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Abstract: Droughts are slow-moving natural hazards that gradually spread over large areas and
capable of extending to continental scales, leading to severe socio-economic damage.
A key challenge is developing accurate drought forecast model and understanding a
models’ capability to examine different drought characteristics. Traditionally,
forecasting techniques have used various time-series approaches and machine
learning models. However, the use of deep learning methods have not been tested
extensively despite its potential to improve our understanding of drought
characteristics. The present study uses a deep learning approach, specifically the Long
Short-Term Memory (LSTM) to predict a commonly used drought measure, the
Standard Precipitation Evaporation Index (SPEI) at two different time scales (SPEI 1,
SPEI 3). The model was compared with other common machine learning method,
Random Forests, Artificial Neural Networks and applied over the New South Wales
(NSW) region of Australia, using hydro-meteorological variables as predictors. The
drought index and predictor data were collected from the Climatic Research Unit (CRU)
dataset spanning from 1901-2018.  We analysed the LSTM forecasted results in terms
of several drought characteristics (drought intensity, drought category, or spatial
variation) to better understand how drought forecasting was improved.  Evaluation of
the drought intensity forecasting capabilities of the model were based on three different
statistical metrics, Coefficient of Determination (R2), Root Mean Square Error (RMSE),
and Mean Absolute Error (MAE). The model achieved R2 value of more than 0.99 for
both SPEI 1 and SPEI 3 cases. The variation in drought category forecasted results
were studied using a multi-class Receiver Operating Characteristic based Area under
Curves (ROC-AUC) approach. The analysis revealed an AUC value of 0.83 and 0.82
for SPEI 1 and SPEI 3 respectively. The spatial variation between observed and
forecasted values were analysed for the summer months of 2016-2018. The findings
from the study show an improvement relative to machine learning models for a lead
time of 1 month in terms of different drought characteristics. The results from this work
can be used for drought mitigation purposes and different models need to be tested to
further enhance our capabilities.
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 Long Short Term Memory (LSTM) model was used to forecast short term 

drought. 

 Drought index and predictor data used for the study were collected from CRU. 

 Results were examined in terms of drought intensity and drought categories. 

 

*Highlights (for review)
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Abstract 16 

Droughts are slow-moving natural hazards that gradually spread over large areas and capable of 17 

extending to continental scales, leading to severe socio-economic damage. A key challenge is developing 18 

accurate drought forecast model and understanding a models’ capability to examine different drought 19 

characteristics. Traditionally, forecasting techniques have used various time-series approaches and 20 

machine learning models. However, the use of deep learning methods have not been tested extensively 21 

despite its potential to improve our understanding of drought characteristics. The present study uses a 22 

deep learning approach, specifically the Long Short-Term Memory (LSTM) to predict a commonly used 23 

drought measure, the Standard Precipitation Evaporation Index (SPEI) at two different time scales 24 

(SPEI 1, SPEI 3). The model was compared with other common machine learning method, Random 25 

Forests, Artificial Neural Networks and applied over the New South Wales (NSW) region of Australia, 26 

using hydro-meteorological variables as predictors. The drought index and predictor data were 27 

collected from the Climatic Research Unit (CRU) dataset spanning from 1901-2018.  We analysed the 28 

LSTM forecasted results in terms of several drought characteristics (drought intensity, drought 29 

category, or spatial variation) to better understand how drought forecasting was improved.  Evaluation 30 

of the drought intensity forecasting capabilities of the model were based on three different statistical 31 

metrics, Coefficient of Determination (R2), Root Mean Square Error (RMSE), and Mean Absolute Error 32 

(MAE). The model achieved R2 value of more than 0.99 for both SPEI 1 and SPEI 3 cases. The variation 33 

in drought category forecasted results were studied using a multi-class Receiver Operating 34 
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Characteristic based Area under Curves (ROC-AUC) approach. The analysis revealed an AUC value of 35 

0.83 and 0.82 for SPEI 1 and SPEI 3 respectively. The spatial variation between observed and forecasted 36 

values were analysed for the summer months of 2016-2018. The findings from the study show an 37 

improvement relative to machine learning models for a lead time of 1 month in terms of different 38 

drought characteristics. The results from this work can be used for drought mitigation purposes and 39 

different models need to be tested to further enhance our capabilities. 40 

Keywords: Standard Precipitation Evaporation Index; New South Wales; Drought Forecasting; Deep 41 

Learning 42 

1. Introduction 43 

Droughts are one of the most devastating natural hazards affecting various parts of the world. The 44 

phenomenon starts with the deficiency in rainfall, and it affects various aspects like stream-flow and 45 

soil moisture. The factors affecting or leading to droughts can be several ranging from meteorological 46 

parameters to climatic factors and even the effect of anthropogenic activities (Van Loon et al. 2016). 47 

Droughts can be broadly categorized as meteorological, which means the scarcity of rainfall beneath a 48 

certain truncation level; hydrological which refers to reduction in stream-flow; agricultural which leads 49 

to reduction in soil moisture content and ultimately crop yield; and socio-economic drought; which is 50 

the economic hardship faced by the people as a combination of all the above drought types. However, 51 

of late, several researchers have attempted to further categorize drought types, with Mishra and Singh, 52 

(2010) suggesting to add ground water drought; Vicente Serrano et al. (2019) suggesting environmental 53 

droughts as another category and a few suggesting to add ecological drought as a separate drought type 54 

