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Abstract  28 

Road networks are one of the main urban features. Therefore, road parts extraction from high-29 

resolution remotely sensed imagery and updated road database are beneficial for many GIS 30 

applications. However, owing to the presence of various types of obstacles in the images, such 31 

as shadows, cars, and trees, with similar transparency and spectral values as road class, 32 

achieving accurate road extraction using different classification and segmentation methods is 33 

still difficult. This paper proposes an integrated method combining segmentation and 34 

classification methods with connected components analysis to extract road class from 35 

orthophoto images. The proposed technique is threefold. First, multiresolution segmentation 36 

method was applied to segment images. Then, the main classification methods, namely, 37 

decision trees (DT), k-nearest neighbors (KNN), and support vector machines (SVM), were 38 

implemented based on spectral, geometric, and textural information to classify the obtained 39 

results into two classes: road and non-road. Three main accuracy evaluation measures, such as 40 

recall, precision, and F1-score, were evaluated to determine the performance of the proposed 41 

method, with respective average values of 87.62%, 89.71%, and 88.61%, respectively, for DT; 42 

86.61%, 88.17%, and 87.30%, respectively, for KNN; and 89.83%, 89.52%, and 89.67%, 43 

respectively, for SVM. Finally, connected components labelling was used to extract road 44 

component parts, and morphological operation was employed to delete non-road parts and 45 

noises and improve the performance. These results were also compared with other prior works, 46 

which confirmed that the integrated method is an effective road extraction technique. 47 

Keywords: road extraction; image segmentation; image classification; connected components 48 

analysis; remote sensing 49 

1. Introduction 50 

With the revolution of new generation remote sensing technologies, high-resolution remote 51 

sensing imagery has become frequently accessible recently. Image processing and 52 

interpretation are necessary to analyze remote sensing images because a massive number of 53 

images are captured by these sensors (Grinias, Panagiotakis, & Tziritas, 2016). Among the 54 

remote sensing fields, road network extraction from remote sensing images with high spatial 55 

resolution is a considerable subject that received ample attention from researchers in recent 56 
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years (Rezaee & Zhang, 2017). Compared to low and medium spatial resolution images, road 57 

parts are displayed in the high-resolution remotely sensed imagery with comprehensive spatial 58 

information. Regular updates of road network database are required because the urban 59 

environment is rapidly shifting (Abdollahi, et al., 2020). Road lengths are lengthy and generally 60 

longer than those of street blocks and buildings, while road width is usually a few pixels in 61 

remote sensing imagery (Sujatha & Selvathi, 2015). Therefore, precise road network extraction 62 

from very high-resolution remotely sensed images is necessary for different kinds of urban 63 

applications, such as updating maps in geographic information system (Abdollahi, Pradhan, & 64 

Shukla, 2019), road navigation (Li, Jin, Fei, & Ma, 2014), land cover analysis (Zhang, Chen, 65 

Zhuo, Geng, & Wang, 2018), and transportation and traffic management (Liu, Wu, Wang, & 66 

Liu, 2015). However, owing to existing obstructions and noise in these images, such as 67 

contextual structures (shadows, vehicles, vegetation, and trees) and road-like features (such as 68 

car parking and railways), which have similar spectral and spatial characteristics and produce 69 

heterogeneous areas causing the incorrect segmentation of road parts, extracting road parts 70 

from remotely sensed imagery becomes a challenging task (Li, et al., 2019). Manual road 71 

extraction from high-resolution remote sensing images is inefficient and very time- and cost-72 

consuming, thus failing to satisfy real-time processing requests; semi-automatic and automatic 73 

approaches are preferred (Courtrai & Lefèvre, 2016). Several machine learning methods, such 74 

as support vector machine (SVM) (Guo, et al., 2016), random forest (RF) (Rodriguez-Galiano, 75 

Ghimire, Rogan, Chica-Olmo, & Rigol-Sanchez, 2012), maximum likelihood (Ahmad & 76 

Quegan, 2012), and neural networks (Ratle, Camps-Valls, & Weston, 2010), which are pixel-77 

based traditional classification approaches, only rely on the spectral information of the images. 78 

Pixel-wise classifiers have one limitation, that is, they are subject to the color phenomena; this 79 

means that these methods classify the images based on color reflectance, which leads to loss 80 

of portions with similar color and background (Fauvel, Chanussot, & Benediktsson, 2012). 81 

Therefore, integrating segmentation and classification methods that provide high accuracy by 82 

utilizing spectral information along with the spatial and texture information is gaining 83 

considerable attention in the remote sensing field.  84 

2. Related works 85 

Road network extraction from high-resolution remote sensing imagery can be divided into 86 

automatic and semi-automatic approaches (Khesali, Zoej, Mokhtarzade, & Dehghani, 2016). 87 

User input as prior information is needed for semi-automatic techniques (Chaudhuri, 88 

