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Abstract: Landslides triggered by heavy rains are increasing in number 

and creating severe losses in hilly regions across the world. Rainfall 

thresholds on regional and local-scales are being used for forecasting 

such events, for efficient early warning. Empirical and probabilistic 

approaches for defining rainfall thresholds are traditional tools which 

are being used as part of the forecasting system for rainfall induced 

landslides. Such methods are easy-to-use and are based on statistical 

analyses. They can be derived without looking into the complex hydro-

geological processes involved in slope failures, but are often associated 

with the disadvantage of higher false alarms, limiting their applications 

in a regional landslide early warning system (LEWS). This study is an 

attempt to improve the performance of conventional meteorological 

thresholds by considering the effect of soil moisture, using a 

probabilistic approach. Idukki district in southern part of India is 

highly susceptible to landslides and has witnessed major socio-economical 

setbacks in the recent disasters happened in 2018 and 2019. This tourist 

hub is now in need of a landslide forecasting system, which can help in 

landslide risk reduction. This study attempts to understand the effect of 

averaged soil moisture estimates derived from passive microwave remote 

sensing data, for improving the performance of conventional empirical and 

probabilistic thresholds. For defining empirical thresholds, an 

algorithm-based approach such as Calculation of Thresholds for Rainfall-

induced Landslides Tool (CTRL-T) has been used. Probabilistic thresholds 

were defined using a Bayesian approach, finding the posterior probability 

of occurrence using the marginal and conditional probabilities of the 

control parameters along with the prior probability of occurrence of 

landslide. The derived rainfall thresholds were quantitatively compared 

with the Bayesian probabilistic threshold derived using rainfall severity 

and soil wetness using an area under the curve (AUC) based receiver 

operating characteristics (ROC) curve method. The results show that when 

the antecedent moisture content in soil is less, only severe rainfall 

events can trigger landslides in the study area; while less severe 

rainfall events can also trigger landslides when the soil is wet. The 

role of soil wetness in the initiation is used to improve the performance 

of the conventional methods, and a ROC approach was used for the 

statistical comparison of different models. Further, the results 



indicated that the probabilistic threshold using rainfall severity and 

soil wetness outperformed the conventional approaches with AUC of 0.96, 

being the most sensitive and specific among the models considered. This 

result opens new promising perspectives for the development of an 

operational LEWS in the Idukki district based on a combination of 

rainfall and soil moisture data. Moreover, this work contributes to 

strengthen the advancing trend of hydro-meteorological thresholds based 

on soil moisture, which is gaining a growing attention in landslide 

studies and that, to date, was lacking evidences in monsoon regions. 
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Highlights 

 Landslides can be predicted using empirical and probabilistic rainfall thresholds. 

 Soil moisture is critical in slope stability as it affects the infiltration rate. 

 Soil moisture can be used with conventional thresholds for better performance. 

 Idukki (India) is highly a highly susceptible landslide zone in the Western Ghats. 

 Critical rainfall conditions, considering the soil wetness are derived for Idukki. 
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Abstract 21 
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regions across the world. Rainfall thresholds on regional and local-scales are being used for 23 

forecasting such events, for efficient early warning. Empirical and probabilistic approaches for 24 

defining rainfall thresholds are traditional tools which are being used as part of the landslide 25 

forecasting system for rainfall induced landslides. Such methods are easy-to-use and are based on 26 

statistical analyses. They can be derived without looking into the complex hydro-geological processes 27 

involved in slope failures, but are often associated with the disadvantage of higher false alarms, 28 
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limiting their applications in a regional landslide early warning system (LEWS). This study is an 29 

attempt to improve the performance of conventional meteorological thresholds by considering the 30 

effect of soil moisture, using a probabilistic approach. Idukki district in southern part of India is 31 

highly susceptible to landslides and has witnessed major socio-economical setbacks in the recent 32 

disasters happened in 2018 and 2019. This tourist hub is now in need of a landslide forecasting 33 

system, which can help in landslide risk reduction. This study attempts to understand the effect of 34 

averaged soil moisture estimates derived from passive microwave remote sensing data, for improving 35 

the performance of conventional empirical and probabilistic thresholds. For defining empirical 36 

thresholds, an algorithm-based approach such as Calculation of Thresholds for Rainfall-induced 37 

Landslides Tool (CTRL-T) has been used. Probabilistic thresholds were defined using a Bayesian 38 

approach, finding the posterior probability of occurrence using the marginal and conditional 39 

probabilities of the control parameters along with the prior probability of occurrence of landslide. The 40 

derived rainfall thresholds were quantitatively compared with the Bayesian probabilistic threshold 41 

derived using rainfall severity and soil wetness using an area under the curve (AUC) based receiver 42 

operating characteristics (ROC) curve method. The results show that when the antecedent moisture 43 

content in soil is less, only severe rainfall events can trigger landslides in the study area; while less 44 

severe rainfall events can also trigger landslides when the soil is wet. The role of soil wetness in the 45 

initiation is used to improve the performance of the conventional methods, and a ROC approach was 46 

used for the statistical comparison of different models. Further, the results indicated that the 47 

probabilistic threshold using rainfall severity and soil wetness outperformed the conventional 48 

approaches with AUC of 0.96, being the most sensitive and specific among the models considered. 49 

This result opens new promising perspectives for the development of an operational LEWS in the 50 

Idukki district based on a combination of rainfall and soil moisture data. Moreover, this work 51 

contributes to strengthen the advancing trend of hydro-meteorological thresholds based on soil 52 

moisture, which is gaining a growing attention in landslide studies and that, to date, was lacking 53 

evidences in monsoon regions. 54 

Keywords: landslides; rainfall thresholds; LEWS; soil moisture; Idukki 55 
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 56 

1. Introduction 57 

Forecasting landslides and evacuating people from hazardous zones is an important risk reduction 58 

strategy (Althuwaynee and Pradhan, 2017). Considering the climate change and associated extreme 59 

rainfall phenomenon, the number of rainfall-induced landslides are expected to rise (Alvioli et al., 60 

2018; Chen et al., 2019; Gariano and Guzzetti, 2016). Being a geomorphological process in the 61 

landscape evolution (Iida, 1999), the detailed understanding of slope failure mechanisms involves 62 

hydrological studies and forecasting of possible failure planes (Agostini et al., 2014) using relevant 63 

geotechnical and meteorological parameters. However, these parameters are highly site specific and 64 

often difficult to determine with the desired accuracy (Tofani et al., 2017), except that for single 65 

slopes or very small basins (Chae et al., 2017), and sophisticated experimental research is required for 66 

understanding the mechanism in detail (Kim et al., 2018). Hence, a more practiced approach is needed 67 

to forecast the critical conditions which result in the occurrence of landslides using the primary 68 

triggering factor i.e. rainfall – with the aid of rainfall thresholds (Caine, 1980; Keefer et al., 1987; 69 

Piciullo et al., 2018). Rainfall thresholds can be empirical, probabilistic, or algorithm based  70 

(Althuwaynee et al., 2015; Piciullo et al., 2018; Segoni et al., 2018a). All the approaches exploit 71 

historical data to find a mathematical relationship between rainfall and the occurrence of landslides in 72 

a region, to identify critical rainfall conditions which can trigger landslides in the future. A rainfall 73 

event is most commonly characterised in terms of cumulated rainfall event (E), duration (D), and 74 

intensity (I) (which are referred to as “rainfall parameters”). Consequently, the thresholds are often 75 

defined as cumulated event rainfall vs. duration (ED thresholds) (Lainas et al., 2016; Melillo et al., 76 

2018, 2016; Peruccacci et al., 2017; Teja et al., 2019) or as rainfall intensity vs. duration (ID 77 

thresholds) (Battistini et al., 2017; Brunetti et al., 2010; Guzzetti et al., 2008; Lainas et al., 2016; Wu 78 

et al., 2019).  79 

When the definition of thresholds is associated with the generation of many false alarms, their usage 80 

in operational Landslide Early Warning System (LEWS) may be inappropriate (Aleotti, 2004; 81 

Guzzetti et al., 2008; Kirschbaum et al., 2012; Segoni et al., 2018b). Low performances of rainfall 82 
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thresholds are traditionally related to the uncertainties associated with the definition of rainfall 83 

parameters, the quality and resolution of the historical data and the intrinsic limitations of the 84 

statistical models (Gariano et al., 2020; Marra et al., 2017; Nikolopoulos et al., 2014).  85 

Some authors argued that sometimes the statistical correlation between rainfall parameters and 86 

landslide initiation is too weak and that hydro-meteorological thresholds accounting for both rainfall 87 

and hydrological (e.g. soil moisture) parameters could provide a stronger and more accurate 88 

assessment (Bogaard and Greco, 2018; Jakob et al., 2006; Terlien, 1998). Integrating soil moisture 89 

with rainfall thresholds has been proven effective in improving the rainfall thresholds (Abraham et al., 90 

2020b; Segoni et al., 2018c; Zhao et al., 2019a), as the antecedent moisture content plays a key role in 91 

the shear strength parameters of soil. The soil moisture conditions play a key role in the infiltration 92 

process (Song and Wang, 2019) which significantly influences the initiation of landslides 93 

(Alimohammadlou et al., 2014; Baum et al., 2008; Bicocchi et al., 2019; Iverson, 2000; Wei et al., 94 

2020; Yang et al., 2019). Weighted indexes (Glade et al., 2000; Ponziani et al., 2012); and satellite 95 

data (Zhao et al., 2019b) can be used for estimating soil moisture values when real-time field 96 

monitoring (Abraham et al., 2020c; Dikshit et al., 2018; Uchimura et al., 2015, 2010) cannot be 97 

conducted. Hydrological models (Abraham et al., 2020b; Zhao et al., 2019a) can also be used for the 98 

estimation of soil moisture content. In the published literature, soil moisture combined with rainfall 99 

thresholds has been tested mainly in Mediterranean, temperate and alpine climatic settings, whereas in 100 

monsoon regions similar types of tests are almost completely missing (Jakob et al., 2006; Mirus et al., 101 

2018a; Valenzuela et al., 2018; Wicki et al., 2020).  102 

The present work attempts to define statistical rainfall thresholds in Idukki district (India) and to 103 

improve their effectiveness by coupling rainfall parameters with soil moisture data. First, ED 104 

thresholds are defined using an automatic algorithm-based approach (Melillo et al., 2014). The 105 

algorithm first identifies the triggering rainfall events using the location of rain gauges and landslides, 106 

the time of occurrence of landslides and the time series rainfall data. It recreates multiple rainfall 107 

conditions which may result in landslides and identifies the maximum probable rainfall condition 108 

based on the location and time. After identifying the triggering rainfall event, the algorithm defines 109 
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the ED thresholds with multiple exceedance probabilities using frequentist method. Then, by using a 110 

probabilistic approach (Berti et al., 2012), the effect of event rainfall, duration and intensity on the 111 

occurrence of landslides is evaluated (probabilistic rainfall thresholds). Both empirical (Melillo et al., 112 

2018, 2016; Peruccacci et al., 2017) and probabilistic approaches (Berti et al., 2012; Dikshit and 113 

Satyam, 2019) were considered to establish the relationship between primary triggering factor 114 

(rainfall) and the result (landslide), and these are simple statistical approaches that are easy to derive 115 

by integrating with a rainfall forecasting system. Similar studies have been conducted for Indian 116 

Himalayas (Abraham et al., 2020a; Dikshit and Satyam, 2018, 2019; Teja et al., 2019) and the 117 

Western Ghats (Abraham et al., 2020e, 2019); however,  these methods were not always found to be 118 

operational due to a higher number of false alarms or missed alarms, limiting their applications in 119 

