2011). GAM is able to 227 

model non-linear features that are influenced by many factors like flood susceptibility (Petschko 228 

et al. 2014). The main difference between the generalized linear model and GAM is that the first 229 

one implements parametric impact of solitary variables, while the second one has smoother 230 

additive terms (Vorpahl et al. 2012). GAM was applied using caret and mgcv packages in R 231 

software.  232 

2.4.4. Extreme gradient boosting  233 

EGB method was introduced by (Chen and Guestrin 2016) is a new application of the “gradient 234 

boosting machine”. The foundation of EGB is on the basis of the “boosting” which could be 235 

explained as creating a “strong learner” by combining the outputs of several “weak learners” (Fan 236 

et al. 2018). The EGB attempts to tune the parameters without making the model over-fitted. 237 

The procedure of optimization in EGB begins with creating the first learner to the whole dataset 238 

of the variables and follows with creating the next model on the residuals. The procedure finishes 239 

when it reaches “stopping criteria” (Fan et al. 2018).  240 

3. Results and discussion 241 

3.1. Frequency ratio 242 

The results of the FR model are presented in Table 5. Based on the results, the highest FR is 243 

related to the elevation class of 220-1000 m with an FR value of 4.7. The class of 1000-1650 m 244 

has the second-highest FR value of 1.4. In the case of land use, it can be seen that agriculture and 245 

residential areas have the highest FR values of 7.5 and 9.7, respectively. FR for NDVI depicts that 246 
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classes of less than 0.75 have high FR values. NDVI class of 0.1-0.25 and NDVI class lower than 247 

0.1 have the highest FR values of 1.8 and 1.6, respectively. For plan curvature, the findings 248 

depicted that class of (- 0.001) - (0.001) had the highest FR value of 4.6. In the case of profile 249 

curvature, a class more than 0.001 has the highest FR value of 1.7. Rainfall classes of 725-880 and 250 

617-728 have the highest FR values of 2.7 and 1.3, respectively. In the case of distance from 251 

rivers, it can be seen that classes of 50-100 and 150-200m have the highest FR values of 10.7 and 252 

10.1, respectively. FR results for slope showed that classes of 0-2 (FR=5.5) and 15-70 (FR=1.3) 253 

have higher FR values than other classes. In the case of SPI, it can be seen that the class of 2.5-80 254 

has a high FR value of 12.3. Regarding TWI, the results showed that TWI class of more than 18.3 255 

has the highest FR value of 36.5. It should be mentioned that this class only covers one percent 256 

of the study region; thus, it does not have much importance in this model. The second highest FR 257 

value was observed for the TWI class of 14.1-18.3.  258 

  259 

Table 5 Results of the FR model for different classes of the factors 260 

Factor Class Floods (%) Classes 
area (%) 

Frequency 
Ratio 

Elevation 
(m) 

220-1000 51.9 11.1 4.7 
1000-1650 28.8 20.8 1.4 
1650-2185 15.2 25.3 0.6 
2185-2700 4.1 28.6 0.1 
2700-3944 0.0 14.2 0.0 

Land use Barren land 7.8 14.1 0.6 
Agriculture 69.5 9.2 7.5 
Forest 3.3 34.3 0.1 
Rangeland 8.2 41.2 0.2 

Residential areas 11.1 1.1 9.7 

NDVI < 0.1 2.1 1.3 1.6 



21 
 

0.1 - 0.25 40.3 22.1 1.8 
0.25-0.50 39.1 30.7 1.3 
0.50-0.75 17.7 19.3 0.9 
> 0.75 0.8 26.6 0.0 

Plan 
curvature  

 < -0.001 64.3 48.5 1.3 
(- 0.001) - (0.001) 5.3 1.2 4.6 
> 0.001 30.1 50.3 0.6 

Profile 
curvature  

 < -0.001 7.8 46.4 0.2 
(- 0.001) - (0.001) 1.6 1.2 1.4 
> 0.001 90.6 52.4 1.7 

Rainfall 
(mm) 

 408 - 524 17.7 33.4 0.5 

524 - 617 26.8 33.5 0.8 
617 - 728 32.5 24.6 1.3 
728 - 880 23.0 8.5 2.7 

Distance 
from the 
rivers (m) 

0-50 15.2 3.7 4.2 
50-100 25.5 2.4 10.7 
100-150 14.4 2.8 5.2 
150-200 23.9 2.4 10.1 
> 200 21.0 88.7 0.2 

Slope 
(degree) 

0-2 2.5 0.5 5.5 
2-5 2.9 2.5 1.2 
5-8 0.8 4.2 0.2 
8-15 0.8 18.5 0.0 
15-70 93.0 74.3 1.3 

SPI 2.5-80 0.2 0.2 12.3 
80-400 1.8 1.8 1.6 
400-800 
 
400-800 

3.5 3.5 0.2 

800-1000 2.0 2.0 0.4 
> 1000 92.5 92.5 1.0 

TWI  7-10.2 4.5 43.3 0.1 
10.2-11.8 23.5 37.4 0.6 
11.8-14.1 20.6 14.0 1.5 
14.1-18.3 14.4 4.3 3.3 
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18.3-28.2 37.0 1.0 36.5 