Kushwaha, & Samal, 2012), whereas automatic techniques do not need any prior information 89 
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(Mnih & Hinton, 2010).  Miao, Shi, Gamba, and Li (2015) applied an approach derived from 90 

semi-automatic approaches to extract road centerline from very high resolution (VHR) 91 

imagery. They first used the geodesic technique to exploit the primary road sections and 92 

produce the probability map. Then, they utilized thresholding operation to classify the image 93 

in non-road and road parts. The obtained results showed that the suggested technique can 94 

accurately and rapidly detect centerline of roads from VHR images.  95 

In the work of (Alshehhi & Marpu, 2017), hierarchal graph-based segmentation was 96 

introduced for road part extraction from high-resolution remote sensing imagery. This 97 

technique includes three main steps: (1) pre-processing, which is based on morphological and 98 

Gabor filtering to extract features and intensifies the contradiction between non-road and road 99 

sections; (2) graph-based segmentation, which is based on hierarchical joining and the dividing 100 

of the image segments using shape and color characteristics; and (3) post-processing, which is 101 

applied to remove small artefact features in the extracted road sections and improve accuracy. 102 

The outcomes proved that this technique is superior for road parts extraction from high-103 

resolution remote sensing imagery in an urban area.  104 

In a recent paper, Shen, Ai, and Yang (2019) proposed a novel approach called superpixel 105 

centerline extraction to extract dual-line roads from remotely sensed images. First, they used 106 

simple linear iterative clustering to segment dual-line roads. Next, the superpixels situated at 107 

road intersections were merged to generate connection points from their skeleton. Finally, they 108 

connected the midpoints and center points of edges of every superpixel to generate road 109 

centerlines. The extracted road centerline was tested using an old vector data at a scale of 110 

1:50,000. They found that the proposed method can eliminate noises and yield an excellent 111 

road extraction result from simple and complex road intersections.  112 

Gao, et al. (2018) introduced a multiple feature pyramid network for extracting a road class 113 

from remotely sensed images. They also presented the weighted balance loss function to settle 114 

the class unbalance difficulty produced by the sparseness of road sections. They found that 115 

compared with cross-entropy loss function, training time can be dramatically decreased by the 116 

weighted loss function. Two datasets were used to test their proposed method, and the results 117 

confirmed that the method can obtain high accuracy for road class extraction. A semi-automatic 118 

approach is presented by (Khesali, et al., 2016) for road class extraction from IKONOS and 119 

TerraSAR-X imagery. They applied an integrated knowledge-based and neural network 120 

approach using spectral and texture information for road extraction. The results proved that the 121 

proposed approach is effective for extracting road portions. Kamangir, Momeni, and Satari 122 
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(2017) performed maximum likelihood method, morphological operations, and random sample 123 

consensus approach for image classification, segmented image rectification, and road class 124 

extraction, respectively. The obtained completeness factor was 85%, indicating the 125 

effectiveness of the suggested approach for road extraction. Da-Ming, Xiang, and Chun-Li 126 

(2011) suggested a method for road network extraction based on Markov random field (MRF), 127 

SVM, and fuzzy c-mean (FCM). They integrated the latter two models to extract road section 128 

and then compared the outcome with that of the MRF method. They found that the fusion 129 

method of SVM and FCM is more effective than the MRF method for extracting road class 130 

from remotely sensed imagery.  131 

A combined approach of SVM and level set (LS) is applied by (Abolfazl Abdollahi, 132 

Bakhtiari, & Nejad, 2018) for extracting road regions from google earth imagery. They 133 

achieved some common measures, such as completeness and correctness, and realized that the 134 

integrated technique is efficient in extracting road class. A new approach based on graph 135 

theoretical technique for road network extraction from high-resolution remote sensing imagery 136 

was introduced by (Unsalan & Sirmacek, 2012). Various kinds of images, such as QuickBird, 137 

IKONOS, and GeoEye, were used to designate the deficiencies and robustness of the 138 

recommended system. The empirical results demonstrated that the suggested technique can 139 

efficiently extract road parts. Revathi and Sharmila (2013) applied pre-processing approach to 140 

increase the quality of images by removing noises first. They then implemented SVM and mean 141 

shift approach to extract road portions from IKONOS images. They obtained completeness and 142 

correctness metrics, which show that the proposed model achieved good results in road part 143 

extraction.  Singh and Garg (2013) extracted road parts using a combination of morphological 144 

operators and adaptive global thresholding. The thresholding method was applied to segment 145 

roads, whereas the morphological operators were utilized to fill the gaps and improve accuracy. 146 

They discovered that the suggested model could achieve acceptable results for road extraction 147 

based on the obtained performance measures (e.g., correctness and completeness).  148 

A road centerline extraction approach was introduced by Sujatha & Selvathi (2015) for road 149 

class extraction from high-resolution remote sensing imagery. They segmented the images and 150 

then used connected components operators to extract united road segments. They applied 151 

morphological operations to remove pixels of non-road sections. The outcome verified the 152 

robustness of the introduced method in road part extraction. Moreover, various shape 153 

characteristics with spectral features, such as compound feature set (Valero, Chanussot, 154 