LEWS. This study aims to overcome these limitations by integrating soil moisture data along with the 120 

rainfall thresholds. The objective is to find if the addition of soil moisture data can perform better than 121 

the conventional methods based on the rainfall data alone.  122 

2. Description of the study area 123 

The Western Ghats of Indian Peninsula is highly susceptible to rainfall-induced landslides. There is a 124 

surge in the number of landslides during monsoon season since 2018, due to very-high intensity 125 

rainfalls. The landslides and floods happened in 2018 severely affected the south Indian states of 126 

Kerala and Karnataka. Among the 14 districts in the state of Kerala, 13 are part of the Western Ghats 127 

and are susceptible to landslides. Nearly 5.3 million people in the state were affected by the disaster in 128 

2018 (United Nations Development Programme, 2018). The Western Ghats scarps, running the whole 129 

extent of the mountain range, are highly prone to landslides. Very-high intensity rainfall, along with 130 

the anthropogenic activities, has accelerated the geological processes leading to landslides, making 131 

the situation alarming (Kuriakose et al., 2009b).  132 

Idukki is a hilly district in the Western Ghats and is the second largest district in the state of Kerala, in 133 

terms of area. This district covers an area of 4358 km
2
 and derived its name from the word ‘Idukku’ in 134 

the vernacular dialect meaning narrow gorge. This itself indicates the geography of the area. The 135 

district is the major power source of Kerala and houses many hydroelectric projects, including the 136 
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famous arch dam of Idukki. About 50% of the district is covered by forests and Idukki is drained by 137 

three major rivers, two flowing westward and one eastward. The rainfall across the district is varying 138 

with the least values recorded in the northern side with a long-term average of 1000 mm while the 139 

southern parts record an average rainfall of 5000 mm (Sajeev and Praveen 2014; Department of 140 

Mining and Geology 2016). The southwest monsoon season from June to September contributes 60% 141 

of the annual rainfall and around 24% is contributed by the North-East monsoon from October to 142 

December. Due to varying topography, the climatic conditions in the hill ranges, plateaus and 143 

midlands of the district are different from each other.  144 

Fig. 1. Location details of study area. (a) India, and (b) Digital Elevation Model of Idukki (modified 145 

using CartoDEM (CartoDEM, 2015)) along with location of rain gauges. 146 

Geologically, Idukki can be divided into three different parts from south to north. The charnockite 147 

rocks in the south, migmatitic complex in central portion, and peninsular gneissic complex in the 148 

northern part. Granite gneiss is the oldest and predominant group among the peninsular gneissic 149 

complex while the charnockite group consists of magnetite quartzite, pyroxene granulite and 150 

charnockite (Department of Mining and Geology 2016). Structural cum denudational hills are the 151 

predominant geomorphological feature of Idukki. The hills are generally having a thin soil cover 152 

overlaid on Precambrian basement rocks. The midlands have a rugged topography with small hills and 153 

deep valleys with an average elevation of 50 m. The zone where midlands grades to plateaus are 154 

called the foothills, ranging up to 8 km in width. A major portion of the district belongs to the plateau 155 

region, with a large landmass of moderate slope. The elevation of the plateau region goes up to 1500 156 

m, and the regions at an elevation greater than 1500 m belong to hilly ranges. More than 50% of the 157 

study area is covered by forest loam soils, produced by the weathering of rock under thick forest 158 

cover. The midlands are covered by lateritic soil with high permeability and less organic content. The 159 

valley portion of the terrain are covered with fine particles of sandy loam to clay type, formed by 160 

sedimentation and transportation of hill slopes. The narrow riverbanks consist of fertile alluvial soil 161 

and are more common in the midlands. 162 
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Because of its topographic variability and heavy rainfall, the district is highly susceptible to rainfall 163 

induced landslides. The typology of landslides in the Western Ghats includes earth and debris slides, 164 

rock falls, creep, slump and debris flows (Abraham et al., 2020d). Due to the thin regolith layer, 165 

shallow landslide (Varnes, 1978) is the most common type during prolonged rainfalls (Kuriakose et 166 

al., 2009a). Idukki district in particular is mostly affected by the cut slope failures along the major 167 

road corridors, disrupting the transportation network in the district. Recent changes in the land use 168 

patterns for infrastructure development and agriculture have affected the stability of slopes of this 169 

ecologically sensitive zone (Gadgil et al., 2011) and has aggravated the number of landslide disasters 170 

(Kuriakose et al., 2009b). Hence the development of an effective regional scale LEWS is highly 171 

needed to forecast the future landslides in the region.  172 

 173 

3. Data and Methodology 174 

The study explores the possibility of using soil moisture data in improving the performance of 175 

statistical thresholds. The overall methodology flow chart adopted in this study is shown in Fig 2. The 176 

methodology involves data collection from multiple sources, the definition of thresholds and their 177 

performance evaluation using different skill scores. For the analysis, historical rainfall, landslide, and 178 

soil moisture data were collected. For developing empirical and probabilistic rainfall thresholds, only 179 

rainfall and landslide data are required, while for developing probabilistic rainfall thresholds based on 180 

rainfall severity and soil wetness (RS threshold), the soil moisture data were integrated with empirical 181 

ED thresholds using a probabilistic approach. While the empirical threshold considers the effect of 182 

rainfall events which resulted in landslides, the probabilistic thresholds consider both triggering and 183 

non-triggering rainfall events for the analysis. 184 

 185 

Fig. 2. Methodology of study. 186 
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3.1 Data collection 187 

The dataset used for this study spans from 2010 to 2018 and the historical data from this period was 188 

used to derive the empirical and probabilistic thresholds for occurrence of landslides in Idukki district. 189 

The daily rainfall data was collected from the Indian Meteorological Department (India 190 

Meteorological Department 2019) for four rain gauges within the district. The landslide data was 191 

collected from various government agencies and media reports (Abraham et al., 2019) and only 192 

landslides for which the date of occurrence was available were used for the analysis. For each rain 193 

gauge a reference area was defined and multiple landslides triggered in the same day in each area 194 

were considered as one landslide event and rainfall data were collected from the reference rain gauge. 195 

By these criteria, 225 landslide events were identified in the study area which were first used as the 196 

input for empirical thresholds. For probabilistic thresholds, a total of 5028 rainfall events recorded by 197 

the four rain gauges during the study period were considered.  198 

The average daily soil moisture data was collected from Giovanni’s website by National Aeronautics 199 

and Space Administration Goddard Earth Sciences Data and Information Services Center (NASA 200 

GES DISC) (de Jeu and Owe, 2014, 2012; Giovanni, 2020). The data was derived using land 201 

parameter retrieval model (LPRM), which is a multi-parameter retrieval algorithm focused on 202 

hydrological and climate studies. It retrieves the soil moisture from the microwave observations from 203 

sensors. The observed brightness temperatures were used to derive the soil moisture data, using 204 

LPRM (Owe et al., 2008). LPRM is based on a forward radiative transfer model and the output is the 205 

volumetric soil moisture content in percentage. The soil moisture on the day before the occurrence of 206 

landslide, termed as the ‘antecedent soil moisture’ was used for the analysis in this research. The 207 

spatial resolution of the data is 0.25
o
 × 0.25

o
. The study area (Idukki district) consists of 14 grids of 208 

size 0.25
o
 × 0.25

o
 (Figure 1). After calculating the area of Idukki within each grid, the weighted 209 

average was calculated for the whole area, for simplified calculation. This value is called the 210 

‘averaged moisture content’. Another term, ‘soil wetness’ is introduced, to represent a range of 211 

antecedent soil moisture, on a scale of 0 to 1. The soil wetness values were divided into five equal 212 

parts, representing different ranges of moisture content. This classification is used to overcome the 213 
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limitations associated with using averaged data for a larger area. The value of soil wetness is directly 214 

proportional to the moisture content values and indicates the wetness of soil before the landslide. 215 

Thus, by using historical rainfall, landslide and soil moisture data, thresholds were defined using 216 

multiple approaches for the study area to find the effect of soil moisture on the forecasting 217 

performance of the thresholds. 218 

 219 

3.2 Empirical thresholds 220 

The selection of rain gauges and rainfall parameters plays a critical role in the definition of rainfall 221 

thresholds (Abraham et al., 2020e). For the study area, rainfall data from the four available rain 222 

gauges were considered for the analysis. The intensity-duration thresholds for the study area was 223 

earlier derived from using a nearest rain gauge approach (Abraham et al., 2019), considering 225 224 

landslide events occurred from 2010 to 2018. From the pioneering work of Caine (Caine, 1980), ID 225 

thresholds were defined for regions across the globe (Abraham et al., 2020c, 2019; Brunetti et al., 226 

2010; Dikshit and Satyam, 2018; Guzzetti et al., 2008, 2007; Segoni et al., 2018a). Even though 227 

intensity can easily be converted to event rainfall and vice-versa, recent literature shows a shift 228 

towards defining ED thresholds instead of ID thresholds (Melillo et al., 2018, 2014; Peruccacci et al., 229 

2012; Teja et al., 2019; Zhao et al., 2019a). The reason is that E and D are two mutually independent 230 

parameters while I is a function of D and E. Hence, for a definition of rainfall thresholds and rainfall 231 

severity, the data points on ED plane was considered in this study. In this study, the reconstruction of 232 

event- duration thresholds was carried out by using Calculation of Thresholds for Rainfall Induced 233 

Landslides - Tool (CTRL-T) (Melillo et al., 2018, 2014). CTRL-T uses an algorithm-based approach, 234 

extracting the rainfall events automatically from the daily precipitation data input. From the extracted 235 

events, rainfall conditions that have triggered landslides were identified; and  used to derive the 236 

rainfall thresholds for the region. The tool considers a buffer zone around each landslide location, to 237 

search for the rain gauge and identify the triggering event. In this study, a search radius of 20 km is 238 

considered, due to the low rain gauge density in the study area. The algorithm also considers a delay 239 
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time between the end of rainfall and occurrence of landslide. In this study, the delay time is taken as 240 

48 hours (Melillo et al., 2014). If no rainfall condition is recreated within this delay time before the 241 

occurrence of landslide, the event will be discarded by the algorithm. The algorithm first determines 242 

the total event rainfall and duration of rainfall for all identified rainfall events and then to minimise 243 

the effect of spatial variability of rainfall distribution, single or multiple rainfall conditions (MRC) 244 

likely to result in failures and a weight is assigned to each of them. Then for each landslide, the 245 

highest weight was used to identify the reference rain gauge and to choose the maximum probable 246 

rainfall conditions (MPRC). In this study, five different threshold lines were defined using CTRL-T, 247 

at different exceedance probabilities of 1%, 5%, 10%, 20% and 50% (termed as T1, T5, T10, T20 and 248 

T50, respectively). Thresholds and related uncertainties were estimated from MPRCs. The defined 249 

thresholds are in the form of a power law, determined using the frequentist approach (Brunetti et al., 250 

2010) and can be expressed as: 251 

 252 

                       (1) 

 253 

where, α is the scaling parameter or the intercept and γ is the shape parameter which denotes the slope 254 

of the equation. Δα and Δγ represents the uncertainties associated with   and γ, respectively. The 255 

uncertainties are determined using a bootstrap approach. 256 

3.3 Probabilistic approach 257 

The empirical thresholds compare an input value with the defined thresholds and will have a single 258 

output (triggering or non-triggering). It is often difficult to decide the exceedance probability to be 259 

selected as a threshold beyond which a radical change can be expected in the system (Berti et al., 260 