(Slette et al. 2019). Among all these category types, one thing is for certain: that droughts are very 55 

complex and an international consensus on drought types is necessary.  56 

Considering forecasting droughts, there are broadly three steps: i) defining a drought; ii) input data; 57 

and iii) models used. In terms of defining a drought, researchers have come up with several indices for 58 

different purposes which helps to understand various drought characteristics like onset, end, duration 59 

and intensity. These indices depend on the parameters being considered which could be a 60 

meteorological type, like Standard Precipitation Index (SPI) (McKee et al. 1993), derived from 61 

precipitation and typically used for meteorological droughts or Standard Precipitation Evaporation 62 

Index (SPEI) (Vicente Serrano et al. 2010; 2012), derived from precipitation and temperature and can 63 

be used for meteorological and/or hydrological droughts. Other drought indices type include derived 64 

from remote sensing products like Soil Adjusted Vegetation Index (SAVI) (Huete et al. 1988), which can 65 

be used to understand the vegetation aspects. Recently, Yihdego et al. (2019) presented a 66 

comprehensive list of the various drought indices used in the literature. As there have been over 150 67 

drought indices developed, validating everyone and developing a common consensus is not feasible. 68 

However, lately there seems to be a growing consensus about the use of SPEI, primarily because of its 69 

use of rainfall and temperature while determining index and not only rainfall as is the case in SPI. 70 

Therefore, SPEI was used in the present study due to its growing acceptability and its ability to use both 71 

rainfall and temperature parameters for calculation. The values are further categorized into different 72 



levels of drought or non-drought conditions, which can be perceived as a reflection of the actual 73 

conditions (Hao et al. 2016).  74 

Several researchers have attempted to predict droughts at different lead times, with the aim of 75 

increasing the forecasting capability at higher lead times. Another important aspect in drought studies 76 

is the input data and the variables being considered for any analysis type. The input data can be 77 

generally classified as ground-based or satellite based. The ground-based data could be further 78 

categorised as station-based and interpolated grids (Sun et al. 2016). The interpolated gridded datasets 79 

are based on gathering site-specific data from across the world and apply different interpolation grids 80 

to produce a global/continental scale map of certain drought affecting variables (Sun et al. 2016). Such 81 

datasets have the benefit of higher temporal resolution, which is crucial for drought studies. On the 82 

other hand, remote sensing based datasets suffer from lower temporal resolution, which are not ideal 83 

for forming a robust architecture for drought forecasting studies (Hao et al. 2018). Table 1 provides the 84 

advantages and limitations of the data types, along with suggested review articles of the various 85 

interpolated grids and remote sensing datasets.  86 

Table 1. Advantages and limitations of the data types 87 

Data Type Advantages Limitations Popular 

products 

Review Article 

Ground based - Long time series 

data 

- Good for 

analysing drought 

sensitive regions 

- Can cover large 

areas (continental 

to global scale) 

- Manual Errors 

- Need to check 

the homogeneity 

and fill the 

missing values in 

case of site-

specific data 

- Depends on the 

interpolation 

techniques used 

- Meteorological 

Stations  

- Interpolated 

Grids (CRU, 

Global 

Precipitation 

Climatology 

Centre (GPCC)) 

Sun et al. (2018) 

Remote Sensing  - Information of 

vegetation data 

- Closely monitor 

the changes in 

agriculture 

- Not available for 

enough duration 

- Low temporal 

resolution 

MODIS, Sentinel 

-1, 2, 3  

West et al. (2020) 
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Using the climatological dataset for drought studies has seen a rise as more and more datasets are being 89 

made available. Sun et al. (2018) reviewed 30 global precipitation datasets developed using various 90 

approaches and found that the use of any dataset depends on the study area and the type of study being 91 

performed. As precipitation is one of the key drought influencing factors and the present study is being 92 



conducted on a considerably large area, we have used one of the most popular and well-accepted global 93 

climatological dataset, namely Climate Research Unit (CRU TS v 4.03) spanning from 1901-2018 at a 94 

spatial resolution of 0.5° (Harris et al. 2019; 2020). Further, the usability of CRU dataset for drought 95 

studies has been explored by several studies, like Vicente-Serrano et al. (2012) compared the 96 

performance of four different drought indices using CRU at a global scale; Spinoni et al. (2019) used 97 

CRU to prepare a global database of meteorological droughts. For NSW, the viability of the dataset for 98 

drought studies has been examined and verified by Dikshit et al. (2020a). The use of variables to 99 

accurately forecast meteorological drought has seen utilization of several factors like temperature, 100 

evapotranspiration and other factors like sea surface temperatures and climatic indices. The inclusion 101 

of climatic variables have shown to improve the forecasting results at higher lead times (6-12 months) 102 

(Özger et al. 2012), however, as the present work forecasts only at a lead time of 1 month, the use of 103 

local climate variables can be considered sufficient as highlighted in previous works (Mishra and Singh 104 

2011; Hao et al. 2018). The meteorological variables available from CRU dataset are precipitation, 105 

vapour pressure, cloud cover, potential evapotranspiration and temperature (mean, minimum and 106 

maximum). 107 

And the final step depends on the forecasting model and the drought characteristics being analysed. 108 

The approaches used for drought forecasting can be classified into statistical (Deo and Sahin, 2015), 109 

physical (Hao et al. 2018) and hybrid (Wang et al. 2012) models. Statistical models analyses 110 

relationships among historical records, by considering various influencing factors as predictors. 111 