Benediktsson, Talbot, & Waske, 2010), image moments (Das, Mirnalinee, & Varghese, 2011), 155 
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morphological operations (Shi, Miao, Wang, & Zhang, 2014), and linear feature index (Miao, 156 

Shi, Zhang, & Wang, 2012), can be used to improve road class segmentation and classification. 157 

Shi, et al. (2014) performed a spectral–spatial classification method and shape features to 158 

extract road object from IKONOS and Ziyuan-3 satellite images. They first used opening and 159 

closing morphological operations to classify images into non-road and road sections. Local 160 

Geary’s C technique was then applied to obtain the homogeneity of local gray values. Finally, 161 

shape features, such as length and area, were used to improve the road part. The results depicted 162 

the effectiveness of the suggested approach in extracting road parts from high-resolution 163 

remotely sensed image. However, the method is unsuitable for extracting road class from low-164 

resolution images with a spatial resolution below six meters.  165 

Some eminent shape features were used by Zhang, et al., (2018) for road class extraction 166 

from remote sensing imagery. They first extracted road edge using singular value 167 

decomposition method and then constructed road sections using k-mean clustering approach. 168 

Next, a combination of eminent shape features and total variation-based image contraction 169 

approach was used to obtain road networks. Morphological operators were used to remove 170 

noises and extract non-road parts to improve accuracy. Completeness and correctness 171 

assessment measures were achieved and proved that the suggested technique is remarkable in 172 

detecting and extracting road class from remotely sensed imagery. Pixel-wise classification 173 

techniques rely on color and classify images based on feature color reflectance. Therefore, the 174 

main problem of these techniques is color sensitivity, which has motivated the authors of this 175 

paper to use other characteristics, such as spatial and texture features, to classify images and 176 

extract road class. Merging spectral, spatial, and textural information generally demonstrates 177 

better outcomes compared when only spectral information is used. Therefore, this paper aims 178 

to integrate segmentation and classification methods with connected components analysis 179 

using spectral values (mean and standard deviation), geometric information (area, length, and 180 

number of pixels), and textural features (entropy, contrast, homogeneity, and mean) to 181 

categorize orthophoto images into road and non-road class and extract the road parts. In 182 

addition, the utilization of additional shape saliency features can tackle the color sensitivity 183 

and improve the performance of road extraction methods.  184 

Object-based image analysis (OBIA) usually has more benefits compared with that of 185 

traditional pixel-based classification approaches. For example, OBIA techniques consider not 186 

only spectral values but also textural and spatial features in classifying images, while pixel-187 

based techniques depend only on a single pixel or its neighborhood information (Maboudi, 188 
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Amini, Hahn, & Saati, 2017). The performance of pixel-based classification techniques is 189 

generally lower than that of the OBIA when dealing with road extraction and VHR remotely 190 

sensed image classification (Blaschke, 2010). Therefore, the main contribution of this work is 191 

to offers an integrated model of segmentation and classification methods with connected 192 

components labeling for road extraction from orthophoto images. The following steps are 193 

conducted to achieve this goal. First, the segmentation technique is used to split the image into 194 

some segments, and then the results are processed using the classification methods to 195 

categorize the images into non-road and road sections. Then, the connected components 196 

labeling is applied to the final binary images to assert its pixels into components based on pixel 197 

connectivity to extract road parts and delete some components belonging to non-road sections. 198 

Finally, morphological operations are performed to remove noises, fill the gaps, and improve 199 

the performance. The training time for the proposed classification methods was relatively short, 200 

while providing satisfactory results for both quantitative and qualitative parts. Moreover, these 201 

methods were incorporated with the connected components labeling and morphological 202 

operation for road extraction from orthophoto images, which has not been performed in 203 

previous studies. The rest of this paper is organized as follows. The basic principle of the 204 

suggested approach is illustrated in Section 3. Section 4 explains the empirical outcomes. 205 

Section 5 and 6 report the discussion and conclusion parts, respectively.  206 

 207 

3. Materials and methodology 208 

3.1.  Proposed model 209 

An effective model for road section extraction from VHR remotely sensed images is presented 210 

in this work. This model has the following three steps. First, multiresolution segmentation was 211 

performed to divide the images into segments based on their spectral values. A total of 567 212 

segments were selected as labeling data for training classification methods based on the 213 

segmented images randomly. Then, three main classification approaches, namely, SVM, decision 214 

tree (DT), and k-nearest neighbors (KNN), were applied to the segmented image and trained 215 

based on sampling data to classify the image into two principal classes: road and non-road class. 216 

