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Abstract: In recent years, landslide susceptibility mapping has substantially improved with
advances in machine learning. However, there are still challenges remain in landslide
mapping due to the availability of limited inventory data. In this paper, a novel method
that improves the performance of machine learning techniques is presented. The
proposed method creates synthetic inventory data using generative adversarial
networks (GANs) for improving the prediction of landslides. In this research, landslide
inventory data of 156 landslide locations were identified in Cameron Highlands,
Malaysia, taken from previous projects the authors worked on. Altitude, slope, aspect,
plan curvature, profile curvature, total curvature, lithology, land use and land cover,
distance from the road, distance from the stream, stream power index, sediment
transport index, terrain roughness index, topographic wetness index and vegetation
density are geo-environmental factors considered in this study based on suggestions
from previous works on Cameron Highlands. To show the capability of GANs in
improving landslide prediction models, this study tests the proposed GAN model with
artificial neural network (ANN), support vector machine (SVM), decision trees (DT),
random forest (RF) and bagging ensemble models with ANN and SVM models. These
models were validated using the area under the receiver operating characteristic curve
(AUROC). The DT, RF, SVM, ANN and Bagging ensemble could achieve the AUROC
values of (0.90, 0.94, 0.86, 0.69 and 0.82) for the training; and the AUROC of (0.76,
0.81, 0.85, 0.72 and 0.75) for the test, subsequently. When using additional samples,
the models achieved the AUROC values of (0.92, 0.94, 0.88, 0.75 and 0.84) for the
training and (0.78, 0.82, 0.82, 0.78 and 0.80) for the test, respectively. Without the use
of additional samples created by the GAN model, SVM achieved the highest AUROC
of 0.85, whereas ANN had the lowest AUROC of 0.72. RF and SVM achieved AUROC
of 0.82 when the additional samples were used for training these models. Using the
additional samples improved the test accuracy of all the models except SVM. As a
result, in data-scarce environments, this research showed that utilizing GANs to
generate supplementary samples is promising because it can improve the predictive
capability of common landslide prediction models.
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Abstract 13 

 In recent years, landslide susceptibility mapping has substantially improved with advances in 14 

machine learning. However, there are still challenges remain in landslide mapping due to the 15 

availability of limited inventory data. In this paper, a novel method that improves the 16 

performance of machine learning techniques is presented. The proposed method creates 17 

synthetic inventory data using Generative Adversarial Networks (GANs) for improving the 18 

prediction of landslides. In this research, landslide inventory data of 156 landslide locations 19 

were identified in Cameron Highlands, Malaysia, taken from previous projects the authors 20 

worked on. Elevation, slope, aspect, plan curvature, profile curvature, total curvature, lithology, 21 

land use and land cover (LULC), distance to the road, distance to the river, stream power index 22 

(SPI), sediment transport index (STI), terrain roughness index (TRI), topographic wetness 23 

index (TWI) and vegetation density are geo-environmental factors considered in this study 24 

based on suggestions from previous works on Cameron Highlands. To show the capability of 25 

GANs in improving landslide prediction models, this study tests the proposed GAN model with 26 

benchmark models namely Artificial Neural Network (ANN), Support Vector Machine (SVM), 27 

Decision Trees (DT), Random Forest (RF) and Bagging ensemble models with ANN and SVM 28 

models. These models were validated using the area under the receiver operating characteristic 29 
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curve (AUROC). The DT, RF, SVM, ANN and Bagging ensemble could achieve the AUROC 30 

values of (0.90, 0.94, 0.86, 0.69 and 0.82) for the training; and the AUROC of (0.76, 0.81, 0.85, 31 

0.72 and 0.75) for the test, subsequently. When using additional samples, the same models 32 

achieved the AUROC values of (0.92, 0.94, 0.88, 0.75 and 0.84) for the training and (0.78, 33 

0.82, 0.82, 0.78 and 0.80) for the test, respectively. Using the additional samples improved the 34 

test accuracy of all the models except SVM. As a result, in data-scarce environments, this 35 

research showed that utilizing GANs to generate supplementary samples is promising because 36 

it can improve the predictive capability of common landslide prediction models.  37 