2012). The discretion between triggering and non- triggering rainfall conditions is not trivial in such 261 

cases. To derive the equation, only the triggering rainfall conditions are considered. This increases the 262 

chances of false alarms, as numerous rainfall events that cross the threshold line not necessarily 263 

trigger landslides. 264 
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By considering both triggering and non- triggering rainfalls for analysis, probability-based models are 265 

more informative and provide a better option to find extreme events. In this study, a Bayesian 266 

approach is used to define probabilistic thresholds (Berti et al., 2012). 267 

3.3.1 One-dimensional analysis 268 

Bayes theorem applies a conditional probability of some event   (landslide) given the occurrence of 269 

another event   (rainfall, expressed in terms of E, I or D). This is also called the posterior probability, 270 

      .  It can be calculated as follows (Berti et al., 2012): 271 

         
           

     
 

 

(2) 

where,        is the conditional probability of occurrence of rainfall of magnitude  , when a 272 

landslide occurs. This is also called as a likelihood. 273 

     is the prior probability of occurrence of landslide regardless of the occurrence rainfall 274 

magnitude. 275 

      is the marginal probability of  , which can be defined as the probability of occurrence of 276 

rainfall regardless of the occurrence of landslides. The terms can be calculated mathematically using 277 

relative frequencies. Let    be the total number of rainfall events during study period,    be the total 278 

number of landslides occurred,    be the number of rainfall events with magnitude   and        be 279 

the number of rainfall events with magnitude   that resulted in landslides. The probabilities can be 280 

computed as (Berti et al., 2012): 281 

 282 

      
  

  
 

 

(3) 

      
  

  
 (4) 
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(5) 

Considering the rainfalls that resulted in landslides only will give us partial information, the 283 

likelihood. To understand the influence of rainfall of magnitude  , it is important to compare the prior 284 

probability with the posterior probability. 285 

 3.3.2 Two-dimensional analysis 286 

Two-dimensional case is the extension of Eq. 2 by considering two conditions     instead of the 287 

single condition   in Eq. 2. In the initial analysis, we consider   and   as magnitude of two rainfall 288 

parameters (E,D ; I,D; E,I). The calculation of prior, marginal and conditional probabilities are given 289 

below: 290 

 291 

           
             

       
 

 

(6) 

      
  

  
 

 

(7) 

        
    

  
 

 

(8) 

          
        

  
 

 

(9) 

The study explores the effect of antecedent soil moisture content using a two-dimensional 292 

probabilistic analysis. During the second phase, we considered rainfall severity in ED plane and soil 293 

wetness as   and  , respectively. Based on the values of soil wetness, five different categories were 294 

considered for analysis viz, less than 0.2, 0.2 to 0.4, 0.4 to 0.6, 0.6 to 0.8, and 0.8 to 1. The categories 295 
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based on rainfall severity were less than T1, T1 to T5, T5 to T10, T10 to T20, T20 to T50 and greater than 296 

T50. Thus, the two-dimensional plane was divided into 30 cells as a 6 x 5 matrix as shown in Fig. 6. 297 

These values were used for the definition of RS threshold. 298 

4.  Results 299 

4.1 Empirical thresholds 300 

CTRL-T tool considered 177 landslide events out of the 225 and the rest were discarded to avoid 301 

introduction of relevant spatio-temporal uncertainties in the analysis. The uncertainties are associated 302 

with the less rain gauge density in the study area. As described earlier, the landslides for which 303 

responsible rainfall conditions were not identified were discarded. This can be due to a distance more 304 

than 20 km between the location of rain gauges and landslide or due to a delay time more than 48 305 

hours after the end of any rainfall event. The algorithm forecasted rainfall thresholds with various 306 

exceedance probability both in normal and logarithmic plot (Fig. 3). The threshold lines of 1%, 5%, 307 

10%, 20% and 50% exceedance probabilities were used to classify the events into six categories based 308 

on the severity of rainfall. These lines are named T1, T5, T10, T20 and T50, respectively. The slope of 309 

threshold lines in logarithmic plot was found to be 0.57±0.03. This value is not in good agreement 310 

with the ID thresholds defined for the area in a previous study (Abraham et al., 2019).  Though both 311 

the studies used frequentist approach for the definition of thresholds, the process of identification of 312 

responsible rainfall event was different. In the previous study (Abraham et al., 2019), the responsible 313 

rainfalls were identified using a Thiessen polygon approach manually, while in this study, the 314 

automatic algorithm, CTLRL-T is used for identifying the responsible rainfall event. The parameters 315 

of threshold lines and the uncertainties associated are listed in Table 1. 316 

 317 

 318 

Fig. 3. Rainfall event – duration thresholds for Idukki district 319 

Table 1.  Values of α, γ and the uncertainties associated with different exceedance probabilities 320 
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 321 

The range of duration of rainfalls considered for analysis vary from 1 to 26 days. For the thresholds to 322 

be reliable, the relative uncertainty (     for any variable  ) should be less than 10%. Here the 323 

relative uncertainty of   is 5.2%. But with higher exceedance probabilities, the relative uncertainty of 324 

α is crossing this limiting value.  325 

With 5% exceedance probability, 20.19mm rainfall can trigger a landslide in the region for a duration 326 

of 24 hours and when the duration is 624 hours, a rainfall of 129 mm can trigger landslides in the 327 

region. For a better understanding of the effect of each rainfall parameter on the occurrence of 328 

landslides, probabilistic rainfall thresholds were defined for the area. 329 

4.2 Probabilistic thresholds 330 

The maximum probable rainfall conditions which were used for the definition of ED thresholds were 331 

considered as the triggering rainfall events for the probabilistic analysis. Thus, out of the 5028 rainfall 332 

events considered, 177 events were identified as triggering events by CTRL- T algorithm and the rest 333 

4851 events were considered as non-triggering rainfall events.  In the one-dimensional case, six 334 

categories of rainfall duration, five categories of cumulated rainfall event and seven categories of 335 

rainfall intensity were considered. The results are plotted in Fig. 4 (a-f); where Fig. 4a, c and e depict 336 

the prior probability, marginal probability and likelihood, and Fig. 4b, d and f depict the prior and 337 

posterior probabilities. The variable   in Eq. (2-5) is replaced with D, E and I in the respective 338 

graphs.      being a constant parameter (value 0.035 in this study), the ratio of        to      339 

determines the variation of posterior probability values. Hence when        >     , the posterior 340 

probability is greater than prior probability and vice versa. The more the variation between prior and 341 

posterior probability, the more significant the variable is. It can be seen, that for duration and event 342 

rainfall, for the largest values of variables, the values of        is less than     , while in the case of 343 

intensity, high intensity rainfalls are more probable to trigger landslides in the region. The plots of 344 

     and       ) are well above the plot of prior probability in all the cases. Intensity was found to 345 

be the most significant variable, with the maximum ratio between posterior and prior probabilities. 346 
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The maximum posterior probability when the control parameter is D was found to be 0.053 where the 347 

value is 0.103 and 0.116 in the case of E and I, respectively. Maximum probability occurs when the 348 

duration is between 120 h to 240 h; event rainfall is between 100 mm to 200 mm; and intensity is 349 

greater than 3 mm/h.  350 

 351 

Fig. 4. Prior, conditional, marginal and posterior probabilities with respect to rainfall parameters. (a, 352 

b) Duration; (c, d) Event rainfall; and (e, f) Intensity. 353 

To evaluate the joint occurrence of two parameters, two-dimensional Bayesian analysis were 354 

conducted with data on three different planes (Fig. 5). The two-dimensional space for each analysis 355 

was divided into small cells based on the categories of parameters used for one-dimensional analysis. 356 

Hence the ID plane is a 7 x 6 matrix, ED plane is a 5 x 6 matrix and the EI plane is a 5 x 7 matrix. 357 

There are several no data points in all three cases, due to the lower number of landslides considered 358 

for the analysis. As identified from the one-dimensional analysis, E and I were found to be more 359 

critical parameters than D. This is the reason why this study has considered all three different 360 

combinations of the control parameters even though the empirical thresholds are defined on ED plane 361 

only. The maximum probability value was obtained on EI plane, when the intensity value is less than 362 

0.5 mm/h and event rainfall is between 100 mm to 200 mm, with a value of 0.54.   363 

 364 

Fig. 5. Two-dimensional posterior probabilities of occurrence of landslide on (a) ID plane, (b) ED 365 

plane, and (c) EI plane. 366 

It is evident from Fig. 6 that even less severe rainfall events when falling on a moist soil can trigger 367 

landslides in the region. Most of the landslides for which rainfall events were less severe happened on 368 

days with higher soil wetness. Also, when the rainfall event is severe, even dry soil can be susceptible 369 

to landslides. The maximum probability of 0.49 was observed when the rainfall severity was between 370 

T20 to T50 and the soil wetness was between 0.8 to 1. With the available data, when the antecedent soil 371 

moisture is less, only extremely severe rainfall conditions can trigger landslides in the area. This 372 
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affects the performance  of the ED thresholds considerably. For different antecedent soil moisture 373 

conditions, this makes it easier to decide the threshold line to be used.  374 

 375 

Fig. 6. Two-dimensional Bayesian probabilities for occurrence of landslides based on rainfall severity 376 

and soil wetness. 377 

5. Discussions 378 

To verify the performance of all models and to understand which model is performing better for the 379 

study area, different thresholds should be compared quantitatively (Lagomarsino et al., 2015). In this 380 

study, empirical thresholds on ED plane, probabilistic thresholds on all three combinations of control 381 

parameters (ED, ID and EI) and also a two-dimensional Bayesian approach by combining empirical 382 

ED thresholds with soil moisture have been derived.  The maximum probability value obtained in the 383 

two-dimensional analysis was in the case of EI thresholds, and the value is 0.54. The value was 384 

obtained when the intensity is less than 0.5 mm/h and event rainfall is between 100 to 200 mm. This 385 

implies a prolonged duration of 8 days or more. The intensity value is too low in this case, yet the 386 

probability value is the maximum. The definition of 2-dimensional Bayesian probability majorly 387 

depends upon the relative occurrence of landslides when the rainfall conditions are satisfied and the 388 

occurrence of rainfall events with specified conditions. The number of events with the specified EI 389 

conditions were less, but more than half of them have resulted in landslides based on the historical 390 

data. Thus, the probability of occurrence of landslides is higher in this case. This result points towards 391 

the significance of using a physical parameter such as soil moisture for the definition of threshold. 392 

The top regolith layer throughout the district consists of forest loam, lateritic soil, alluvial soils etc, 393 

with higher fine fraction (Department of Mining and Geology Kerala, 2016). The less permeable soil 394 

has a higher water holding capacity and the moisture content increases when the rainfall is 395 

continuous. The prolonged rainfall has thus reduced the shear strength of soil and the landslide has 396 

happened at a very less intensity value. This complicated process is simplified by using a statistical 397 
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approach, by considering the effect of soil wetness. To understand the performance of such a model 398 

with respect to the meteorological thresholds, a quantitative comparison is required. 399 

An ROC curve approach was used for quantitative comparison. ROC curve is a tool to understand the 400 

performance of a model with a binary outcome. Each threshold value can forecast two outcomes for a 401 

day; ‘landslides’ or ‘no landslides. If   the threshold condition is crossed, the model forecasts 402 

‘landslides’ and otherwise, ‘no landslides. When the forecasting is correct and landslide occurs, it is 403 

termed as a true positive (  ). Another possibility of correct outcome is the result ‘no landslides’ on a 404 

day in which landslides do not occur. This can be counted as a true negative (  ) result. When the 405 

forecasting goes wrong, it also has two possible outcomes. ‘Landslides’ forecasted on a non-landslide 406 

day, which is a false positive (  ) or simply a false alarm and ‘no landslides’ forecasted on a day in 407 

which landslides occur, termed as false negatives (  ) or missed alarms. A perfect model should only 408 

have true outcomes, without any false alarms or missed alarms.  409 

A ROC curve is a plot with a false positive rate of a model on x-axis and a true positive rate on y axis. 410 