Finally, connected components analysis and morphological operations were performed to group 217 

the pixels together in terms of similar connected components and delete holes and noises to 218 

improve the accuracy of the proposed road extraction method. Figure 1 illustrates the flowchart 219 
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of the suggested method along with the entire process for road part extraction from orthophoto 220 

images.  221 

 222 
Fig. 1. Flowchart of the proposed road extraction method  223 

3.2. Segmentation process 224 

Image segmentation is a crucial step because it will produce the primary entities for the 225 

subsequent processes. The quality of image segmentation has a notable impact on the succeeding 226 

operations, making it a crucial yet challenging aspect of OBIA (Grote, Heipke, & Rottensteiner, 227 

2012). The algorithms for image segmentation can be divided into four main categories: edge-228 

based, pixel-based, region-based, and mixture methods. The multiresolution segmentation 229 

technique is applied in this study for image segmentation (Saba, Valadan Zoej, & Mokhtarzade, 230 
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2016). The scale, shape, and compactness parameters for the proposed segmentation method 231 

were set to 20, 0.2, and 0.6, respectively, to obtain high accuracy in the classification process. 232 

The proposed segmentation method is a region-based method, which reduces the non-233 

homogeneous segments using spectral and shape characteristics (Wang & Li, 2014). In this 234 

method, each pixel of the image is considered as an object. Then, using a fusion factor, objects 235 

were joined together to make a large one during a repetitive process. Equation 1 shows the fusion 236 

factor, which demonstrates the cost of fitting (Saba, et al., 2016). 237 

        (1) 238 

where hshape is the difference in the shape dissimilarity, hcolor is the difference in the spectral 239 

dissimilarity, Wshape is the weight of shape dissimilarity, and Wcolor is the weight of spectral 240 

heterogeneity. Furthermore, Wcolor + Wshape = 1. Equation 2 defines the difference between two 241 

objects on the basis of spectral heterogeneity in a multispectral image with B band. 242 

        (2)    243 

  where n is the number of pixels in every object; σ is the standard deviation of spectral values; 244 

indexes 1, 2, and m represent the first, second, and the combined object, respectively; and Wb is 245 

the band weight. Smoothness and compactness dissimilarity represent the difference between the 246 

shape heterogeneity of two objects (Maboudi, et al., 2017). The difference in shape dissimilarity 247 

is expressed by Equation 3. Wcomp and Wsmooth are the compactness and smoothness 248 

dissimilarities, respectively. 249 

         (3) 250 

where p shows the minimum bounding box perimeter of the object, and ℓ represents the genuine 251 

length of the object. Wsmooth + Wcomp = 1. 252 

3.3. Selecting features 253 

In this paper, OBIA, which considers not only spectral information but also spatial and textural 254 

features, was applied to deal with color sensitivity and enhance the efficiency of the suggested 255 

road extraction approach. Pixels in the image are first grouped into objects on the basis of either 256 

spectral correlation or an outer parameter, such as ownership, soil, or geological unit in the OBIA 257 

(Blaschke, 2010). The parameter values, such as standard deviation and mean, were considered 258 
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for each band in the image for the spectral values. The different shapes and elongation of road 259 

objects facilitated the easy identification of the proposed method. Geometric features (e.g., 260 

length/width, area, and number of pixels) were also considered to ease the classification process. 261 

Finally, for the textural values, contrast, entropy, dissimilarity, homogeneity, and correlation 262 

values were considered. These features are generally applied to alleviate the classification 263 

process and improve the efficiency of road extraction approaches. These features are fed into the 264 

classifiers as a training part to accurately classify the image into the road and non-road sections. 265 

3.4. Classification process  266 

After image segmentation, classifiers, such as SVM, KNN, and DT, were selected to categorize 267 

the orthophoto images into two principal classes: road and non-road. This section presents 268 

individual discussions of the above classifiers. 269 

3.4.1. SVM classifier 270 

SVM, which is one of the supervised machine learning approaches, exhibited ample ability in 271 

image classification compared with that of the traditional techniques, such as neural networks 272 

(X. Huang, Lu, & Zhang, 2014). The SVM classifier is a linear classification approach that 273 

creates a hyperplane to separate data. The process of separating data into classes is followed by 274 

identifying the best hyperplane and maximum margin (Abolfazl Abdollahi, et al., 2018). SVM 275 

transforms data according to the predesignated sections in a novel space, wherein data can be 276 

detached and classified linearly. Then, a linear equation that provides a maximum margin 277 

between two classes is formulated by finding a support line in multi-dimensional space using 278 