Keywords: Landslide susceptibility, Inventory, Machine learning, Generative adversarial 38 

network, Convolutional neural network, Geographic information system 39 

1. Introduction 40 

Natural hazards are major challenges worldwide, and many countries are spending a significant 41 

amount of their yearly budget to control and prevent them. Landslides pose a serious risk to 42 

human habitats. The risk of landslides is a major barrier to agricultural and urban development 43 

practices. In addition, ongoing urbanization is placing vast demands on infrastructure and 44 

escalating the threat to property and human lives. As a result, landslide hazard assessment has 45 

become a major step in planning the most suitable for risk mitigation measures. Experts 46 

frequently use the maps generated from this assessment to identify regions where thorough in-47 

situ studies should be conducted. Landslide hazard assessment is a complex task that includes 48 

comprehension of the science of geotechnics, geomorphology, hydrology and statistics  (Glade 49 

et al., 2012). This objective has motivated computational modeling studies, particularly the 50 

evaluation of landslide susceptibility. Statistical and physical models are often used to 51 

accomplish this task (Formetta et al., 2014). 52 
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Physical-based models combine susceptibility analysis with soil and rock mechanics, creating 53 

a physical basis for this method (Wang et al., 2019). They are appropriate at a local scale such 54 

as single slope, basin/ catchment and requires site-specific geotechnical data (Park et al., 2019). 55 

Generally, the infinite slope model is used in the analysis of slope stability with hydrological 56 

or earthquake models. Although reliable geotechnical parameters are essential for such models, 57 

lack of geotechnical data throughout a large scale area and the expensiveness remain the main 58 

obstacles in the physical-based models (Lee et al., 2014). Various landslides studies and 59 

assessments were carried out to develop landslide-prone areas in Malaysia (Fanos and Pradhan, 60 

2019; Mezaal and Pradhan, 2018; Pradhan and Lee, 2010; Sameen et al., 2020). 61 

Statistical models, also known as empirical models, use landslide inventories and other 62 

conditioning factors (e.g. terrain and land use), which can be extracted at large scales using 63 

remote sensing data and Geographical Information Systems (GIS). Such techniques have 64 

gained popularity in the field of landslide susceptibility assessment, especially when addressing 65 

the challenge of landslide mapping of prone areas at large scales, where enough geotechnics 66 

information is not available to perform physical-based models (Goetz et al., 2011).These 67 

models have also been supported by the latest progress in the availability and accessibility of 68 

remote sensing-based derived information, such as topography, land cover and precipitation 69 

products, thereby improving the application of the method at large scales.  70 

Several scholars have evaluated various statistical models to assess landslide susceptibility 71 

(Akbar and Chen, 2018; Braun et al., 2018; Ciurleo et al., 2017; Goetz et al., 2015; Huang and 72 

Zhao, 2018; Kavzoglu et al., 2019; Süzen and Doyuran, 2004; Xiao et al., 2019; Zêzere et al., 73 

2017). Early approaches to modeling landslide susceptibility are based on field investigations. 74 

Such techniques, however, are costly and site-specific, and they heavily involve extensive 75 

expertise in geology and geomorphology. Statistical approaches of landslide susceptibility 76 

modeling have become very popular during the last two decades. Recently, several scholars 77 
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including (Kawabata and Bandibas, 2009; Lee and Sambath, 2006; Mandal and Mondal, 2019; 78 

Pradhan, 2013) evaluated several statistical models, such as frequency ratio (FR), logistic 79 

regression (LR), artificial neural network (ANN), certainty factor (CF), analytical hierarchy 80 

process (AHP) and fuzzy logic (FL). They suggested that ANN-, CF and FR-based FL are the 81 

most reliable techniques in assessing and predicting landslide susceptibility, at least for their 82 

case study. Regardless of the type of models and where they belong (statistical or machine 83 

learning), they are good for landslide susceptibility assessment of large areas. Statistical models 84 

can also be evaluated quantitatively at lower costs than evaluating a physical model. In 85 

addition, these models are computationally more efficient than physical models because the 86 

latter require simulations with numerous iterations to determine some geotechnical parameters 87 

that are used to prepare the susceptibility products. However, they have certain limitations, 88 

which include difficulties in explaining the results of the black box models and over-fitting in 89 

the case of limited training samples. 90 

2. Related Works 91 

Landslide susceptibility mapping has improved substantially during the last decade because of 92 

new data processing techniques such as sampling methods, machine learning models, and 93 

validation measures. Some studies have focused on sampling strategies, selection of training 94 

samples and addressing the effects of incomplete inventory datasets. In landslide susceptibility 95 

mapping, training data play a critical role in determining the accuracy and generalization of the 96 

model. The size of the training data has a significant effect on the accuracy of the susceptibility 97 

model. For example, in the training data under some sample threshold limits, Hussin et al. 98 