Physical based models involve the use of General Circulation Models (GCMs), which considers the 112 

physical processes between the atmosphere and land surface. Hybrid models involve the combination 113 

of both statistical and physical based models. In case of statistical models, various techniques like 114 

regression, time series analysis and machine learning approaches are used. The use of machine learning 115 

approaches, specifically, Artificial Neural Networks (ANN) have seen a rise, primarily due to the non-116 

linear behaviour of droughts (Mishra and Singh, 2011). However, neural networks are incapable of 117 

dealing with non-stationarities in drought estimations and suffer from overfitting due to lag 118 

components involved in time series data (Alizadeh and Nikoo, 2018).Readers are referred to Mishra 119 

and Singh, (2011); Hao et al. (2018) and Fung et al. (2019) for a more detailed understanding of the 120 

various approaches used for forecasting purposes, along with their advantages and limitations. 121 

Therefore, there is a growing consensus to improve the forecasting abilities and one way to achieve it is 122 

by the use of deep neural networks which has shown tremendous capabilities to outperform the 123 

traditional approaches. Various fields like speech recognition (Hinton et al. 2012), self-driving vehicles 124 

(Farabet et al. 2012), computer vision (Krizhevsky et al. 2012) and natural language processing 125 

(Collobert et al. 2011) have immensely benefitted. In the case of droughts, deep learning has been used 126 

to forecast sea surface temperatures using hybrid Long Short-Term Memory (LSTM) technique (Xiao 127 

et al. 2019); developing drought monitoring tool using deep feed forward neural network (Shen et al. 128 

2019); drought index forecasting (SPI, SPEI) using LSTM (Poornima and Pushpalata, 2019). The study 129 

by Poornima and Pushplata, (2019) used a variety of local climatic variables to forecast SPEI and SPI 130 

for a temporal range of 1980 to 2013 for a single site in Hyderabad, India. The model was able to achieve 131 

accuracy of 97% and 99% for monthly SPEI and SPI, respectively. Their study used ground-based data 132 



and the temporal range used was 1980 to 2013. The use of relatively shorter time scale may hinder to 133 

adequately capture patterns and depict more reliable results. Therefore, the present study aims to use 134 

LSTM technique using global climatological dataset to understand the forecasting capabilities in terms 135 

of SPEI values and analysing the variation in terms of drought categories and spatial variation. The 136 

model was trained from 1901-2010 providing it with sufficient data to learn the relationship between 137 

drought index and the causative factors. Next, the model was validated from 2011-2018 and the results 138 

were analysed at 1 month lead time. In summary, the present work aims to achieve three main 139 

objectives: i) How well can deep learning models forecast meteorological drought?; ii) Understanding 140 

the spatial variation between observed and predicted values; and iii) Examining the variation in terms 141 

of drought categories as defined by index values. The flowchart of the study is illustrated in Figure 1. 142 

 143 

Figure 1. Flowchart of the study conducted in this research.  144 

2. Study Area  145 

The area of interest for the present work is New South Wales (NSW) which is in the south-western part 146 

of Australia (Figure 2). The region has a history of droughts that have led to huge economic loss in terms 147 

of agricultural production, water availability, and social distress (Pittock et al. 2015). The Bureau of 148 

Meteorology (BoM), Australia has classified the region into four different climatic zones, wherein most 149 

of the region suffers from hot dry summer and cold winters. The three hottest months or the summers 150 

typically start in December and ends in February. The region encompasses an area of around 800,400 151 

km2 with a population of 7,861,700 (ABS, 2018). Around 81% of the region falls under agricultural land, 152 

and 14% of the region is classified as protected areas. The most common land use by area is grazing 153 

native vegetation, which is roughly 44% of the state (ABARES, 2016). From 1900, the region has 154 

suffered from three major droughts [(Federation Drought (1895-1902), World War II (1937-1945) and 155 

Millennium (2001-2010)] and several minor droughts (Dikshit et al. 2020b). Wittwer, (2020) estimated 156 

the economic impact due to droughts from 2017-2019, and found that a total of 8.1 Billion$ was lost 157 



during this period. The Millennium Drought which is considered being the worst drought in history, 158 

had led to several social issues like enforcing water restrictions in major cities, an increase in electricity 159 

prices, and also a major contributor to bushfire events in 2003 and 2009 (Van Dijk et al. 2013). Further, 160 

the drought was considered as the leading factor for a clear reversal in water cycle intensification 161 

observed in previous years (Huntington, 2006).  Also, the recent bushfires in 2019 have been found to 162 

be further aggravated due to the combination of drought conditions, dry vegetation and rise in 163 

temperature (Steffen et al. 2019; Nolan et al. 2020). 164 

 165 

Figure 2. Location of the study area and the long-term mean rainfall map based on the base period of 166 

1961-1990 calculated from CRU-TS dataset. 167 

As explained in the introduction section, the understanding of the drought is quite varied and its 168 

definition for characteristics like onset and end is also different. As an example, BoM defines drought 169 

onset, when precipitation is below 10th percentile and as serious when precipitation is below 5% of 170 

observations, however a clear definition marking the cease of drought has not been defined (Heberger, 171 

2012). However, the Department of Primary Industries, NSW uses Combined Drought Index (CDI) as 172 

a drought indicator, which combines meteorological, hydrological and agronomic definitions of drought 173 

using indexes for rainfall, soil water and plant growth and drought direction. Therefore, to avoid such 174 

confusion, we used the globally accepted SPEI drought index as an indicator to forecast drought index. 175 