SVM (Sghaier & Lepage, 2016). The practical application of the SVM method depends on the 279 

hypothetical maximum margin classifier. Given that hyperplane is a line separating the input 280 

variable space, a hyperplane in the SVM classifier detaches points from the input variable space 281 

based on their class (0 or 1). All the input points can be completely split by this line into a two-282 

dimension space (Equation 4). 283 

        (4) 284 

where X1 and X2 are the input variable, B0 is set up by the learning algorithm, and B1 and B2 285 

specify the slope of the line. In this study, the kernel type for SVM is considered to be a linear 286 

kernel explaining the distance measure or similarity between new data and support vectors. The 287 

performance of the SVM method is shown in Figure 2. The dotted lines in the figure represent 288 

corresponding class support vectors, and the data are presented into two categories (red and blue). 289 
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The long black line is the SVM. Each kind of support vector has a characteristic formula that 290 

describes the boundary of each group. 291 

 292 

Fig. 2. SVM performance in categorizing data (Burges, 1998) 293 

3.4.2. KNN classifier 294 

One of the non-parametric techniques in machine learning methods is KNN, which has been 295 

utilized in statistical applications since the early 1970s (K. Huang, Li, Kang, & Fang, 2016). The 296 

fundamental concept of KNN is the discovery of a collection of k samples in the calibration 297 

dataset nearest to uncertain samples based on distance functions. By evaluating the average of 298 

the response variables (e.g., attributes of KNN class), the class of uncertain samples is specified 299 

from these k samples (Akbulut, Sengur, Guo, & Smarandache, 2017). Therefore, k is the key 300 

tuning parameter of KNN and plays a crucial role in ensuring the efficiency of KNN in image 301 

classification. The bootstrap process is used to identify the k parameter (Qian, Zhou, Yan, Li, & 302 

Han, 2015). Different k values from 1 to 10 were inspected in this study to find the ideal k value 303 

from all the training datasets, which finally yielded 2. 304 

3.4.3. DT algorithm 305 

Regarding the dispensation of data, the DT method can be executed without any previous 306 

statistical presumptions because it is a non-parametric classifier. The basic structure of the DT 307 

algorithm has three main parts, which include one root node, numerous interior nodes, and a 308 

collection of final nodes (Otukei & Blaschke, 2010). The data are recessively broken down into 309 

a DT based on the assigned classification structure. Using a breaking test of the form xi> c for 310 

univariate or    for multivariate decision trees, a decision rule necessary at every node 311 

can be performed. Where c is the decision threshold, a is the linear coefficient vector, n is the 312 

chosen feature, and xi presents the evaluation vectors. Compared with traditional methods, such 313 

as the minimum-distance-to-means approach, the DT method has high precision. However, 314 
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several variables, such as decision threshold, boosting, and pruning approaches, can affect the 315 

efficiency of DT in classification (Mishra, Singh, & Yamaguchi, 2011). Some parameters, such 316 

as max categories, cross-validation fold, and depth, are set to 16, 3, and 1, respectively, for the 317 

DT method to achieve optimal results. 318 

3.5. Connected component analysis and morphological operations 319 

After applying the classification methods and obtaining the results, connected components 320 

labeling was performed to extract road sections. Image pixels were grouped into components 321 

using connected components analysis on the basis of pixel connectivity, wherein all pixels in 322 

the connected component have the same pixel intensity values and are labeled with color or 323 

gray level based on each component (Vijayan & Jyothy, 2016). The image can be partitioned 324 

into segments using these connected components. Morphological operators can be used to 325 

extract connected components. Analyzing connected components can be very useful for several 326 

applications, such as line detection and road extraction (Sujatha & Selvathi, 2015).  327 

The trivial operation was applied to extract connected component based on some criteria. 328 

Assume that P(i) is the connected component, P is the image, and T is the length of the main 329 

axis. The trivial opening can then be expressed as follows: 330 

          (5) 331 

where R0 is the connected component. According to the T, trivial operation is utilized for 332 

suitable connected components extraction. The entire region of connected components is 333 

preserved if that component satisfied condition T and is removed otherwise. After extracting 334 

the required connected components in terms of road section, common morphological 335 

operations, such as opening and erosion operations, were used to fill gaps, remove noises, 336 

delete non-road parts from the image, and improve the accuracy of the extracted road class 337 

using the proposed methods (Bakhtiari, Abdollahi, & Rezaeian, 2017; Yadav & Agrawal, 338 

2018). 339 

3.6. Accuracy evaluation 340 

The road layer from orthophoto images was manually digitized using ArcMap software to 341 

compare it with the extracted road class and calculate the accuracy of the proposed road 342 

extraction technique. A confusion matrix containing road and non-road class pixels was used to 343 

assess the effectiveness of the proposed method in extracting road section. Some common 344 

metrics, such as recall (completeness) factor, F1-score, and precision (correctness) factors, were 345 
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determined and presented in Equations (6), (7), and (8), respectively. The amount of road pixels 346 

extracted among all real road pixels is determined by the recall factor. A fusion of precision and 347 

recall is considered being the F1-score, while the precision factor determines the number of 348 

accurately extracted road pixels among all estimated pixels. 349 

𝐹1 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
        (6)                                                                                               350 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                (7)                                                                                             351 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
           (8)                                                                                                     352 