(2016) showed that model performance was very low, while the use of a large number of 99 

landslides above the threshold created a plateau effect, with no increase in model performances. 100 

Tsangaratos and Ilia (2016) also reported that the size of training data influences the prediction 101 

accuracy when using models such as LR and Naive Bayes. 102 
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Several studies have attempted to improve landslide susceptibility models by proposing new 103 

factors into the process including conditioning factors optimization (Al-Najjar et al., 2019; 104 

Canoglu et al., 2019; Dou et al., 2015; Kavzoglu et al., 2015; Kornejady et al., 2018; Samia et 105 

al., 2018; Soma et al., 2019). Moreover, model parameterization and integration methods have 106 

been studied to improve landslide susceptibility mapping. Statistical and machine learning 107 

models are often affected by the selection of proper hyper-parameters for a specific case study 108 

(Can et al., 2019; Feizizadeh et al., 2017). Moreover, the model’s integration has also been 109 

active research for improving the landslide susceptibility in the last few years (Kalantar et al., 110 

2018). Examples of model integration studies include ensemble models (Bragagnolo et al., 111 

2020; Kadavi and Lee, 2018) and integration of data-driven and knowledge-based models 112 

(Ashournejad et al., 2019; Yan et al., 2019; Zhang et al., 2019).  113 

Studies on sampling strategies for landslide susceptibility mapping have been active in recent 114 

years. Hussin et al. (2016) assessed different landslide sampling strategies (scarp centroid, 115 

points populating the scarp and entire scarp polygon) in a grid-based statistical model. These 116 

strategies achieve the highest performance when sampling shallow landslides as grid points 117 

and debris flow scarps as polygons. Yilmaz and Ercanoglu (2019) discussed the necessity of 118 

studying the selection of data mining techniques; they emphasized that sampling methods such 119 

as polygon features or seed cells representative pre-failure settings appear to be more genuine 120 

in obtaining truthful maps than other methods. Lai et al.  (2019) also explored the influence of 121 

sampling strategies for improving landslide susceptibility mapping.  122 

In addition to the size of training data and the sampling strategy, studies have investigated 123 

various ways of selecting training samples. Conoscenti et al. (2016) performed landslide 124 

susceptibility mapping through investigating the impact of landslide absence (negative 125 

samples) on the models; they extracted the landslide absence using randomly distributed circles 126 

that have a diameter equivalent to the mean width of the landslide source areas. Moreover, the 127 
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individual grid cells were randomly distributed to distinguish the non-landslide zones (absence 128 

selection). Experiments from this study based on multivariate adaptive regression splines 129 

showed that absences selection using random circles are significantly better than the other 130 

method when learning and validation samples were extracted from the same area, and no 131 

significant difference was observed when testing the models outside the training area. Kalantar 132 

et al. (2018) evaluated the impact of landslide samples varieties on the SVM, LR and ANN 133 

methods; their investigation demonstrated that randomness in the training sample selection has 134 

a significant effect on the susceptibility models. The outcome showed that, in the section of 135 

training samples, the LR model is less sensitive than the SVM and ANN models. Zhu et al. 136 

(2019) proposed a method based on similarity sampling for absence selection; their 137 

experiments on a common machine learning models showed that this new method 138 

outperformed the existing methods, such as buffer control and target space exteriorization. 139 

Hong et al. (2019) assessed the impact of absence data selection on the RF model. Aktas and 140 

San (2019) developed a new automatic sampling method based on a two-level random 141 

sampling.  142 

The impact of landslide inventory incompleteness on susceptibility mapping was also carried 143 

out in recent studies. Du et al. (2020) assessed landslide susceptibility in Tibet Chinese 144 