It evaluates the overall performance of the model. The true positive rate is also called the sensitivity 411 

of the model. It provides the proportion of landslide occurrences which are correctly identified 412 

            .  The specificity of a model is the true negative rate and is the ratio of    to the 413 

sum of    and   . The false positive rate can be calculated by subtracting specificity value from 1. 414 

An ideal model is expected to have both sensitivity and specificity values as 1. Hence the point (0,1) 415 

on ROC curve is called the perfect point. Points which are closer to this perfect point has a better 416 

performance. Also, the model with better performance is the one with a maximum area under the 417 

curve (AUC) among the different models considered. Threat score and True Skill Statistic (TSS) are 418 

two other parameters which were used to understand the performance of a model (Mirus et al., 419 

2018b). Threat score is defined as the ratio of    to the sum of       and   . TSS is the difference 420 

between sensitivity and false positive rate. For an ideal model, the value of both these variables 421 

should be 1. 422 

ROC curves for all models considered in the study are plotted in Fig. 7 and the statistical attributes are 423 

listed in Table 2. From Fig. 7, it can be observed that the RS threshold covers the maximum area in 424 
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the plane with an AUC of 0.96. The empirical ED threshold has the second highest AUC of 0.86. All 425 

the three probabilistic rainfall thresholds have very close AUC values as observed in Fig. 7. EI 426 

threshold covers a larger area than the other two, indicating its better performance in comparison with 427 

the other two probabilistic rainfall thresholds. The distance from perfect point is minimum in the case 428 

of RS thresholds, in the case of critical probabilities 0.1 and 0.15. It can also be observed that the 429 

value of threat score and TSS are maximum in the case of RS thresholds. The maximum value of 430 

threat score is obtained as 0.24 and TSS as 0.90, both in the case of RS thresholds with critical 431 

probability 0.1, which is also the closest one to the perfect point. 432 

Fig. 7. ROC curves for the derived thresholds. Sensitivity is the ability of a model to correctly identify 433 

the landslide events and Specificity is the ability to correctly identify the non-landslide events 434 

Looking into the details in Table 2, it confirms with the literature as the empirical thresholds result in many 435 

false alarms, making it inadequate to use in an LEWS. The number of false alarms can considerably be 436 

reduced by using probabilistic rainfall thresholds, as listed in Table 2. The number of    in the case of 437 

probabilistic ED. ID and EI are much lesser than the other two models considered. But this reduction in 438 

false alarms comes with the cost of a higher number of missed alarms (  ). While 171 landslide events 439 

out of the 177 events are correctly forecasted by the empirical ED threshold line T1, and 172 are correctly 440 

forecasted by RS threshold when the critical probability is 0.05, the maximum number of correct outcomes 441 

for the other probabilistic models are 106, 105 and 117 on ED, ID and EI planes respectively. For 442 

improving the performance, we need to balance the number of false alarms and missed alarms, which is 443 

achieved by using RS threshold. The RS threshold has    numbers comparable with that of probabilistic 444 

rainfall thresholds, minimising the false alarms and by incorporating an additional filter using soil wetness, 445 

it reduces the number of false alarms when compared to the empirical ED threshold.  446 

Table 2. Statistical attributes for quantitative comparison. 447 

 448 

The probabilistic rainfall thresholds have high specificity values, pointing to their ability to correctly 449 

forecast the days without landslides, but with very less values of sensitivity. The points on ROC 450 

curves for probabilistic rainfall thresholds are therefore closer to both the axes, reducing the AUC. 451 
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Even though the points have high specificity values, they are located far from the perfect point, due to 452 

their inefficiency in correctly forecasting the occurrence of landslides. The RS threshold with a 453 

critical probability of 0.1 is the closest one to the perfect point, correctly forecasting 167 landslide 454 

occurrences. 455 

From the analysis, the rainfall and soil wetness conditions for which the probability of occurrence is 456 

more than 0.1 should be considered critical. This makes it easier to identify the empirical ED 457 

threshold line for different values of soil wetness. The critical conditions are mentioned in Table 3.  458 

Table 3. Critical conditions for initiation of landslides in Idukki, based on RS thresholds 459 

 460 

From Table 3, it can be understood that when soil wetness is less than 0.2, T50 line of empirical ED 461 

thresholds should be considered as critical, when the soil wetness is between 0.2 to 0.4, T5 can be 462 

considered as the critical threshold, . for For the next two cases where soil wetness is between 0.4 to 463 

0.8, T10 threshold line can be considered as critical if the critical probability is 0.1. In this case, the 464 

threshold line for 0.2 to 0.4 is T5, which is below the threshold line for soil wetness from 0.4 to 0.8. 465 

This variation can be due to the smaller number of data points considered in this study. With the 466 

available data points, very less cases are reported when the soil wetness is between 0.4 to 0.8, and the 467 

rainfall severity is below T10. To avoid any possible missed alarms due to the limitations of the dataset 468 

considered, the threshold for soil wetness between 0.4 to 0.8 is considered as T1, for which the 469 

probability of occurrence of landslides is 0.05 in this study. This variation in the critical probability 470 

ensures the physical validity and easy export of the model.   and wWhen the soil wetness is between 471 

0.8 to 1, even rainfall which are is below T1 can trigger landslides. Hence, for the last condition, we 472 

defined the critical case as Tmin where Tmin represents the threshold line with minimum exceedance 473 

probability, close to zero. Practically, it represents any possible rainfall condition. The threshold line 474 

for 0.2 to 0.4 is T5, which is below the threshold line for soil wetness from 0.4 to 0.8. This variation 475 

can be due to the less number of data points considered in this study. With the available data points, 476 

very less cases are reported when the soil wetness is between 0.4 to 0.8, and the rainfall severity is 477 



20 

 

below T10. If the threshold has to be kept as T5, the critical probability should be 0.05, which will 478 

increase the number of false alarms as mentioned in Table 2. Hence based on the available data, the 479 

threshold is kept as T10.    480 

The soil wetness data can be collected from daily satellite observations as taken in this study, or from 481 

real-time field observation using sensors. The severity of rainfall for each day can be estimated from 482 

the rainfall forecasts. Using these two inputs, the possibility of occurrence of landslide can be 483 

estimated using the conditions mentioned in Table 3. With higher exceedance probabilities, the 484 

relative uncertainty of α of ED threshold is crossing this limiting value. Similar results are observed 485 

when the rainfall data used is of daily temporal resolution (Teja et al., 2019).  486 

The type of landslides is also an important factor in identifying the associated rainfall. For example, 487 

rockfalls may be triggered without any rainfall, debris flows are often triggered by short duration 488 

(maybe less than 1 hour) and high intensity (Kean et al., 2011), and shallow landslides are triggered 489 

by short-term rainstorms of high-intensity or long-duration rainfall of low to medium intensity 490 

(Guzzetti et al., 2008). This is the main reason why the models (ED, and RS) often associated with the 491 

disadvantage of higher false alarms. Even though the false alarms are considerably reduced in RS 492 

thresholds, it needs further enhancements to be used in an LEWS.  There are chances that the model 493 

may miss alarms for rock falls, which can be triggered with no rainfall. In the case of flow like 494 

landslides such as debris flows, the failure can be triggered by very short, high intensity rainfalls. 495 

Such rainfall events may trigger landslides in relatively dry soils as well. In this case, even if the 496 

antecedent soil wetness is less than 0.2, if the rainfall severity is greater than T50, the model will issue 497 

a warning. If an event of severity less than T50 triggers such an event, the model may miss the alarm. 498 

With a higher number of data points and better resolution of rainfall data, this can be improved, and 499 

better results can be expected. 500 

6. Conclusions 501 

This study has been conducted to evaluate the effect of antecedent soil moisture content to improving 502 

the performance of empirical and probabilistic thresholds for Idukki district in India. The district is 503 
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suffering from landslides ranging from cut slope failures to debris flows during monsoon seasons. The 504 

recent disasters that happened in 2018 and 2019 in the district emphasises the requirement of a 505 

landslide early warning system for the region.  506 

In this study, empirical rainfall thresholds on ED plane was derived for the study area using an 507 

algorithm-based approach. It was found that with 5% exceedance probability, 20.19 mm rainfall can 508 

trigger a landslide in the region for a duration of 24 hours, and when the duration is 624 hours, a 509 

rainfall of 129 mm can trigger landslides in the region. 510 

To evaluate the influence of each rainfall parameter on the occurrence of landslides, Bayesian 511 

analyses were conducted for both one-dimensional and two-dimensional cases. It was found that both 512 

intensity and event rainfall have influence on the occurrence of landslides, and most of the events 513 

happened when the rainfall happened in lesser duration. From two-dimensional analysis, the 514 

probabilities on EI plane were found to have the maximum values. 515 

To evaluate the effect of soil wetness, another two-dimensional Bayesian approach was conducted, 516 

and it was observed that when the soil is relatively dry, severe rainfall events are required to trigger 517 

landslides and when the soil is wet, also milder rainfall conditions can trigger landslides in the study 518 

area. 519 

A statistical comparison between the considered models was used to find out the best performing 520 

model.  The comparison was carried out by using a ROC curve approach, where the RS threshold was 521 

found to have the maximum AUC of 0.96, among the models considered in this study. The empirical 522 

ED threshold generated a relevant number of false alarms, resulting in a low specificity value, while 523 

the disadvantage associated with the probabilistic thresholds was the low sensitivity due to a large 524 

number of missed alarms.  The proposed method, which combines empirical thresholds with soil 525 

wetness using a probabilistic approach, performs better than both the root models by optimising the 526 

number of false alarms and missed alarms. Based on the comparison, it was found that an RS 527 

threshold of probability 0.1 should be considered critical for the study area and critical rainfall 528 

severity conditions were identified for each soil wetness condition. The performance could be further 529 
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enhanced in the future by using hourly rainfall data with more dense rain gauge network for the area. 530 

Moreover, real-time monitoring of moisture content data for different locations in the study area can 531 

also contribute to better resolution soil moisture data and thereby improving the performance of the 532 

model. 533 

The results of the study therefore open new promising perspectives for the development of an 534 

operational LEWS in the Idukki district, by combining rainfall and soil moisture data. At the same 535 

time, this work provides evidences from a monsoon region about the advances brought by hydro-536 

meteorological thresholds based on soil moisture, which is gaining a growing attention in landslide 537 

studies all over the world but before today it was relatively unexplored for the setting of LEWS in the 538 

study area. Unfortunately, the use of soil moisture data in operational LEWS with short lead times is 539 

technically difficult, consequently another option to be explored is the use of antecedent rainfall 540 

conditions as a proxy to the soil moisture, which can be a simpler method to express the soil wetness 541 

conditions (Leonarduzzi and Molnar, 2020; Segoni et al., 2018b). More studies must be conducted for 542 

this region, to develop an effective LEWS which could obtain a fair compromise between the 543 

simplicity of the approach and the quality of the forecasting performance. 544 
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Abstract 21 

Landslides triggered by heavy rains are increasing in number and creating severe losses in hilly 22 

regions across the world. Rainfall thresholds on regional and local-scales are being used for 23 

forecasting such events, for efficient early warning. Empirical and probabilistic approaches for 24 

defining rainfall thresholds are traditional tools which are being used as part of the forecasting system 25 

for rainfall induced landslides. Such methods are easy-to-use and are based on statistical analyses. 26 