In terms of climatic variation, the region has seen an increase in the intensity and frequency of hot days 176 

and heat waves in Australia, exacerbating drought conditions (Cai et al. 2012), with a decrease in rainfall 177 

since 1950 (Dey et al. 2019).  178 

3. Drought Index and Data Used 179 

(a) (b) 



The data used for the present study is Climatic Research Unit (CRU TS v 4.03) dataset developed by the 180 

University of East Anglia at 0.5° x 0.5° spatial resolution from 1901-2018 (Harris et al. 2019; 2020). 181 

The dataset has been used for various purposes like climate variability, paleo-climatic (Nagavciuc et al. 182 

2019) and agronomic studies (Renard et al. 2019). In total, the dataset provides ten different variables 183 

which can be either primary, secondary or derived. The variables used in the present study are primary 184 

variables that include precipitation and mean temperature; secondary variables are vapour pressure 185 

and cloud cover; and derived variables are potential evapotranspiration, minimum and maximum 186 

temperature.  187 

3.1 Standard Precipitation Evaporation Index 188 

The Standard Precipitation Evaporation Index (SPEI) is one of the most commonly used drought index 189 

for forecasting purposes after its introduction by Vincente Serrano et al. (2010). This is primarily due 190 

to its dependency on both rainfall and temperature data, unless like SPI, which only uses rainfall data. 191 

The calculation of SPEI includes determining “climatic water balance” which involves the use of rainfall 192 

and potential evapotranspiration. The calculation of SPEI can be conducted at various time scales, 193 

ranging from 1 month to 24 months, which depicts different drought type (Vicente Serrano et al. 2010). 194 

To calculate SPEI index at different time scales (n = 1, 3), the monthly climatic water balance series is 195 

aggregated with an n-month moving sum, i.e. the current monthly value and the previous n − 1 monthly 196 

values. Like, a 3-month accumulation data for January–February–March determines the index for the 197 

month of March (Vicente Serrano et al. 2010). The climatic water balance is computed at different time 198 

scales, and the resulting values are fitted to a log‐ logistic probability distribution to transform the 199 

original values to standardized units (Beguería et al. 2014). Generally, the shorter time scales (1-3 200 

months) represent the meteorological drought, whereas 3-6 month time scale describes agricultural 201 

drought, while a larger time scale, 12-24 months is suitable to describe hydrological drought (Mishra 202 

and Singh, 2010). As meteorological droughts can be considered as the first step in drought evolution, 203 

the present study, forecasts SPEI at 2 different time scales (SPEI 1 and SPEI 3). Interested readers are 204 

referred to Vicente Serrano et al. (2010; 2012) for a detailed study about the calculation of SPEI drought 205 

index. The global SPEI database at different monthly scales using the CRU dataset can be accessed from 206 

https://spei.csic.es/database.html. Table 2 represents the various drought categories as per SPEI index 207 

values.  208 

Table 2: Drought categories as per SPEI values (Rhee and Im, 2017) 209 

SPEI Classifications Categories 

≤-2.0 Extremely Dry 

-1.99~-1.5 Severely Dry 

-1.49~-1.0 Moderately Dry 

-0.99~0.99 Near Normal 

1.0~1.49 Moderately Wet 

1.5~1.99 Severely Wet 

≥2.0 Extremely Wet 

https://spei.csic.es/database.html


 210 

4. Recurrent Neural Networks and LSTM Model 211 

Deep learning as a distinct field has emerged to reduce human effort in traditional machine learning 212 

(ML) approaches for various tasks like feature extraction and regression purposes (LeCun et al. 2015). 213 

Typically, ML models have some level of human input which makes it difficult to understand complex 214 

situations and therefore, deep learning which does not involve human input became more prominent. 215 

Although, the concept of deep learning can be tracked back to 1950, it resurrected itself after defeating 216 

humans in the game of Go, which was one of the biggest achievement in the recent time (Silver et al. 217 

2016). Further, the detailed review of deep learning, LeCun et al. (2015) gave new directions to various 218 

research fields and has been adopted in respective domains. There have been several milestones 219 

achieved in deep learning in the past decade, each achieving new feats in their respective fields 220 

(Schmidhuber, 2015). However, the traditional computer vision field is slightly different from 221 

geohazards or geosciences applications as the latter involves a dynamic component which is not the case 222 

in the former (Reichstein et al. 2019). Also, the availability of various types of data include remote 223 

sensing, atmospheric or climatic data has led researchers to use different approaches with a definite 224 

aim like forecasting or monitoring.  225 

Of the various deep learning based approaches, Recurrent Neural Networks (RNN) is a neural network 226 

type which is used to understand non-stationary data like time series data. It can be considered as a 227 

series of interconnected networks for time series analysis and can be trained using back propagation 228 

based gradient descent algorithms (Williams and Zipser, 1989). The ability to consider both the current 229 

and preceding input data for mapping target vectors in RNN makes it useful compared to neural 230 

networks, which map target vectors by multiplying weights. Also, RNN has the ability to store an 231 

internal memory of previous inputs in the network, which allows it to recall key events that occurred 232 

several times in the past, which is key in studies like drought forecasting. The scenario where RNN fails 233 

is when stacking occurs leading to vanishing and exploding gradient problems (Bengio et al. 1994). This 234 

led to the introduction of long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997), which 235 

comprised of a cell capable of storing the values to be used at random intervals and three gates, viz., 236 

input, output and forget gate, to control and adjust the cell state. 237 

The structure of LSTM is like a chain as shown in Figure 3, wherein the basic building block is a cell and 238 

its state is the key to the mode. There are three types of gate which determines the cell state, which 239 

includes an input, forget gate and an output gate. The gates analyse and control the amount of 240 

information it can pass through and are comprised of a sigmoid neural layer and point-wise 241 

multiplication operation (Olah, 2015). The working mechanism of the gates and information flow can 242 

be expressed using the following equations: 243 

𝑓𝑡 =  𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑓)        (1) 244 

𝑖𝑡 =  𝜎(𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)     (2) 245 



𝐶′𝑡 =  𝑡𝑎𝑛ℎ(𝑊𝐶 . [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑐)       (3) 246 