4. Results 353 

4.1. Orthophotos and geometric correction 354 

Orthophoto images obtained from the state of Selangor in Peninsular Malaysia with spatial 355 

resolution of 7 cm are utilized in this paper (Figure 3). An Optech Airborne Laser Terrain Mapper 356 

3100 instrument in an airborne laser scanning of light detection and ranging (LiDAR) system 357 

was used to collect orthophotos from the specific area on November 2, 2015. A LiDAR system 358 

basically includes a specific GPS (global positioning system) receptor, a scanner, and a laser. 359 

The most regularly utilized platforms for collecting LiDAR data over large regions are 360 

helicopters and airplanes. Laser scanning systems are classified as topographic and bathymetric. 361 

Topographic LiDAR maps the land based on a near-infrared laser, whereas bathymetric LiDAR 362 

measures seafloor and riverbed elevation and maps land based on water-penetrating green light 363 

(Ferraz, Mallet, & Chehata, 2016). The flight height for data collection was 1510 m in a bright 364 

sky. The geometric calibration of the orthophoto images was performed to eliminate geometric 365 

error and designate single pixels in their appropriate planimetric (x, y) map positions (Aasen, 366 

Honkavaara, Lucieer, & Zarco-Tejada, 2018). Subsequently, several well-distributed ground 367 

control points in the entire image were selected, and then the least square technique was 368 

performed to determine the coefficient. Finally, polynomial equations were formulated to 369 

determine the root mean shift error between the X, Y of reference, and the adjusted coordinates.  370 

 371 
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 372 
Fig. 3. Orthophoto images showing the location of the study area 373 

4.2. Experimental results 374 

In this study, a new method integrating segmentation and classification methods with 375 

connected components labeling was introduced to extract road class from different orthophoto 376 

images with different backgrounds. Three images from different areas, in which road section is 377 

covered by some other objects, such as vegetation, vehicles, and buildings, were considered to 378 

demonstrate the efficiency of the proposed road extraction method. Software, including 379 

MATLAB, eCognition Developer 64, and ArcMap, were used to apply the proposed method and 380 

calculate its efficiency in road extraction. We considered two sets of values for parameters such 381 

as scale, shape and compactness for the proposed segmentation approach to measure how the 382 

parameters of the method affect the detection accuracy. First, we set the values for the scale, 383 

shape and compactness parameters of the segmentation method to 50, 0.5 and 0.3 and then 384 

applied the classification methods, and the results are shown in Figure 4. Whereas Figure 5 shows 385 

the results of road detection by the methods after setting the values of scale, shape and 386 

compactness parameters to 20, 0.2 and 0.6, respectively. Both figures are illustrated in five 387 

columns and three rows. The first and second columns depict the original RGB images and 388 
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original ground truth maps, respectively. The third, fourth and fifth columns depict the results of 389 

road detection by the KNN, DT and SVM approaches after integration with connected 390 

components analysis. Road parts in the main images of Figures 4 and 5 are evidently less or more 391 

covered by other occlusions with similar reflectance, making accurate road part extraction from 392 

images difficult. This phenomenon is due to the objects with the same spectral features, which 393 

possibly become visible as a road section in the extracted image. Consequently, OBIA, connected 394 

components analysis, and morphological operations were applied along with segmentation and 395 

classification method to obtain additional information, such as texture and geometry, and 396 

eliminate irrelevant road components and noises to improve the accuracy. As shown in Figures 397 

4 and 5, the proposed integration of KNN, DT, and SVM methods with connected components 398 

could generally extract accurate road section from orthophoto images. However, the three 399 

proposed classification methods demonstrated better performance for extracting road from 400 

images in Figure 5 with parameters values of scale=20, shape=0.2 and compactness=0.6 than 401 

those in Figure 4 with parameters values of scale=50, shape=0.5 and compactness=0.3. In both 402 

figures, the proposed SVM method could produce better qualitative results for road extraction 403 

with less false positive (FPs) prediction (shown as blue color) than other methods while KNN 404 

method predicted more FPs and less false negative (FNs) (shown as yellow color) and generated 405 

low-quality visualization results compared to other approaches. 406 

 407 

 408 
Fig. 4. Extracted road class from orthophoto images with scale=50, shape=0.5 and 409 

compactness=0.3. First and second columns show the original image road label, respectively 410 

while third, fourth and fifth columns show the results of road detection by KNN, DT and SVM 411 

approaches, respectively.  412 
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 413 

 414 
Fig. 5. Extracted road class from orthophoto images with scale=20, shape=0.2 and 415 

compactness=0.6. First and second columns show the original image road label, respectively 416 

while third, fourth and fifth columns show the results of road detection by KNN, DT and SVM 417 

approaches, respectively.  418 

A confusion matrix with four main factors (true negative (TN), false negative (FN), true 419 

positive (TP), and false positive (FP)) was used for assessing the accuracy of the suggested 420 

approach because road part extraction from remote sensing image is a binary classification. 421 