They can be derived without looking into the complex hydro-geological processes involved in slope 27 

failures, but are often associated with the disadvantage of higher false alarms, limiting their 28 
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applications in a regional landslide early warning system (LEWS). This study is an attempt to 29 

improve the performance of conventional meteorological thresholds by considering the effect of soil 30 

moisture, using a probabilistic approach. Idukki district in southern part of India is highly susceptible 31 

to landslides and has witnessed major socio-economical setbacks in the recent disasters happened in 32 

2018 and 2019. This tourist hub is now in need of a landslide forecasting system, which can help in 33 

landslide risk reduction. This study attempts to understand the effect of averaged soil moisture 34 

estimates derived from passive microwave remote sensing data, for improving the performance of 35 

conventional empirical and probabilistic thresholds. For defining empirical thresholds, an algorithm-36 

based approach such as Calculation of Thresholds for Rainfall-induced Landslides Tool (CTRL-T) 37 

has been used. Probabilistic thresholds were defined using a Bayesian approach, finding the posterior 38 

probability of occurrence using the marginal and conditional probabilities of the control parameters 39 

along with the prior probability of occurrence of landslide. The derived rainfall thresholds were 40 

quantitatively compared with the Bayesian probabilistic threshold derived using rainfall severity and 41 

soil wetness using an area under the curve (AUC) based receiver operating characteristics (ROC) 42 

curve method. The results show that when the antecedent moisture content in soil is less, only severe 43 

rainfall events can trigger landslides in the study area; while less severe rainfall events can also trigger 44 

landslides when the soil is wet. The role of soil wetness in the initiation is used to improve the 45 

performance of the conventional methods, and a ROC approach was used for the statistical 46 

comparison of different models. Further, the results indicated that the probabilistic threshold using 47 

rainfall severity and soil wetness outperformed the conventional approaches with AUC of 0.96, being 48 

the most sensitive and specific among the models considered. This result opens new promising 49 

perspectives for the development of an operational LEWS in the Idukki district based on a 50 

combination of rainfall and soil moisture data. Moreover, this work contributes to strengthen the 51 

advancing trend of hydro-meteorological thresholds based on soil moisture, which is gaining a 52 

growing attention in landslide studies and that, to date, was lacking evidences in monsoon regions. 53 

Keywords: landslides; rainfall thresholds; LEWS; soil moisture; Idukki 54 
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1. Introduction 56 

Forecasting landslides and evacuating people from hazardous zones is an important risk reduction 57 

strategy (Althuwaynee and Pradhan, 2017). Considering the climate change and associated extreme 58 

rainfall phenomenon, the number of rainfall-induced landslides are expected to rise (Alvioli et al., 59 

2018; Chen et al., 2019; Gariano and Guzzetti, 2016). Being a geomorphological process in the 60 

landscape evolution (Iida, 1999), the detailed understanding of slope failure mechanisms involves 61 

hydrological studies and forecasting of possible failure planes (Agostini et al., 2014) using relevant 62 

geotechnical and meteorological parameters. However, these parameters are highly site specific and 63 

often difficult to determine with the desired accuracy (Tofani et al., 2017), except that for single 64 

slopes or very small basins (Chae et al., 2017), and sophisticated experimental research is required for 65 

understanding the mechanism in detail (Kim et al., 2018). Hence, a more practiced approach is needed 66 

to forecast the critical conditions which result in the occurrence of landslides using the primary 67 

triggering factor i.e. rainfall – with the aid of rainfall thresholds (Caine, 1980; Keefer et al., 1987; 68 

Piciullo et al., 2018). Rainfall thresholds can be empirical, probabilistic, or algorithm based  69 

(Althuwaynee et al., 2015; Piciullo et al., 2018; Segoni et al., 2018a). All the approaches exploit 70 

historical data to find a mathematical relationship between rainfall and the occurrence of landslides in 71 

a region, to identify critical rainfall conditions which can trigger landslides in the future. A rainfall 72 

event is most commonly characterised in terms of cumulated rainfall event (E), duration (D), and 73 

intensity (I) (which are referred to as “rainfall parameters”). Consequently, the thresholds are often 74 

defined as cumulated event rainfall vs. duration (ED thresholds) (Lainas et al., 2016; Melillo et al., 75 

2018, 2016; Peruccacci et al., 2017; Teja et al., 2019) or as rainfall intensity vs. duration (ID 76 

thresholds) (Battistini et al., 2017; Brunetti et al., 2010; Guzzetti et al., 2008; Lainas et al., 2016; Wu 77 

et al., 2019).  78 

When the definition of thresholds is associated with the generation of many false alarms, their usage 79 

in operational Landslide Early Warning System (LEWS) may be inappropriate (Aleotti, 2004; 80 

Guzzetti et al., 2008; Kirschbaum et al., 2012; Segoni et al., 2018b). Low performances of rainfall 81 

thresholds are traditionally related to the uncertainties associated with the definition of rainfall 82 
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parameters, the quality and resolution of the historical data and the intrinsic limitations of the 83 

statistical models (Gariano et al., 2020; Marra et al., 2017; Nikolopoulos et al., 2014).  84 

Some authors argued that sometimes the statistical correlation between rainfall parameters and 85 

landslide initiation is too weak and that hydro-meteorological thresholds accounting for both rainfall 86 

and hydrological (e.g. soil moisture) parameters could provide a stronger and more accurate 87 

assessment (Bogaard and Greco, 2018; Jakob et al., 2006; Terlien, 1998). Integrating soil moisture 88 

with rainfall thresholds has been proven effective in improving the rainfall thresholds (Abraham et al., 89 

2020b; Segoni et al., 2018c; Zhao et al., 2019a), as the antecedent moisture content plays a key role in 90 

the shear strength parameters of soil. The soil moisture conditions play a key role in the infiltration 91 

process (Song and Wang, 2019) which significantly influences the initiation of landslides 92 

(Alimohammadlou et al., 2014; Baum et al., 2008; Bicocchi et al., 2019; Iverson, 2000; Wei et al., 93 

2020; Yang et al., 2019). Weighted indexes (Glade et al., 2000; Ponziani et al., 2012); and satellite 94 

data (Zhao et al., 2019b) can be used for estimating soil moisture values when real-time field 95 

monitoring (Abraham et al., 2020c; Dikshit et al., 2018; Uchimura et al., 2015, 2010) cannot be 96 

conducted. Hydrological models (Abraham et al., 2020b; Zhao et al., 2019a) can also be used for the 97 

estimation of soil moisture content. In the published literature, soil moisture combined with rainfall 98 

thresholds has been tested mainly in Mediterranean, temperate and alpine climatic settings, whereas in 99 

monsoon regions similar types of tests are almost completely missing (Jakob et al., 2006; Mirus et al., 100 

2018a; Valenzuela et al., 2018; Wicki et al., 2020).  101 

The present work attempts to define statistical rainfall thresholds in Idukki district (India) and to 102 

improve their effectiveness by coupling rainfall parameters with soil moisture data. First, ED 103 

thresholds are defined using an automatic algorithm-based approach (Melillo et al., 2014). The 104 

algorithm first identifies the triggering rainfall events using the location of rain gauges and landslides, 105 

the time of occurrence of landslides and the time series rainfall data. It recreates multiple rainfall 106 

conditions which may result in landslides and identifies the maximum probable rainfall condition 107 

based on the location and time. After identifying the triggering rainfall event, the algorithm defines 108 

the ED thresholds with multiple exceedance probabilities using frequentist method. Then, by using a 109 
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probabilistic approach (Berti et al., 2012), the effect of event rainfall, duration and intensity on the 110 

occurrence of landslides is evaluated (probabilistic rainfall thresholds). Both empirical (Melillo et al., 111 

2018, 2016; Peruccacci et al., 2017) and probabilistic approaches (Berti et al., 2012; Dikshit and 112 

Satyam, 2019) were considered to establish the relationship between primary triggering factor 113 

(rainfall) and the result (landslide), and these are simple statistical approaches that are easy to derive 114 

by integrating with a rainfall forecasting system. Similar studies have been conducted for Indian 115 

Himalayas (Abraham et al., 2020a; Dikshit and Satyam, 2018, 2019; Teja et al., 2019) and the 116 

Western Ghats (Abraham et al., 2020e, 2019); however,  these methods were not always found to be 117 

operational due to a higher number of false alarms or missed alarms, limiting their applications in 118 

LEWS. This study aims to overcome these limitations by integrating soil moisture data along with the 119 

rainfall thresholds. The objective is to find if the addition of soil moisture data can perform better than 120 

the conventional methods based on the rainfall data alone.  121 

2. Description of the study area 122 

The Western Ghats of Indian Peninsula is highly susceptible to rainfall-induced landslides. There is a 123 

surge in the number of landslides during monsoon season since 2018, due to very-high intensity 124 

rainfalls. The landslides and floods happened in 2018 severely affected the south Indian states of 125 

Kerala and Karnataka. Among the 14 districts in the state of Kerala, 13 are part of the Western Ghats 126 

and are susceptible to landslides. Nearly 5.3 million people in the state were affected by the disaster in 127 

2018 (United Nations Development Programme, 2018). The Western Ghats scarps, running the whole 128 

extent of the mountain range, are highly prone to landslides. Very-high intensity rainfall, along with 129 

the anthropogenic activities, has accelerated the geological processes leading to landslides, making 130 

the situation alarming (Kuriakose et al., 2009b).  131 

Idukki is a hilly district in the Western Ghats and is the second largest district in the state of Kerala, in 132 

terms of area. This district covers an area of 4358 km
2
 and derived its name from the word ‘Idukku’ in 133 

the vernacular dialect meaning narrow gorge. This itself indicates the geography of the area. The 134 

district is the major power source of Kerala and houses many hydroelectric projects, including the 135 

famous arch dam of Idukki. About 50% of the district is covered by forests and Idukki is drained by 136 
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three major rivers, two flowing westward and one eastward. The rainfall across the district is varying 137 

with the least values recorded in the northern side with a long-term average of 1000 mm while the 138 

southern parts record an average rainfall of 5000 mm (Sajeev and Praveen 2014; Department of 139 

Mining and Geology 2016). The southwest monsoon season from June to September contributes 60% 140 

of the annual rainfall and around 24% is contributed by the North-East monsoon from October to 141 

December. Due to varying topography, the climatic conditions in the hill ranges, plateaus and 142 

midlands of the district are different from each other.  143 

Fig. 1. Location details of study area. (a) India, and (b) Digital Elevation Model of Idukki (modified 144 

using CartoDEM (CartoDEM, 2015)) along with location of rain gauges. 145 

Geologically, Idukki can be divided into three different parts from south to north. The charnockite 146 

rocks in the south, migmatitic complex in central portion, and peninsular gneissic complex in the 147 

northern part. Granite gneiss is the oldest and predominant group among the peninsular gneissic 148 

complex while the charnockite group consists of magnetite quartzite, pyroxene granulite and 149 

charnockite (Department of Mining and Geology 2016). Structural cum denudational hills are the 150 

predominant geomorphological feature of Idukki. The hills are generally having a thin soil cover 151 

overlaid on Precambrian basement rocks. The midlands have a rugged topography with small hills and 152 

deep valleys with an average elevation of 50 m. The zone where midlands grades to plateaus are 153 

called the foothills, ranging up to 8 km in width. A major portion of the district belongs to the plateau 154 

region, with a large landmass of moderate slope. The elevation of the plateau region goes up to 1500 155 

m, and the regions at an elevation greater than 1500 m belong to hilly ranges. More than 50% of the 156 

study area is covered by forest loam soils, produced by the weathering of rock under thick forest 157 

cover. The midlands are covered by lateritic soil with high permeability and less organic content. The 158 

valley portion of the terrain are covered with fine particles of sandy loam to clay type, formed by 159 

sedimentation and transportation of hill slopes. The narrow riverbanks consist of fertile alluvial soil 160 

and are more common in the midlands. 161 

Because of its topographic variability and heavy rainfall, the district is highly susceptible to rainfall 162 

induced landslides. The typology of landslides in the Western Ghats includes earth and debris slides, 163 
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rock falls, creep, slump and debris flows (Abraham et al., 2020d). Due to the thin regolith layer, 164 

shallow landslide (Varnes, 1978) is the most common type during prolonged rainfalls (Kuriakose et 165 

al., 2009a). Idukki district in particular is mostly affected by the cut slope failures along the major 166 

road corridors, disrupting the transportation network in the district. Recent changes in the land use 167 

patterns for infrastructure development and agriculture have affected the stability of slopes of this 168 

ecologically sensitive zone (Gadgil et al., 2011) and has aggravated the number of landslide disasters 169 