𝐶𝑡 =  𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶′𝑡         (4) 247 

𝑜𝑡 =  𝜎(𝑊𝑜. [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑜)        (5) 248 

ℎ𝑡 =  𝜎𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡)      (6) 249 

Where 𝑥𝑡 is the input vector at time t with σ being the activation function like Sigmoid or ReLU. 𝑊𝑓, 𝑊𝑖, 250 

𝑊𝐶 and 𝑊𝑜 are the applied weights to concatenation of the new input 𝑥𝑡  and output ℎ𝑡−1 from the 251 

previous cell, with 𝑏𝑓, 𝑏𝑖, 𝑏𝑐, and 𝑏𝑜 being the corresponding bias (Xiao et al. 2019). 𝑓𝑡, 𝑖𝑡, and 𝑜𝑡 are the 252 

outputs of three sigmoid functions σ, and the values range from 0 to 1. These control the information 253 

which are forgotten in the old cell state 𝐶𝑡−1 and passed to the new cell 𝐶𝑡 with the new information 254 

being 𝐶′𝑡, with  ℎ𝑡 being the output information from the cell. There are several variants of LSTM and 255 

interested readers can refer to Goodfellow et al. (2016). 256 

 257 

Figure 3. Structure of LSTM network (Olah, 2015).  258 

The LSTM model used for SPEI forecasting, is depicted in Fig. 4. It consists of an input layer, one LSTM 259 

layers and one Dense layer (also known as fully connected layers). We have conducted several 260 

experiments and found that this architectural design achieves the best prediction performance. The 261 

input of the whole network is in 3D tensor form and expressed as [sample_size (1901-2010), 262 

time_steps, features_n (7)]. Sample_size is the training data, and is set to 2010. time_steps is the size 263 

of the time window (previous months) used to predict the SPEI. As there is no fixed rule for portioning 264 

the data, the most commonly used approach is to split the data into two sets (Mokhtarzad et al. 2017). 265 

Further, the amount of data in the training set has also no set rule, therefore, the present work uses 90% 266 

of the dataset as training (Deo et al. 2017b; Dikshit et al. 2020b). Therefore, training data is set to 2010 267 

and the remaining as validation. The choice of the time steps was set to 20, based on a trial-and-error 268 

approach and running several experiments (time_step = 5, 10, 15,….50). This means that the 269 

parameters from the past 19 months also including the 20th month parameters was used to predict the 270 



21st month’s SPEI.  As we use SPEI values as predictors, based on multiple involved factors, we set the 271 

feature_n to the number of involved factors, i.e., 7. A dropout mechanism is applied to the inputs to 272 

help prevent over-fitting during training, which is empirically set to 0.25 (Xiao et al. 2019). For 273 

regression task, the input data is normalized to the range of [0 1] using the following algorithm: 274 

𝑋𝑛𝑜𝑟 =  
(𝑌𝑚𝑎𝑥− 𝑌𝑚𝑖𝑛 )∗ (𝑋− 𝑋𝑚𝑖𝑛)

(𝑋𝑚𝑎𝑥− 𝑋𝑚𝑖𝑛)
+  𝑌𝑚𝑖𝑛      (7) 275 

Where 𝑋 is the value to be normalized; 𝑋𝑛𝑜𝑟  is the normalized 𝑋 value; 𝑌𝑚𝑎𝑥  = 1; 𝑌𝑚𝑖𝑛  = 0; 𝑋𝑚𝑎𝑥  and 𝑋𝑚𝑖𝑛 276 

are the maximum and minimum value of each time series respectively. The LSTM deep neural network 277 

is implemented with Keras (Francois, 2015) utilizing TensorFlow 2.0 (GPU version) as the backend. 278 

 279 

Figure 4. Architecture of the LSTM network for SPEI forecasting. 280 

The design of the architecture was initially conducted for SPEI 1 case. Later, similar approach was used 281 

for SPEI 3 case, however, the change in metrics was minimal, and therefore, both SPEI 1 and SPEI 3 282 

have the same architecture. After training the data, the predicted images for SPEI 1 SPEI 3 at one month 283 

lead time are generated to analyse the spatial variation. The analysis was conducted at different seasonal 284 

level to examine how the model performs, which would give more clarity about the model’s capability. 285 

The performance of the model was examined using various approaches and the details are presented 286 

below. 287 

4.2. Performance metrics 288 

The performance metrics was based on three different statistical metrics for analysing the forecasted 289 

results at different lead times. The metrics used were Coefficient of Determination (R2) and Root Mean 290 