The amount of incorrectly classified pixels in terms of road section is called FP, while the 422 

amount of incorrectly extracted pixels related to non-road part is defined as FN. TP is 423 

considered being the amount of accurately classified road pixels, and TN is the accurately 424 

classified non-road pixels (Wei, Wang, & Xu, 2017). Several main metrics, such as recall, F1-425 

score, and precision, were considered based on the parameters of the confusion matrix to 426 

evaluate the capability of the introduced approach in road network extraction from orthophoto 427 

images. Table 1 demonstrates the quantitative results achieved by the proposed methods for 428 

Figure 4 and those for Figure 5 are presented in Table 2. 429 

Table 1. Evaluated metrics for different methods (Figure 4). Best values are in bold and 430 

second-best values are underlined. 431 

 432 

  KNN DT SVM 

Image1 

Recall 0.8833 0.8305 0.8485 

Precision 0.8112 0.8957 0.8765 

F1-score 0.8457 0.8619 0.8623 

Image2 

Recall 0.8881 0.9025 0.9326 

Precision 0.9095 0.9161 0.9044 

F1-score 0.8987 0.9092 0.9182 

Image3 
Recall 0.7851 0.8058 0.8547 

Precision 0.8998 0.8967 0.8823 
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F1-score 0.8386 0.8488 0.8683 

Average 

Recall 0.8522 0.8463 0.8786 

Precision 0.8735 0.9028 0.8877 

F1-score 0.8610 0.8733 0.8829 

 433 

Table 2. Evaluated metrics for different methods (Figure 5). Best values are in bold and 434 

second-best values are underlined. 435 

 436 

  KNN DT SVM 

Image1 

Recall 0.8966 0.8492 0.8922 

Precision 0.8442 0.9167 0.8982 

F1-score 0.8696 0.8817 0.8952 

Image2 

Recall 0.8952 0.9318 0.9218 

Precision 0.9144 0.9023 0.9223 

F1-score 0.9047 0.9168 0.9220 

Image3 

Recall 0.8064 0.8475 0.8809 

Precision 0.8865 0.8722 0.8651 

F1-score 0.8446 0.8597 0.8730 

Average 

Recall 0.8661 0.8762 0.8983 

Precision 0.8817 0.8971 0.8952 

F1-score 0.8730 0.8861 0.8967 

 437 

5. Discussion 438 

Based on Table 1, the average percentage of F1-score metric is 86.10%, 87.33%, and 88.29% 439 

for KNN, DT and SVM methods, respectively. Meanwhile, the percentage of such metric 440 

presented in Table 2 is 87.30%, 88.61%, and 89.67% for KNN, DT and SVM, respectively. The 441 

suggested approaches evidently showed satisfactory performance in terms of road extraction 442 

from orthophoto images. However, the accuracy of specific measurements is slightly higher for 443 

all the methods in Figure 5 (with scale=20, shape=0.2 and compactness=0.6) than those in Figure 444 

4 (with scale=50, shape=0.5 and compactness=0.3). As illustrated in Table 1 and 2, the precision 445 

factor percentage is high for the DT model compared with that of the two other methods. 446 

However, the SVM model achieved a higher percentage in recall and F1-score than that of the 447 

two other methods, which demonstrates the effectiveness of the model for road extraction. In 448 

both tables, the KNN method was ranked the least in road detection. The poor road extraction 449 

performance of the KNN technique is related to its prediction of a large number of FPs and a 450 

smaller number of FNs, which results in poor accuracy. In contrast, the SVM model was ranked 451 

the number-one in road extraction in both. In fact, the SVM model could improve the results of 452 

F1-score to 2.19% and 0.96% compared to KNN and DT, respectively for Figure 4 and 2.37% 453 

and 1.06%, respectively for Figure 5. Figure 6 illustrates the average accuracy of the metrics 454 
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achieved using the proposed road extraction methods for Figure 4 and 5. The vertical and 455 

horizontal axes shows the average percentage of accuracy and the three accuracy assessment 456 

metrics, respectively. As displayed in Figure 6, SVM model could achieve better quantitative 457 

results than KNN and DT. However, all the three proposed models showed a deficiency in road 458 

extraction when road parts are covered by occlusions, such as vehicles, shadows, vegetation, and 459 

buildings, and predicted more FP pixels. In addition, we measured the computational time of the 460 

proposed methods applied on the three images, which the average running time among the 461 

approaches is shown in Table 3. As it is obvious, KNN method takes more time than DT and 462 

SVM for training with the average running time of 147.33. The reason is that we have to ascertain 463 

the value of parameter K (number of nearest neighbors) and the type of distance to be utilized. 464 