(Kuriakose et al., 2009b). Hence the development of an effective regional scale LEWS is highly 170 

needed to forecast the future landslides in the region.  171 

 172 

3. Data and Methodology 173 

The study explores the possibility of using soil moisture data in improving the performance of 174 

statistical thresholds. The overall methodology flow chart adopted in this study is shown in Fig 2. The 175 

methodology involves data collection from multiple sources, the definition of thresholds and their 176 

performance evaluation using different skill scores. For the analysis, historical rainfall, landslide, and 177 

soil moisture data were collected. For developing empirical and probabilistic rainfall thresholds, only 178 

rainfall and landslide data are required, while for developing probabilistic rainfall thresholds based on 179 

rainfall severity and soil wetness (RS threshold), the soil moisture data were integrated with empirical 180 

ED thresholds using a probabilistic approach. While the empirical threshold considers the effect of 181 

rainfall events which resulted in landslides, the probabilistic thresholds consider both triggering and 182 

non-triggering rainfall events for the analysis. 183 

 184 

Fig. 2. Methodology of study. 185 

3.1 Data collection 186 

The dataset used for this study spans from 2010 to 2018 and the historical data from this period was 187 

used to derive the empirical and probabilistic thresholds for occurrence of landslides in Idukki district. 188 
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The daily rainfall data was collected from the Indian Meteorological Department (India 189 

Meteorological Department 2019) for four rain gauges within the district. The landslide data was 190 

collected from various government agencies and media reports (Abraham et al., 2019) and only 191 

landslides for which the date of occurrence was available were used for the analysis. For each rain 192 

gauge a reference area was defined and multiple landslides triggered in the same day in each area 193 

were considered as one landslide event and rainfall data were collected from the reference rain gauge. 194 

By these criteria, 225 landslide events were identified in the study area which were first used as the 195 

input for empirical thresholds. For probabilistic thresholds, a total of 5028 rainfall events recorded by 196 

the four rain gauges during the study period were considered.  197 

The average daily soil moisture data was collected from Giovanni’s website by National Aeronautics 198 

and Space Administration Goddard Earth Sciences Data and Information Services Center (NASA 199 

GES DISC) (de Jeu and Owe, 2014, 2012; Giovanni, 2020). The data was derived using land 200 

parameter retrieval model (LPRM), which is a multi-parameter retrieval algorithm focused on 201 

hydrological and climate studies. It retrieves the soil moisture from the microwave observations from 202 

sensors. The observed brightness temperatures were used to derive the soil moisture data, using 203 

LPRM (Owe et al., 2008). LPRM is based on a forward radiative transfer model and the output is the 204 

volumetric soil moisture content in percentage. The soil moisture on the day before the occurrence of 205 

landslide, termed as the ‘antecedent soil moisture’ was used for the analysis in this research. The 206 

spatial resolution of the data is 0.25
o
 × 0.25

o
. The study area (Idukki district) consists of 14 grids of 207 

size 0.25
o
 × 0.25

o
 (Figure 1). After calculating the area of Idukki within each grid, the weighted 208 

average was calculated for the whole area, for simplified calculation. This value is called the 209 

‘averaged moisture content’. Another term, ‘soil wetness’ is introduced, to represent a range of 210 

antecedent soil moisture, on a scale of 0 to 1. The soil wetness values were divided into five equal 211 

parts, representing different ranges of moisture content. This classification is used to overcome the 212 

limitations associated with using averaged data for a larger area. The value of soil wetness is directly 213 

proportional to the moisture content values and indicates the wetness of soil before the landslide. 214 
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Thus, by using historical rainfall, landslide and soil moisture data, thresholds were defined using 215 

multiple approaches for the study area to find the effect of soil moisture on the forecasting 216 

performance of the thresholds. 217 

 218 

3.2 Empirical thresholds 219 

The selection of rain gauges and rainfall parameters plays a critical role in the definition of rainfall 220 

thresholds (Abraham et al., 2020e). For the study area, rainfall data from the four available rain 221 

gauges were considered for the analysis. The intensity-duration thresholds for the study area was 222 

earlier derived from using a nearest rain gauge approach (Abraham et al., 2019), considering 225 223 

landslide events occurred from 2010 to 2018. From the pioneering work of Caine (Caine, 1980), ID 224 

thresholds were defined for regions across the globe (Abraham et al., 2020c, 2019; Brunetti et al., 225 

2010; Dikshit and Satyam, 2018; Guzzetti et al., 2008, 2007; Segoni et al., 2018a). Even though 226 

intensity can easily be converted to event rainfall and vice-versa, recent literature shows a shift 227 

towards defining ED thresholds instead of ID thresholds (Melillo et al., 2018, 2014; Peruccacci et al., 228 

2012; Teja et al., 2019; Zhao et al., 2019a). The reason is that E and D are two mutually independent 229 

parameters while I is a function of D and E. Hence, for a definition of rainfall thresholds and rainfall 230 

severity, the data points on ED plane was considered in this study. In this study, the reconstruction of 231 

event- duration thresholds was carried out by using Calculation of Thresholds for Rainfall Induced 232 

Landslides - Tool (CTRL-T) (Melillo et al., 2018, 2014). CTRL-T uses an algorithm-based approach, 233 

extracting the rainfall events automatically from the daily precipitation data input. From the extracted 234 

events, rainfall conditions that have triggered landslides were identified; and used to derive the 235 

rainfall thresholds for the region. The tool considers a buffer zone around each landslide location, to 236 

search for the rain gauge and identify the triggering event. In this study, a search radius of 20 km is 237 

considered, due to the low rain gauge density in the study area. The algorithm also considers a delay 238 

time between the end of rainfall and occurrence of landslide. In this study, the delay time is taken as 239 

48 hours (Melillo et al., 2014). If no rainfall condition is recreated within this delay time before the 240 

occurrence of landslide, the event will be discarded by the algorithm. The algorithm first determines 241 
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the total event rainfall and duration of rainfall for all identified rainfall events and then to minimise 242 

the effect of spatial variability of rainfall distribution, single or multiple rainfall conditions (MRC) 243 

likely to result in failures and a weight is assigned to each of them. Then for each landslide, the 244 

highest weight was used to identify the reference rain gauge and to choose the maximum probable 245 

rainfall conditions (MPRC). In this study, five different threshold lines were defined using CTRL-T, 246 

at different exceedance probabilities of 1%, 5%, 10%, 20% and 50% (termed as T1, T5, T10, T20 and 247 

T50, respectively). Thresholds and related uncertainties were estimated from MPRCs. The defined 248 

thresholds are in the form of a power law, determined using the frequentist approach (Brunetti et al., 249 

2010) and can be expressed as: 250 

 251 

                       (1) 

 252 

where, α is the scaling parameter or the intercept and γ is the shape parameter which denotes the slope 253 

of the equation. Δα and Δγ represents the uncertainties associated with   and γ, respectively. The 254 

uncertainties are determined using a bootstrap approach. 255 

3.3 Probabilistic approach 256 

The empirical thresholds compare an input value with the defined thresholds and will have a single 257 

output (triggering or non-triggering). It is often difficult to decide the exceedance probability to be 258 

selected as a threshold beyond which a radical change can be expected in the system (Berti et al., 259 

2012). The discretion between triggering and non- triggering rainfall conditions is not trivial in such 260 

cases. To derive the equation, only the triggering rainfall conditions are considered. This increases the 261 

chances of false alarms, as numerous rainfall events that cross the threshold line not necessarily 262 

trigger landslides. 263 

By considering both triggering and non- triggering rainfalls for analysis, probability-based models are 264 

more informative and provide a better option to find extreme events. In this study, a Bayesian 265 

approach is used to define probabilistic thresholds (Berti et al., 2012). 266 
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3.3.1 One-dimensional analysis 267 

Bayes theorem applies a conditional probability of some event   (landslide) given the occurrence of 268 

another event   (rainfall, expressed in terms of E, I or D). This is also called the posterior probability, 269 

      .  It can be calculated as follows (Berti et al., 2012): 270 

         
           

     
 

 

(2) 

where,        is the conditional probability of occurrence of rainfall of magnitude  , when a 271 

landslide occurs. This is also called as a likelihood. 272 

     is the prior probability of occurrence of landslide regardless of the occurrence rainfall 273 

magnitude. 274 

      is the marginal probability of  , which can be defined as the probability of occurrence of 275 

rainfall regardless of the occurrence of landslides. The terms can be calculated mathematically using 276 

relative frequencies. Let    be the total number of rainfall events during study period,    be the total 277 

number of landslides occurred,    be the number of rainfall events with magnitude   and        be 278 

the number of rainfall events with magnitude   that resulted in landslides. The probabilities can be 279 

computed as (Berti et al., 2012): 280 

 281 

      
  

  
 

 

(3) 
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(5) 
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Considering the rainfalls that resulted in landslides only will give us partial information, the 282 

likelihood. To understand the influence of rainfall of magnitude  , it is important to compare the prior 283 

probability with the posterior probability. 284 

 3.3.2 Two-dimensional analysis 285 

Two-dimensional case is the extension of Eq. 2 by considering two conditions     instead of the 286 

single condition   in Eq. 2. In the initial analysis, we consider   and   as magnitude of two rainfall 287 

parameters (E,D ; I,D; E,I). The calculation of prior, marginal and conditional probabilities are given 288 

below: 289 

 290 
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(7) 

        
    

  
 

 

(8) 

          
        

  
 

 

(9) 

The study explores the effect of antecedent soil moisture content using a two-dimensional 291 

probabilistic analysis. During the second phase, we considered rainfall severity in ED plane and soil 292 

wetness as   and  , respectively. Based on the values of soil wetness, five different categories were 293 

considered for analysis viz, less than 0.2, 0.2 to 0.4, 0.4 to 0.6, 0.6 to 0.8, and 0.8 to 1. The categories 294 

based on rainfall severity were less than T1, T1 to T5, T5 to T10, T10 to T20, T20 to T50 and greater than 295 

T50. Thus, the two-dimensional plane was divided into 30 cells as a 6 x 5 matrix as shown in Fig. 6. 296 

These values were used for the definition of RS threshold. 297 
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4.  Results 298 

4.1 Empirical thresholds 299 

CTRL-T tool considered 177 landslide events out of the 225 and the rest were discarded to avoid 300 

introduction of relevant spatio-temporal uncertainties in the analysis. The uncertainties are associated 301 

with the less rain gauge density in the study area. As described earlier, the landslides for which 302 

responsible rainfall conditions were not identified were discarded. This can be due to a distance more 303 

than 20 km between the location of rain gauges and landslide or due to a delay time more than 48 304 

hours after the end of any rainfall event. The algorithm forecasted rainfall thresholds with various 305 

exceedance probability both in normal and logarithmic plot (Fig. 3). The threshold lines of 1%, 5%, 306 