Square Error Method (RMSE). The mathematical formulae to the metrics are: 291 



𝑅2 =
∑ (𝑦𝑖̂−𝑦𝑖̅̅̅)𝑁

𝑖=1

∑ (𝑦𝑖−𝑦𝑖̅̅̅)2𝑁
𝑖=1

,   (8) 292 

𝑦𝑖̅ =  
1

𝑁
∑ 𝑦𝑖

𝑁
𝑖=1 ,   (9) 293 

where, 𝑦𝑖̅ is the mean value, 𝑦𝑖  and 𝑦𝑖̂ are observed and forecasted values, N being the number of data 294 

points. 295 

𝑅𝑀𝑆𝐸 =  √
𝑆𝑆𝐸

𝑁
,   (10) 296 

𝑆𝑆𝐸 =  ∑ (𝑦𝑖̂ − 𝑦𝑖
𝑁
𝑖=1 )2,  (11) 297 

where, SSE refers to sum of squared errors.    298 

RMSE is frequently used as an evaluation metric as it penalises large errors and is suitable for time 299 

series forecasting purposes. R2 represents the extent of association between the observed and forecasted 300 

values. The value ranges from 0 to 1, where 1 indicates an exact match and 0 denotes no association. By 301 

contrast, a lower RMSE value depicts better performance. Mean Absolute Error (MAE) determines the 302 

average of absolute errors, analysing the degree of proximity of forecasted values with the observed 303 

values.  304 

As the study also aimed to analyse the drought class (Table 2) of the forecasted results, a multi class 305 

Receiver Operating Characteristic based Area under Curve (ROC-AUC) approach was used. This 306 

approach determines the sensitivities and specificities at all the thresholds which are defined as per the 307 

response of the classifier for a test set which is followed by AUC computation using the trapezoid rule 308 

(Buda et al. 2018). The traditional use of these curves revolves around binary classification works, 309 

therefore, we implemented a multi-class ROC (Provost and Domingos, 2003) to address the various 310 

drought classes and the imbalances associated with it. We used the scikit-learn python package to 311 

implement the technique (Pedregosa et al. 2011). The methodology included the determination of 312 

statistical metrics for every class and thereby averaging the results. The average of the results can be 313 

done either using micro or macro averages. Generally, for a multi class classification problem with class 314 

imbalance case, as is the present study, micro-average is to be preferred (Van Ash, 2013). This is due to 315 

the principle behind computation of these averages. A micro average aggregates the contributions of all 316 

classes to compute the average metric, whereas a macro average would calculate the metric 317 

independently for each class and then compute the average. So, the methodology involves the use of a 318 

performance table as shown in Table 3.  319 

Table 3. Performance table for occurrences labelled with class label X (Van Ash, 2013). 320 

 True label (X) True not (X) 

Predicted label (X) True Positive (TP) False Positive (FP) 

Predicted not (X) False Negative (FN) True Negative (TN) 



The calculation of AUC for any class involves determining the Sensitivity and 1- Specificity. Sensitivity 321 

is defined as: 𝑇𝑃/𝑇𝑃 + 𝐹𝑁; whereas Specificity is defined as: 𝑇𝑁/𝑇𝑁 + 𝐹𝑃. The mathematical formulae 322 

for determining the micro-average AUC is (Pedregosa et al. 2011): 323 

Micro average = 
2

𝑎(𝑎−1)
∑𝑎

𝑗=1 ∑𝑎
𝑦>𝑥 (AUC(𝑥|𝑦) + AUC(𝑦|𝑥))   - (12) 324 

where 𝑎 is the number of classes and  AUC(𝑥|𝑦) is the AUC with class 𝑥 as the positive class and class 𝑦 325 

as the negative class. 326 

5. Results and Discussion 327 

At first, the statistical metrics of the regression aspect was computed as shown in Table 3. The results 328 

reveal excellent results during both the periods, thus affirming its superiority over traditional machine 329 

learning models based on previous works conducted in NSW. Deo and Şahin, (2015) used Artificial 330 

Neural Networks (ANN) and climatic indices to forecast monthly SPEI at five NSW locations and 331 

achieved R2 values of ~0.99. However, the present study did not use climatic indices as predictors and 332 

achieved similar results, thereby showing the benefits of using deep learning model over traditional 333 

machine learning models. Dikshit et al. (2020b) used Random Forests model to predict SPEI 1 and SPEI 334 

3 for NSW region, and the R2 value achieved was 0.73 and 0.76 respectively. Also, Deo et al. (2017a) 335 

used a multivariate adaptive regression splines (MARS) model to forecast SPI for five different regions 336 

of NSW, and the R2 value achieved ranged from 0.971-0.987. The forecasted results are examined in 337 

two different ways: a) Spatio-temporal variation b) Variation in terms of drought categories. As it is not 338 

feasible to depict the variation for every month, we highlight the spatio-temporal variation for the 339 

summer months (December – January – February) from 2016-2018. As summer months are a period 340 

of high temperature and low rainfall, and an analysis for this period can be considered as a good 341 

estimate of the forecasting abilities for other time periods, either based seasonally or on months. The 342 

variation at 1 month lead time between original and predicted SPEI 1 (Figure 5) and SPEI 3 values for 343 

NSW region are illustrated in Figure 6.  344 

Table 4. Statistical metrics of LSTM model under training and validation period. 345 