 261 

 262 

Table 6 Area percent of flood susceptibility classes for the FR, GAM, RF and EGB algorithms 263 

Class  FR GAM RF EGB 
Low 72.9 90.4 77.6 91 
Moderate 19 0.7 14.2 2.2 
High 7 0.9 4.3 1.7 
Very high 1.1 8.0 3.9 5.1 

 264 

Fig. 6 Flood susceptibility map obtained by the FR algorithm 265 

 266 
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3.2. Random forest 267 

The RF model was optimized for the training dataset with a node size of 3, mtry of 2, and 1000 268 

trees. The confusion matrix for predictions of the RF on training data is shown in Table 7. Based 269 

on Table 8, the RF has predicted 161 non-flood cases and 164 flood cases correctly, while 10 non-270 

floods and 5 floods are predicted incorrectly. This leads us to a class error of 0.0584 for non-flood 271 

prediction and a class error of 0.0295 for flood prediction. The importance of the factors in flood 272 

susceptibility mapping was defined through the calculation of mean decrease Gini and is 273 

presented in Table 7. Based on the results, altitude, distance from rivers, TWI, slope, and land 274 

use had the highest importance in modelling flood susceptibility. On the contrary, lithology, NDVI, 275 

and SPI were reported to be the least important factors. Figure 9 shows the flood susceptibility 276 

map produced by the RF model. According to the flood susceptibility map, low, moderate, high, 277 

and very high susceptibility classes cover 77.6, 14.2, 4.3, and 3.9% of the study area, respectively.  278 

 279 
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Fig. 7 Optimization results of the RF model in this study. 280 

 281 

Fig. 8 Flood susceptibility map obtained by the RF algorithm 282 

  283 
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Table 7. Importance of the factors in modelling flood susceptibility in the study area 284 

Factors Mean decrease 
accuracy 

Distance from the rivers 51.20 
Profile curvature 22.61 
Slope 19.35 
TWI 15.76 
Altitude 13.18 
NDVI 10.85 
SPI 9.76 
Land use 9.59 
Rainfall  5.77 
Plan curvature 5.22 
Lithology 1.28 

 285 

Table 8. Confusion matrix of the RF model for the training dataset 286 

 Non-Flood Flood Class error 
Non-Flood 161 10 0.0584 
Flood 5 164 0.0295 

 287 

3.3. Generalized additive model 288 

The GAM was optimized by a select parameter of FALSE with accuracy and Kappa indices of 0.98 289 

and 0.97, respectively. For optimizing the GAM, the tuning parameter of the method was selected 290 

to be “generalized cross-validation Cp”. Fig. 9 shows the flood susceptibility map produced by 291 

the GAM. Based on the flood susceptibility map, low, moderate, high, and very high susceptibility 292 

classes occupy 90.4, 0.7, 0.9, and 8% of the studied region, respectively.  293 

 294 
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 295 

Fig. 9 Flood susceptibility map obtained by the GAM algorithm 296 

 297 

3.4. Extreme gradient boosting 298 

Based on the results, the final EGB model was optimized with rounds of 100, lambda of 0.1, an 299 

alpha of 0.1, and eta of 0.3. The accuracy and Kappa of the model with the mentioned parameters 300 

were calculated as 0.95, and 0.90. Low, moderate, high, and very high classes of susceptibility 301 

cover 91.6, 14.2, 4.3, and 3.9%, respectively (Fig 11).  302 
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 303 

Fig. 11 Flood susceptibility map obtained by the EGB algorithm 304 

 305 

3.5. Evaluating the performance of the models 306 

Due to the importance of the performance evaluation step, this study used receiver operating 307 

characteristics (ROC) curve for this purpose. ROC is a common and strong method for evaluating 308 

binary issues and has been used in different fields of study including groundwater, flood, 309 

floodwater, and landslide (Golkarian et al. 2018; Kordestani et al. 2019; Naghibi, Ahmadi, and 310 

Prof. Biswajeet Pradhan
I don’t think the results of the final susceptibility looks reasonable and logical. 
As you could see only the river corridor are classified as very high!!! Why so?

DC
Since the floods are detected very close to the rivers, distance from rivers has had a high impact in the final models. 
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Daneshi 2017; Naghibi, Pourghasemi, and Abbaspour 2018; Rahmati et al. 2018). ROC curve plots 311 

“sensitivity” against “1-specificity” at different cut-off values (Conoscenti et al. 2016; Naghibi and 312 

Moradi Dashtpagerdi 2016). The area under the curve (AUC) of ROC varies from 0 to 1 where an 313 