Therefore, the computation time is much as the model requires measuring the distance of every 465 

query instance to all training samples. 466 

 467 

Fig. 6. Comparison of average performance metrics achieved by the proposed methods for road 468 

extraction. 469 

 470 

Table 3. Computational time comparison of various approaches. Here, the time is measured in 471 

second. 472 

 473 

Methods 
Images 

Image1 Image2 Image3 Average 

DT 140 104 139 127.66 

KNN 142 105 195 147.33 

SVM 141 106 172 139.66 

In addition, the efficiency of the introduced approaches was compared with that of other works 474 

to demonstrate the effectiveness of the model for road extraction from orthophoto imagery. The 475 
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average percentage of recall, precision and F1-score metrics were considered for comparison. A 476 

method for road extraction from Ziyuan-3 satellite images based on spectral–spatial classification 477 

and shape features was introduced by (Shi, et al., 2014). Recall, precision and F1-score metrics 478 

were calculated for the accuracy assessment, in which the average values were obtained caught 479 

for comparison. Miao, Wang, Shi, and Zhang (2014) extracted road sections from remotely 480 

sensed images according to a fusion method of geodesic, kernel density, and tensor voting 481 

techniques. They evaluated recall, precision and F1-score measures to assess the performance, in 482 

which the average amount is obtained for comparison with the suggested techniques in this paper. 483 

A technique for road extraction from different high-resolution remote sensing images was also 484 

introduced by (Maboudi, et al., 2017), in which the average percentage of recall, precision and 485 

F1-score factors are obtained for comparison. Table 4 depicts the average amount of performance 486 

metrics for the proposed methods in this study and other prior studies. 487 

 488 

Table 4. Performance factors of different proposed methods compared with various previous 489 

studies. Best values are in bold. 490 

 491 

Methods Recall Precision F1-score 

Proposed DT 0.8762 0.8971 0.8861 

Proposed KNN 0.8661 0.8817 0.8730 

Proposed SVM 0.8983 0.8952 0.8967 

Shi et al. (2014) 0.79 0.77 0.7798 

Miao et al. (2014) 0.87 0.92 0.8943 

Maboudi et al. (2017) 0.86 0.91 0.8842 

 492 

Table 4 shows that the three proposed SVM method in this study demonstrated a higher 493 

percentage in F1-score factor compared with that from previous works. The DT method is ranked 494 

third with 88.61%, while SVM is ranked first with 89.67%. By contrast, the average value of F1-495 

score for the second-best method (Miao, et al. (2014)) is 89.43%, which could achieve better 496 

results than the proposed KNN and DT methods. Miao et al. (2014) also achieved a high precision 497 

amount with 92%, which is more than the average percentage of precision for the three proposed 498 

methods with 89.52%, 89.71%, and 88.17% for SVM, DT, and KNN. The decreasing accuracy 499 

for the proposed methods is due to the high FP amount prediction, which affected the percentage 500 

of precision. Also, Shi et al. (2014) obtained the lowest amount of F1-score with 77.98%, 501 

indicating that their method was ineffective in road extraction. By comparing the quantitative 502 
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results, it can be seen that the three proposed classification methods integrated with connected 503 

components analysis demonstrated efficiency in road extraction from orthophoto images. 504 

6. Conclusion 505 

In the current research, a new integrated model of segmentation and classification methods 506 

with connected components analysis is introduced to extract road parts from VHR orthophoto 507 

images. The introduced model includes three main steps. First, multiresolution segmentation 508 

approach was applied to segment orthophoto images. The obtained results are then processed by 509 

the classification methods, such as SVM, KNN, and DT, to categorize the image into road and 510 

non-road sections. Training the approaches not only utilized spectral information but also 511 

included texture and geometry information to improve the accuracy of the model. Finally, 512 

connected components labeling and morphological operations were performed to delete some 513 

components that do not belong to the road section, fill the gaps, and enhance the model 514 

performance for road extraction. Three different orthophoto images were used for applying the 515 

methods, and final outcomes proved that the suggested models were capable of road extraction 516 

with satisfactory results. The roads layer was manually digitized to compare the results achieved 517 

by the suggested approaches, and three common accuracy metrics, such as recall, precision, and 518 

F1-score, were calculated. The average metrics percentage obtained by the suggested methods 519 

were 87.62%, 89.71%, and 88.61%, respectively, for DT; 86.61%, 88.17%, and 87.30%, 520 

respectively, for KNN; and 89.83%, 89.52%, and 89.67%, respectively, for SVM. The results 521 

from different accuracy assessment factors were also compared with those of other previous 522 

studies, which showed that the integrated model was still efficient in terms of accurate road 523 

region extraction from orthophoto images. The novelty of the proposed integrated method lies in 524 

its capability to distinguish and extract straight and curved road parts. However, some parts of 525 

the road in the image are entirely covered by trees and shadows, making accurate road extraction 526 

from these parts difficult. Therefore, this difficulty is considered a limitation and deficiency of 527 

the integrated approach.  528 
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 Classification methods are presented for image classification into road and non-road  

 OBIA is utilized for getting further information 

 Trivial opening is applied for road extraction 

 Morphological closing is applied for filling holes  
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