10%, 20% and 50% exceedance probabilities were used to classify the events into six categories based 307 

on the severity of rainfall. These lines are named T1, T5, T10, T20 and T50, respectively. The slope of 308 

threshold lines in logarithmic plot was found to be 0.57±0.03. This value is not in good agreement 309 

with the ID thresholds defined for the area in a previous study (Abraham et al., 2019).  Though both 310 

the studies used frequentist approach for the definition of thresholds, the process of identification of 311 

responsible rainfall event was different. In the previous study (Abraham et al., 2019), the responsible 312 

rainfalls were identified using a Thiessen polygon approach manually, while in this study, the 313 

automatic algorithm, CTLRL-T is used for identifying the responsible rainfall event. The parameters 314 

of threshold lines and the uncertainties associated are listed in Table 1. 315 

 316 

 317 

Fig. 3. Rainfall event – duration thresholds for Idukki district 318 

Table 1.  Values of α, γ and the uncertainties associated with different exceedance probabilities 319 

 320 

The range of duration of rainfalls considered for analysis vary from 1 to 26 days. For the thresholds to 321 

be reliable, the relative uncertainty (     for any variable  ) should be less than 10%. Here the 322 
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relative uncertainty of   is 5.2%. But with higher exceedance probabilities, the relative uncertainty of 323 

α is crossing this limiting value.  324 

With 5% exceedance probability, 20.19mm rainfall can trigger a landslide in the region for a duration 325 

of 24 hours and when the duration is 624 hours, a rainfall of 129 mm can trigger landslides in the 326 

region. For a better understanding of the effect of each rainfall parameter on the occurrence of 327 

landslides, probabilistic rainfall thresholds were defined for the area. 328 

4.2 Probabilistic thresholds 329 

The maximum probable rainfall conditions which were used for the definition of ED thresholds were 330 

considered as the triggering rainfall events for the probabilistic analysis. Thus, out of the 5028 rainfall 331 

events considered, 177 events were identified as triggering events by CTRL- T algorithm and the rest 332 

4851 events were considered as non-triggering rainfall events.  In the one-dimensional case, six 333 

categories of rainfall duration, five categories of cumulated rainfall event and seven categories of 334 

rainfall intensity were considered. The results are plotted in Fig. 4 (a-f); where Fig. 4a, c and e depict 335 

the prior probability, marginal probability and likelihood, and Fig. 4b, d and f depict the prior and 336 

posterior probabilities. The variable   in Eq. (2-5) is replaced with D, E and I in the respective 337 

graphs.      being a constant parameter (value 0.035 in this study), the ratio of        to      338 

determines the variation of posterior probability values. Hence when        >     , the posterior 339 

probability is greater than prior probability and vice versa. The more the variation between prior and 340 

posterior probability, the more significant the variable is. It can be seen, that for duration and event 341 

rainfall, for the largest values of variables, the values of        is less than     , while in the case of 342 

intensity, high intensity rainfalls are more probable to trigger landslides in the region. The plots of 343 

     and       ) are well above the plot of prior probability in all the cases. Intensity was found to 344 

be the most significant variable, with the maximum ratio between posterior and prior probabilities. 345 

The maximum posterior probability when the control parameter is D was found to be 0.053 where the 346 

value is 0.103 and 0.116 in the case of E and I, respectively. Maximum probability occurs when the 347 

duration is between 120 h to 240 h; event rainfall is between 100 mm to 200 mm; and intensity is 348 

greater than 3 mm/h.  349 
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 350 

Fig. 4. Prior, conditional, marginal and posterior probabilities with respect to rainfall parameters. (a, 351 

b) Duration; (c, d) Event rainfall; and (e, f) Intensity. 352 

To evaluate the joint occurrence of two parameters, two-dimensional Bayesian analysis were 353 

conducted with data on three different planes (Fig. 5). The two-dimensional space for each analysis 354 

was divided into small cells based on the categories of parameters used for one-dimensional analysis. 355 

Hence the ID plane is a 7 x 6 matrix, ED plane is a 5 x 6 matrix and the EI plane is a 5 x 7 matrix. 356 

There are several no data points in all three cases, due to the lower number of landslides considered 357 

for the analysis. As identified from the one-dimensional analysis, E and I were found to be more 358 

critical parameters than D. This is the reason why this study has considered all three different 359 

combinations of the control parameters even though the empirical thresholds are defined on ED plane 360 

only. The maximum probability value was obtained on EI plane, when the intensity value is less than 361 

0.5 mm/h and event rainfall is between 100 mm to 200 mm, with a value of 0.54.   362 

 363 

Fig. 5. Two-dimensional posterior probabilities of occurrence of landslide on (a) ID plane, (b) ED 364 

plane, and (c) EI plane. 365 

It is evident from Fig. 6 that even less severe rainfall events when falling on a moist soil can trigger 366 

landslides in the region. Most of the landslides for which rainfall events were less severe happened on 367 

days with higher soil wetness. Also, when the rainfall event is severe, even dry soil can be susceptible 368 

to landslides. The maximum probability of 0.49 was observed when the rainfall severity was between 369 

T20 to T50 and the soil wetness was between 0.8 to 1. With the available data, when the antecedent soil 370 

moisture is less, only extremely severe rainfall conditions can trigger landslides in the area. This 371 

affects the performance  of the ED thresholds considerably. For different antecedent soil moisture 372 

conditions, this makes it easier to decide the threshold line to be used.  373 

 374 
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Fig. 6. Two-dimensional Bayesian probabilities for occurrence of landslides based on rainfall severity 375 

and soil wetness. 376 

5. Discussions 377 

To verify the performance of all models and to understand which model is performing better for the 378 

study area, different thresholds should be compared quantitatively (Lagomarsino et al., 2015). In this 379 

study, empirical thresholds on ED plane, probabilistic thresholds on all three combinations of control 380 

parameters (ED, ID and EI) and also a two-dimensional Bayesian approach by combining empirical 381 

ED thresholds with soil moisture have been derived.  The maximum probability value obtained in the 382 

two-dimensional analysis was in the case of EI thresholds, and the value is 0.54. The value was 383 

obtained when the intensity is less than 0.5 mm/h and event rainfall is between 100 to 200 mm. This 384 

implies a prolonged duration of 8 days or more. The intensity value is too low in this case, yet the 385 

probability value is the maximum. The definition of 2-dimensional Bayesian probability majorly 386 

depends upon the relative occurrence of landslides when the rainfall conditions are satisfied and the 387 

occurrence of rainfall events with specified conditions. The number of events with the specified EI 388 

conditions were less, but more than half of them have resulted in landslides based on the historical 389 

data. Thus, the probability of occurrence of landslides is higher in this case. This result points towards 390 

the significance of using a physical parameter such as soil moisture for the definition of threshold. 391 

The top regolith layer throughout the district consists of forest loam, lateritic soil, alluvial soils etc, 392 

with higher fine fraction (Department of Mining and Geology Kerala, 2016). The less permeable soil 393 

has a higher water holding capacity and the moisture content increases when the rainfall is 394 

continuous. The prolonged rainfall has thus reduced the shear strength of soil and the landslide has 395 

happened at a very less intensity value. This complicated process is simplified by using a statistical 396 

approach, by considering the effect of soil wetness. To understand the performance of such a model 397 

with respect to the meteorological thresholds, a quantitative comparison is required. 398 

An ROC curve approach was used for quantitative comparison. ROC curve is a tool to understand the 399 

performance of a model with a binary outcome. Each threshold value can forecast two outcomes for a 400 

day; ‘landslides’ or ‘no landslides. If   the threshold condition is crossed, the model forecasts 401 
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‘landslides’ and otherwise, ‘no landslides. When the forecasting is correct and landslide occurs, it is 402 

termed as a true positive (  ). Another possibility of correct outcome is the result ‘no landslides’ on a 403 

day in which landslides do not occur. This can be counted as a true negative (  ) result. When the 404 

forecasting goes wrong, it also has two possible outcomes. ‘Landslides’ forecasted on a non-landslide 405 

day, which is a false positive (  ) or simply a false alarm and ‘no landslides’ forecasted on a day in 406 

which landslides occur, termed as false negatives (  ) or missed alarms. A perfect model should only 407 

have true outcomes, without any false alarms or missed alarms.  408 

A ROC curve is a plot with a false positive rate of a model on x-axis and a true positive rate on y axis. 409 

It evaluates the overall performance of the model. The true positive rate is also called the sensitivity 410 

of the model. It provides the proportion of landslide occurrences which are correctly identified 411 

            .  The specificity of a model is the true negative rate and is the ratio of    to the 412 

sum of    and   . The false positive rate can be calculated by subtracting specificity value from 1. 413 

An ideal model is expected to have both sensitivity and specificity values as 1. Hence the point (0,1) 414 

on ROC curve is called the perfect point. Points which are closer to this perfect point has a better 415 

performance. Also, the model with better performance is the one with a maximum area under the 416 

curve (AUC) among the different models considered. Threat score and True Skill Statistic (TSS) are 417 

two other parameters which were used to understand the performance of a model (Mirus et al., 418 

2018b). Threat score is defined as the ratio of    to the sum of       and   . TSS is the difference 419 

between sensitivity and false positive rate. For an ideal model, the value of both these variables 420 

should be 1. 421 

ROC curves for all models considered in the study are plotted in Fig. 7 and the statistical attributes are 422 

listed in Table 2. From Fig. 7, it can be observed that the RS threshold covers the maximum area in 423 

the plane with an AUC of 0.96. The empirical ED threshold has the second highest AUC of 0.86. All 424 

the three probabilistic rainfall thresholds have very close AUC values as observed in Fig. 7. EI 425 

threshold covers a larger area than the other two, indicating its better performance in comparison with 426 

the other two probabilistic rainfall thresholds. The distance from perfect point is minimum in the case 427 

of RS thresholds, in the case of critical probabilities 0.1 and 0.15. It can also be observed that the 428 
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value of threat score and TSS are maximum in the case of RS thresholds. The maximum value of 429 

threat score is obtained as 0.24 and TSS as 0.90, both in the case of RS thresholds with critical 430 

probability 0.1, which is also the closest one to the perfect point. 431 

Fig. 7. ROC curves for the derived thresholds. Sensitivity is the ability of a model to correctly identify 432 

the landslide events and Specificity is the ability to correctly identify the non-landslide events 433 

Looking into the details in Table 2, it confirms with the literature as the empirical thresholds result in many 434 

false alarms, making it inadequate to use in an LEWS. The number of false alarms can considerably be 435 

reduced by using probabilistic rainfall thresholds, as listed in Table 2. The number of    in the case of 436 

probabilistic ED. ID and EI are much lesser than the other two models considered. But this reduction in 437 

false alarms comes with the cost of a higher number of missed alarms (  ). While 171 landslide events 438 

out of the 177 events are correctly forecasted by the empirical ED threshold line T1, and 172 are correctly 439 

forecasted by RS threshold when the critical probability is 0.05, the maximum number of correct outcomes 440 

for the other probabilistic models are 106, 105 and 117 on ED, ID and EI planes respectively. For 441 

improving the performance, we need to balance the number of false alarms and missed alarms, which is 442 

achieved by using RS threshold. The RS threshold has    numbers comparable with that of probabilistic 443 

rainfall thresholds, minimising the false alarms and by incorporating an additional filter using soil wetness, 444 

it reduces the number of false alarms when compared to the empirical ED threshold.  445 

Table 2. Statistical attributes for quantitative comparison. 446 

 447 

The probabilistic rainfall thresholds have high specificity values, pointing to their ability to correctly 448 

forecast the days without landslides, but with very less values of sensitivity. The points on ROC 449 

curves for probabilistic rainfall thresholds are therefore closer to both the axes, reducing the AUC. 450 