Predicting 
Training Validation 

R2 RMSE MAE R2 RMSE MAE 

SPEI 1 0.998 0.013 0.012 0.996 0.018 0.01 

SPEI 3 0.997 0.016 0.014 0.992 0.027 0.024 

 346 

5.1 Spatio-temporal variation 347 

5.1.1 SPEI 1 values 348 

 349 

The observed SPEI 1 values during December 2015 depict very few regions with extremely dry 350 

conditions towards the south-west part, and the following month shows no drought conditions with the 351 

majority of the region depicting moderately to severely wet conditions. However, situations change in 352 



February 2016, wherein the spatial extent of drought increases and 37.7% of the area comes under 353 

drought. Now, when analysing the summer of 2017, the month of December depicts few regions (5.8%), 354 

particularly, the northern-part under drought, but the drought increases towards severely dry 355 

conditions in January engulfing the south-eastern region and then further intensifying in February with 356 

the drought regions more towards the central and northern part of NSW. Similarly, in the summer of 357 

2018, the month of December showed no drought conditions, whereas January depicted areas with 358 

severe drought conditions, and the effect decreased in February. This would help to understand how 359 

the drought propagates within a region on a monthly scale. Now, on comparing with the predicted SPEI 360 

1 maps, the spatial variation in terms of values and categories is similar to observed maps. Also, the 361 

number of pixels under drought conditions (SPEI<-1) is nearly 3%-5% more across the same months 362 

and under non drought conditions (SPEI>1) are less than the observed. This can be considered as a 363 

good step, as over prediction to a certain extent is good and could be helpful for policy makers. Similarly, 364 

for December 2017, the SPEI 1 values indicated no indication of drought and can be considered as near 365 

normal condition. However, in January 2018, the reduction in rainfall lead the western part of the area 366 

to come under severe drought. Also, almost 80% of the region was under some sort of drought category. 367 

The situation eases a little in February 2018, with the north and north-western part of the region under 368 

moderately dry condition. When comparing with the predicted images for the summer of 2018, the 369 

month of December leads to consistent results with the observed, and so is the case with the month of 370 

January. However, for February 2018, the area under drought is over predicted by 8% with some pixels 371 

depicting severely dry conditions.  372 



 373 

Figure 5. Spatial variation of SPEI 1 among the DJF (December – January – February) months of 374 

2016-2018. The first column depicts the observed SPEI 1 values, second column depicts the predicted 375 



index values. In the third column depict the probability (cumulative distribution function) plots of 376 

observed and forecasted values – of SPEI 1.  377 

5.1.2 SPEI 3 values 378 

For SPEI 3 case, the index value for December 2015 depicted the western part to be under severe 379 

drought (5.4%), with the conditions easing in the following month, with no region under drought. 380 

However, the month of February depicted very few pixels under drought (1.9%) in the northern part. 381 

The month of December in 2016 depicts most of the region as under near-normal conditions, whereas 382 

certain regions exhibited moderately dry conditions in the northern part, with few pixels highlighting 383 

severely dry conditions. The drought intensity for severely dry condition was less, and generally, the 384 

area was not under drought influence. Thereafter, January 2017 highlighted more drought areas with 385 

more regions exhibiting moderately-dry and severely-dry conditions, especially towards the south-386 

eastern part. Further, in February 2017 the drought conditions expand to more areas, with more regions 387 

depicting moderately and severely dry conditions. Now, when we compare this with the predicted 388 

images, the range of index values as per drought class is generally same across summer of 2017, however 389 

the number of pixels under drought were over estimated by 4.5% in December 2016, under predicted in 390 

January and February 2017 by 3.7% and 5.6% respectively. Also, when analysing in terms of clusters for 391 

drought pixels, the variation is not significant enough and follows same trend.  392 

The index values during December 2017 depict near normal conditions across the state, which leads to 393 

moderately dry conditions for January 2018, especially in the northern part of NSW and the drought 394 

intensifies to severe category and moves to further west in February 2018. On comparing it with the 395 

predicted images, the month of December 2017 shows similar conditions, and as the area was in near 396 

normal conditions, the variation in index value per pixel is not important. Further, for January 2018 397 

the number of pixels under drought is more than observed, but the values have been over predicted by 398 

6.4%, with a few of the pixels (2.4%) depicting moderately dry conditions, when the observed did not 399 

depict any drought. Similar is the condition for February 2018, which was under predicted by 3.6%.  400 



 401 

Figure 6. Spatial variation of SPEI 3 among the DJF (December – January – February) months of 402 

2016-2018. The first column depicts the observed SPEI 3 values, second column depicts the predicted 403 



SPEI 3 values. Legends represent drought index values. The third column depicts the probability 404 

(cumulative distribution function) plots of observed and forecasted SPEI 3 values. 405 

To examine the importance of the LSTM architecture, annual rainfall and annual mean temperature 406 

anomaly maps are shown in Figures 7(a) and 7(b), with the baseline period as 1961-1990. For forecasting 407 

purposes, ML models learn uniform weights, whereas LSTM models learn variable weights across time 408 

steps. As the figure suggests, a significant variation in rainfall and temperature anomalies is observed 409 

during the summer periods of 2016-2018. This phenomenon necessitates the use of decay over weights 410 

across periods. Hence, the use of LSTM is encouraged to learn decayed weights. The forget gate in LSTM 411 

ensures that the model can effectively capture the decay weighted lag–lead sequence relationship 412 

without the vanishing gradient problem. 413 

 414 



 415 

Figure 7. Spatial anomaly maps of (a) rainfall; and (b) mean temperature during the summer months 416 

of 2016-2018 417 

Further, on examining the variation between SPEI 1 and SPEI 3, an interpretation study was conducted 418 

to understand the difference among the weights learned by variables. The results indicate that in case 419 

of SPEI 1, the most dominant factor was rainfall, however, temperature was most dominant for SPEI 3. 420 