AUC close to one shows a high-performance model and an AUC close to 0 depicts a low-314 

performance model (Hong et al. 2017; Mousavi et al. 2017; Sangchini et al. 2016). Based on the 315 

results of the ROC curve in Table 9, it can be seen that the RF and EGB are the leading models 316 

with the highest AUCs of 0.985, and 0.98, respectively. The GAM and FR models had lower 317 

accuracy than the leading models with AUC scores of 0.94 and 0.953, respectively. Based on the 318 

accuracy scores, RF had the highest performance with an accuracy of 0.965, followed by the EGB 319 

and GAM. The Kappa index also showed high performance of the RF and EGB compared to other 320 

models.  321 

Table 9 Results of area under the ROC curve (AUC) 322 

Test result variable(s) AUC Accuracy Kappa 
RF 0.985 0.965 0.931 
EGB 0.98 0.9452 0.8902 
GAM 0.970 0.945 0.8901 
FR 0.953 0.664 0.328 

 323 

3.6. Model performance comparison 324 

The results of the current research showed that the RF and EGB had the best performance, 325 

followed by the GAM and FR algorithms. The higher performance of the RF could have resulted 326 

from its strong features. RF is robust to noise and outliers (Sameen, Pradhan, and Lee 2019), the 327 

issues that are common in geospatial works like flood susceptibility. RF is capable of predicting 328 

the importance or influence ratio of the input factors in the modeling process (Naghibi et al. 329 
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2016). This capability makes this model more interpretable than other black-box tree-based 330 

models (Pal 2005). RF is able to handle and work with multiple different inputs without an act of 331 

factor removal (Naghibi and Pourghasemi 2015; Sameen et al. 2019). RF is able to work with huge 332 

data. GAM and FR have also shown acceptable performances. FR as a statistical model provides 333 

an easy to interpret outputs that could be useful for the managers as well as stakeholders 334 

(Nourani et al. 2014). Therefore, the selected models in this study provide both complex high-335 

performance and simple interpretable results. EGB on the other hand, applied boosting 336 

technique, which is known as a strong feature in data mining models resulting in better outputs 337 

for classification issues. This feature might have caused superior performance than two other 338 

models of GAM and FR with simpler structures. “Gradient boosting method” suffered from a lack 339 

of “strong regulation parameter”, that had made it vulnerable to “over-fitting”, but the 340 

regularization parameter in EGB makes overcomes this shortcoming (Georganos et al. 2018). The 341 

impact of boosting was also confirmed in another study i.e.,(Naghibi et al. 2017) where they used 342 

the FR model to combine the results of some data mining models. Their ensemble model 343 

constructed on the basis of boosting had better performance, which is consistent with the results 344 

of this research. The results of (Georganos et al. 2018) in object-based land-use classification 345 

proved a superior performance of the EGB comparing to other models like RF and support vector 346 

machines. The acceptable performance of the EGB in their study is in agreement with the results 347 

of this study.  348 

The results of factor importance by the RF model showed that distance from the rivers had an 349 

important influence on flood susceptibility, followed by profile curvature, slope, TWI, and 350 

altitude. The results of (Khosravi et al. 2018) showed that altitude had the highest importance in 351 
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modelling flood susceptibility, followed by distance from the river, NDVI, soil type, and slope. This 352 

shows that in spite of differences between the importances of factors affecting flood 353 

susceptibility, there are some shared results, for instance, for distance from the river, and slope. 354 

The differences between the important values in this study and (Khosravi et al. 2018) could be 355 

related to the physical, topographical, and hydrological characteristics of the Watersheds. Floods 356 

occur in certain distances from rivers; thus, this factor has had a high contribution to the 357 

modelling. Higher slopes are related to higher elevations where drainage density is higher and 358 

flood discharge is lower. Therefore, we do not expect flood occurrence in those areas. A range of 359 

slopes between mountainous and plain areas where discharge reaches higher amounts is more 360 

susceptible to flood occurrence. Profile curvature, TWI as secondary topographical factors as well 361 

as altitude impact the drainage development in different parts of the watershed, runoff speed, 362 

and erosion and sediment ratio. 363 

4. Conclusion 364 

Determining high susceptible areas to flood occurrence is a crucial step to manage this disaster 365 

especially in developing countries like Iran and the Middle East as data-scarce areas where there 366 

is not enough access to high quality spatial and temporal flood data. The current research 367 

develops a reliable flood susceptibility assessment for large areas confronting a lack of data 368 

through the application of the EGB model and comparing it with RF, FR, and GAM. The results 369 

depicted satisfactory efficiency of the RF and EGB models. The RF and EGB models had AUC values 370 

of more than 0.98, which is regarded as excellent prediction ability in classification issues. Thus, 371 

applications of the RF and EGB models are recommended for future studies on flood 372 

susceptibility. Further, the findings of variable importance showed a high impact of distance from 373 
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the river, profile curvature, slope, TWI, and altitude in the modelling process of this phenomenon. 374 

This shows that topographical factors have a strong role in modelling flood. Researchers can 375 

obtain highly accurate flood susceptibility maps by focusing on DEM-derived factors and 376 

improving their quality. DEM-derived factors are extremely impacted by the spatial resolution of 377 

the DEM. This work suggests a step for assessing flood susceptibility of mountainous regions like 378 

Talar and provides basic information to define potentially disastrous areas and mitigate the 379 

damages. Based on the results, highly flood susceptible areas are located at the northern parts 380 

of the Talar area, which covers lowland regions. Flood control strategies and actions are 381 

suggested to be done by water resources managers for those areas.   382 

 383 
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