Even though the points have high specificity values, they are located far from the perfect point, due to 451 

their inefficiency in correctly forecasting the occurrence of landslides. The RS threshold with a 452 

critical probability of 0.1 is the closest one to the perfect point, correctly forecasting 167 landslide 453 

occurrences. 454 
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From the analysis, the rainfall and soil wetness conditions for which the probability of occurrence is 455 

more than 0.1 should be considered critical. This makes it easier to identify the empirical ED 456 

threshold line for different values of soil wetness. The critical conditions are mentioned in Table 3.  457 

Table 3. Critical conditions for initiation of landslides in Idukki, based on RS thresholds 458 

 459 

From Table 3, it can be understood that when soil wetness is less than 0.2, T50 line of empirical ED 460 

thresholds should be considered as critical, when the soil wetness is between 0.2 to 0.4, T5 can be 461 

considered as the critical threshold. For the next two cases where soil wetness is between 0.4 to 0.8, 462 

T10 threshold line can be considered as critical if the critical probability is 0.1. In this case, the 463 

threshold line for 0.2 to 0.4 is T5, which is below the threshold line for soil wetness from 0.4 to 0.8. 464 

This variation can be due to the smaller number of data points considered in this study. With the 465 

available data points, very less cases are reported when the soil wetness is between 0.4 to 0.8, and the 466 

rainfall severity is below T10. To avoid any possible missed alarms due to the limitations of the dataset 467 

considered, the threshold for soil wetness between 0.4 to 0.8 is considered as T1, for which the 468 

probability of occurrence of landslides is 0.05 in this study. This variation in the critical probability 469 

ensures the physical validity and easy export of the model.   When the soil wetness is between 0.8 to 470 

1, even rainfall which is below T1 can trigger landslides. Hence, for the last condition, we defined the 471 

critical case as Tmin where Tmin represents the threshold line with minimum exceedance probability, 472 

close to zero. Practically, it represents any possible rainfall condition.  473 

The soil wetness data can be collected from daily satellite observations as taken in this study, or from 474 

real-time field observation using sensors. The severity of rainfall for each day can be estimated from 475 

the rainfall forecasts. Using these two inputs, the possibility of occurrence of landslide can be 476 

estimated using the conditions mentioned in Table 3. With higher exceedance probabilities, the 477 

relative uncertainty of α of ED threshold is crossing this limiting value. Similar results are observed 478 

when the rainfall data used is of daily temporal resolution (Teja et al., 2019).  479 
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The type of landslides is also an important factor in identifying the associated rainfall. For example, 480 

rockfalls may be triggered without any rainfall, debris flows are often triggered by short duration 481 

(maybe less than 1 hour) and high intensity (Kean et al., 2011), and shallow landslides are triggered 482 

by short-term rainstorms of high-intensity or long-duration rainfall of low to medium intensity 483 

(Guzzetti et al., 2008). This is the main reason why the models (ED, and RS) often associated with the 484 

disadvantage of higher false alarms. Even though the false alarms are considerably reduced in RS 485 

thresholds, it needs further enhancements to be used in an LEWS.  There are chances that the model 486 

may miss alarms for rockfalls, which can be triggered with no rainfall. In the case of flow like 487 

landslides such as debris flows, the failure can be triggered by very short, high intensity rainfalls. 488 

Such rainfall events may trigger landslides in relatively dry soils as well. In this case, even if the 489 

antecedent soil wetness is less than 0.2, if the rainfall severity is greater than T50, the model will issue 490 

a warning. If an event of severity less than T50 triggers such an event, the model may miss the alarm. 491 

With a higher number of data points and better resolution of rainfall data, this can be improved, and 492 

better results can be expected. 493 

6. Conclusions 494 

This study has been conducted to evaluate the effect of antecedent soil moisture content to improving 495 

the performance of empirical and probabilistic thresholds for Idukki district in India. The district is 496 

suffering from landslides ranging from cut slope failures to debris flows during monsoon seasons. The 497 

recent disasters that happened in 2018 and 2019 in the district emphasises the requirement of a 498 

landslide early warning system for the region.  499 

In this study, empirical rainfall thresholds on ED plane was derived for the study area using an 500 

algorithm-based approach. It was found that with 5% exceedance probability, 20.19 mm rainfall can 501 

trigger a landslide in the region for a duration of 24 hours, and when the duration is 624 hours, a 502 

rainfall of 129 mm can trigger landslides in the region. 503 

To evaluate the influence of each rainfall parameter on the occurrence of landslides, Bayesian 504 

analyses were conducted for both one-dimensional and two-dimensional cases. It was found that both 505 
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intensity and event rainfall have influence on the occurrence of landslides, and most of the events 506 

happened when the rainfall happened in lesser duration. From two-dimensional analysis, the 507 

probabilities on EI plane were found to have the maximum values. 508 

To evaluate the effect of soil wetness, another two-dimensional Bayesian approach was conducted, 509 

and it was observed that when the soil is relatively dry, severe rainfall events are required to trigger 510 

landslides and when the soil is wet, also milder rainfall conditions can trigger landslides in the study 511 

area. 512 

A statistical comparison between the considered models was used to find out the best performing 513 

model.  The comparison was carried out by using a ROC curve approach, where the RS threshold was 514 

found to have the maximum AUC of 0.96, among the models considered in this study. The empirical 515 

ED threshold generated a relevant number of false alarms, resulting in a low specificity value, while 516 

the disadvantage associated with the probabilistic thresholds was the low sensitivity due to a large 517 

number of missed alarms.  The proposed method, which combines empirical thresholds with soil 518 

wetness using a probabilistic approach, performs better than both the root models by optimising the 519 

number of false alarms and missed alarms. Based on the comparison, it was found that an RS 520 

threshold of probability 0.1 should be considered critical for the study area and critical rainfall 521 

severity conditions were identified for each soil wetness condition. The performance could be further 522 

enhanced in the future by using hourly rainfall data with more dense rain gauge network for the area. 523 

Moreover, real-time monitoring of moisture content data for different locations in the study area can 524 

also contribute to better resolution soil moisture data and thereby improving the performance of the 525 

model. 526 
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The results of the study therefore open new promising perspectives for the development of an 527 

operational LEWS in the Idukki district, by combining rainfall and soil moisture data. At the same 528 

time, this work provides evidences from a monsoon region about the advances brought by hydro-529 

meteorological thresholds based on soil moisture, which is gaining a growing attention in landslide 530 

studies all over the world but before today it was relatively unexplored for the setting of LEWS in the 531 

study area. Unfortunately, the use of soil moisture data in operational LEWS with short lead times is 532 

technically difficult, consequently another option to be explored is the use of antecedent rainfall 533 

conditions as a proxy to the soil moisture, which can be a simpler method to express the soil wetness 534 

conditions (Leonarduzzi and Molnar, 2020; Segoni et al., 2018b). More studies must be conducted for 535 

this region, to develop an effective LEWS which could obtain a fair compromise between the 536 

simplicity of the approach and the quality of the forecasting performance. 537 
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Fig. 1. Location details of study area. (a) India, and (b) Digital Elevation Model of Idukki (modified 

using CartoDEM (CartoDEM, 2015)) along with location of rain gauges. 

Figure



 

Fig. 2. Methodology of study. 



 

Fig. 3. Rainfall event – duration thresholds for Idukki district. 



 

Fig. 4. Prior, conditional, marginal and posterior probabilities with respect to rainfall parameters. (a, 

b) Duration; (c, d) Event rainfall; and (e, f) Intensity. 



 

Fig. 5. Two-dimensional posterior probabilities of occurrence of landslide on (a) ID plane, (b) ED 

plane, and (c) EI plane. 



 

 

Fig. 6. Two dimensional Bayesian probabilities for occurrence of landslides based on rainfall severity 

and soil wetness. 



 

Fig. 7. ROC curves for the derived thresholds. Sensitivity is the ability of a model to correctly identify the 

landslide events and Specificity is the ability to correctly identify the non-landslide events 
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Fig. 1. Location details of study area. (a) India, and (b) Digital Elevation Model of Idukki 

(modified using CartoDEM (National Remote Sensing Centre 2015)) along with location of rain 

gauges. 
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severity and soil wetness. 

Fig. 7. ROC curves for the derived thresholds. Sensitivity is the ability of a model to correctly identify 

the landslide events and Specificity is the ability to correctly identify the non-landslide events 
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Table 1.  Values of α, γ and the uncertainties associated with different exceedance probabilities 

Threshold α Δα γ Δγ 

T1 2.3 0.8 0.57 0.03 

T5 3.3 1.1 0.57 0.03 

T10 4.0 1.3 0.57 0.03 

T20 5.0 1.6 0.57 0.03 

T50 7.9 2.4 0.57 0.03 
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Table 2. Statistical attributes for quantitative comparison. 

Thresh

old 

model 

Threshold 

value 
TP FP FN TN 

Sensi

tivity 

Speci

ficity 

Distance 

from 

perfect 

point 

Thre

at 

score 

True 

skill 

statistic 

AUC 

Empiric

al ED 

T1 171 3594 6 9377 0.97 0.72 0.28 0.05 0.69 

0.86 

T5 167 3156 10 9815 0.94 0.76 0.25 0.05 0.70 

T10 157 2878 20 10093 0.89 0.78 0.25 0.05 0.67 

T20 145 2531 32 10440 0.82 0.80 0.27 0.05 0.62 

T50 91 1729 86 11242 0.51 0.87 0.50 0.05 0.38 

Probabil

istic ED 

0.05 106 870 71 12101 0.60 0.93 0.41 0.10 0.53 

0.77 

0.1 27 86 150 12885 0.15 0.99 0.85 0.10 0.15 

0.15 18 36 159 12935 0.10 1.00 0.90 0.08 0.10 

0.2 18 36 159 12935 0.10 1.00 0.90 0.08 0.10 

0.3 15 25 162 12946 0.08 1.00 0.92 0.07 0.08 

Probabil

istic ID 

0.05 105 830 72 12141 0.59 0.94 0.41 0.10 0.53 

0.77 

0.1 80 502 97 12469 0.45 0.96 0.55 0.12 0.41 

0.15 36 247 141 12724 0.20 0.98 0.80 0.08 0.18 

0.2 6 102 171 12869 0.03 0.99 0.97 0.02 0.03 

0.3 2 6 175 12965 0.01 1.00 0.99 0.01 0.01 

Probabil

istic EI 

0.05 117 966 60 12005 0.66 0.93 0.35 0.10 0.59 

0.79 

0.1 75 421 102 12550 0.42 0.97 0.58 0.13 0.39 

0.15 35 117 142 12854 0.20 0.99 0.80 0.12 0.19 

0.2 20 47 157 12924 0.11 1.00 0.89 0.09 0.11 

0.3 7 6 170 12965 0.04 1.00 0.96 0.04 0.04 

Probabil

istic RS 

0.05 172 3133 5 9838 0.97 0.76 0.24 0.05 0.73 

0.96 

0.1 167 527 10 12444 0.94 0.96 0.07 0.24 0.90 

0.15 144 477 33 12494 0.81 0.96 0.19 0.22 0.78 

0.2 101 470 76 12501 0.57 0.96 0.43 0.16 0.53 

0.3 23 98 154 12873 0.13 0.99 0.87 0.08 0.12 

 

  



Table 3. Critical conditions for initiation of landslides in Idukki, based on RS thresholds. 

Soil Wetness Critical ED threshold line 

0.0 – 0.2 T50 

0.2 – 0.4 T5 

0.4 – 0.6 T10T1 

0.6 – 0.8 T10T1 

0.8 – 1.0 Tmin 
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