The influence of vapour pressure and cloud cover were relatively similar for both the scenarios, but were 421 

more influential than PET. This suggests that cloud cover and vapour pressure also play a key role, and 422 

their inclusion can improve forecasting results. Further, in order to examine the spatial variation 423 

between variables and drought index, a Convolutional Neural Network based LSTM (CNN-LSTM) 424 

architecture, would we well suited. The recent study by Ham et al. (2019) to forecast El Niño/Southern 425 

Oscillation (ENSO) index used such architecture to identify the hotspots of the variables, along with 426 

forecasting at multi-year lead times. 427 

5.2 Drought Classification 428 

The above discussion reflects how the drought movement occurs at monthly scales and also during 429 

different summer seasons. The key to understand the difference is the spatial variability depicting the 430 

index values and also the drought category it represents. When we analysed the observed and predicted 431 

images, there was minor variation in the index values, but represented different drought classes. For 432 

SPEI 1 case, the observed value of February 2017 showed a maximum index value of -1.99 which is the 433 

borderline for severely dry condition, however, for the same period, the predicted value depicted 434 



maximum value of -2.08, which comes under severely dry condition. Similar was the case for February 435 

2018, wherein the predicted value depicted a higher drought class as compared to the observed value. 436 

This was also the case for SPEI 3 condition, December 2016, observed as severely dry condition whereas 437 

predicted fell under moderately dry condition. Therefore, there can be few scenarios where statistics 438 

may not be able to reveal drought class, due to the proximity between them.  439 

The variation was analysed by computing the micro average of ROC based AUC curves. The results 440 

reveal that under both SPEI 1 and SPEI 3; the model achieved a value of 0.83 and 0.82, respectively 441 

(Figure 8). This proximity along the borderline of drought category has led to slightly lower values of 442 

AUC curves. However, when considering all the classes, the micro average from the present study 443 

outperforms the previous studies. This suggests that even though the statistical metrics provide 444 

excellent results, the understanding of droughts cannot be based only on such metrics, instead it should 445 

be based on the objective of the study. Moreover, the results achieved in the present work can be 446 

considered quite acceptable given that a formidable mitigation strategy for 1 month lead time can be 447 

developed. 448 

 449 

Figure 8: ROC-AUC curves of different drought categorization classes (a) SPEI 1, and (b) SPEI 3.6. 450 

Conclusion 451 

Droughts are one of the most destructive hazards causing severe economic and social distributions. One 452 

of the most effective ways to understand droughts is to improve the existing forecasting ability. As the 453 

onset of drought is not clearly defined, forecasting of droughts make a compelling argument to improve 454 

the models providing better mitigation strategies. The present work uses a deep learning approach, 455 

namely LSTM, which has proven to be more effective for forecasting purposes compared to traditional 456 

machine learning approaches. The study forecasts SPEI drought index for New South Wales region 457 

determined using the global climatological dataset (CRU TS v 4.03) using seven different meteorological 458 

variables also collected from CRU dataset.  The predictor and variables were collected from 1901-2018 459 

of which 1901-2010 were used as training data and then validated from 2011-2018. Apart from 460 

understanding the variation in pixel values, it is equally important to analyse under different drought 461 

characteristics, therefore a multi class ROC-AUC curves was prepared to understand the changes in 462 

terms of drought classes. In the present work, we focussed towards examining the model in terms of 463 

drought categories, which could be essential for mitigation purposes, especially when studying for a 464 

(a) (b) 



large area. This is the first study in the use of a deep learning approach utilizing a global climatological 465 

dataset for drought forecasting. We strongly believe that the LSTM model has the forecasting capability 466 

to forecast droughts across different dataset type and drought indices, subsequent studies would be 467 

conducted to assert the findings. The findings from the study are as follows: 468 

 The performance metrics for both SPEI 1 and SPEI 3 depicted excellent results highlighting its 469 

significance over other models. The R2 value for SPEI 1 and SPEI 3 achieved values of and 0.998 470 

and 0.996 respectively.  471 

 However, the statistical metrics may not always reflect the variation and therefore a spatial 472 

analysis for the summer of 2017 and 2018 was conducted to examine how the index values vary 473 

at pixel level and across the summer seasons.  474 

 The micro average value of ROC-AUC curves depicted value of 0.83 and 0.82 for SPEI 1 and 475 

SPEI 3 case, respectively. This could be a reflective of the threshold levels of drought categories, 476 

as few months depicted index values at the borderline. However, more stacked deep neural 477 

networks model would be built in the future, to improve our findings, especially for pixels 478 

representing values at the threshold point. 479 

The applicability of the LSTM architecture needs to be tested in different climatic conditions to examine 480 

how well it captures the interrelationship between variables and drought index. The future works would 481 

also look towards involving climatic variables to forecast at longer time scales using deep learning 482 

techniques. It’s well accepted that the use of deep neural networks would provide better forecasting 483 

results (Reichstein et al. 2019), the important aspect would be to interpret the model and provide a 484 

more in-depth explanation of the results (Dikshit et al. 2020c). The results from this study are useful 485 

for drought mitigation purposes, bushfires and for policy makers. The future study would look towards 486 

improving the LSTM architecture and use of different drought indices at both short-term and long-term 487 

drought scales, which would further enhance our understanding. 488 
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