Himalayas, with a multinomial logistic regression model with reported average AUC of 0.867; 145 

however, there were some uncertainties in the landslide-prone areas defined by their AHP 146 

model. Steger et al. (2016)  assessed the impact of spatially heterogeneous completeness of 147 

landslide information on statistical landslide susceptibility models (e.g. logistic regression) by 148 

artificially introducing two different mapping biases into available landslides and synthetically 149 

generated landslides. Although they reported AUROCs greater than 0.85, they suggested the 150 

method needed to be evaluated with other different models. In another study, Lee et al. (2018) 151 

employed optimized data mining and statistical methods for various scenarios considering 152 
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limited inventories. In their model, SVM achieved the AUC of 0.85 when either the full or 153 

limited landslide inventories were used; however, generating additional inventories was not 154 

considered in their study. Steger et al. (2016) suggested that models directly associated with 155 

inventory-based incompleteness should be rejected regardless of their performance. 156 

Furthermore, they proposed using mixed-effects modeling if systematically missing landslide 157 

information can be attributed to a spatial variable (Steger et al., 2018). 158 

The aforementioned studies indicate several ways to improve landslide susceptibility models, 159 

such as data-related methods and others that target the model construction and training process. 160 

This study aims to develop a new method for additional landslide sample creation with 161 

generative adversarial networks (GANs) which could be useful in the inventory-scarce 162 

environment. Several machine learning models, such as ANN, SVM, DT, RF and Bagging 163 

ensemble, with ANN and SVM as base classifiers, are used to evaluate the new method of 164 

landslide susceptibility mapping. These methods are compared in a case study in Cameron 165 

Highlands, Malaysia.  166 

3. Study area and materials 167 

3.1. Study area 168 

The Cameron Highlands district, located in the state of Pahang, Malaysia (Fig. 1), was selected 169 

as a study area because it often experiences landslides and flash floods. These events are caused 170 

by heavy and prolonged rainfall causing significant damages to properties. In this tropical 171 

mountainous area, landslides are common as shown by government reports and past studies by 172 

(Matori and Basith, 2012; Pradhan and Lee, 2010). 173 

From the geomorphology aspect, the region is characterized as hilly, and altitudes are in the 174 

range of 840–2110 meters (Sameen and Pradhan, 2019). The primary drainage characteristics 175 

of the area consist of two rivers, namely, the Bertam and the Telom. Considerable types of 176 
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vegetation in Cameron Highlands include tropical forest and tea plantations, flower fields and 177 

temperate crops. Concerning lithology, the greater part of the region contains mega crystal 178 

biotite granites and phyllite as well as some schists layers (Pradhan and Lee, 2010). The area 179 

has a fair climate with an average annual rainfall starting from March to May and from 180 

November to December. The average nightly temperature of the study area is 14 °C, whereas 181 

the daily temperature reaches 24 °C. Approximately 8.0% (55 km²) of the area is classified as 182 

cropland, 86% (600 km²) is categorized as cultivated area, and 4.0% (27.5 km²) represents as 183 

residential areas. 184 

3.2. Landslide inventory map 185 

Data-driven landslide susceptibility assessment requires landslide inventories for model 186 

training and validation. Landslide inventory can be prepared using field investigations, 187 

historical landslide events from news and government reports and remote sensing data analysis. 188 

In this investigation, landslide inventories were taken from the study compiled by (Mezaal and 189 

Pradhan, 2018; Pradhan and Lee, 2010; Sameen et al., 2020). Overall, 156 landslides were 190 

identified and verified in the study area.  191 

3.3. Landslide conditioning factors 192 

Fifteen conditioning factors including elevation, slope, aspect, plan curvature, profile 193 

curvature, total curvature (Fig. 2a-f), lithology, LULC, distance to road, distance to river, SPI, 194 

STI (Fig. 2g-l), TRI, TWI and vegetation density (Fig. 2m-o) were selected as geo-195 

environmental factors because they have been widely used in landslide susceptibility studies 196 

(Al-Najjar et al., 2019; Can et al., 2019; Canoglu et al., 2019; Huang and Zhao, 2018; Lee and 197 

Sambath, 2006). The related data were obtained over the study area on 15 January 2015 by 198 

utilizing a light detection and ranging (LiDAR) airborne system with a specification of 25,000 199 

HZ pulse frequency rate and a density of 8 points/m². Then, a one-meter spatial resolution of 200 
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the digital elevation model was generated after removing non-ground points. Non-ground point 201 

removal was performed utilizing multi-scale curvature and inverse distance weighted 202 

interpolation approaches via ArcGIS Pro 2.4 software. 203 

This study used six geomorphological factors, i.e. total curvature, plan curvature, profile 204 

curvature, slope, elevation and slope aspect in the susceptibility mapping given that landslides 205 

are influenced by terrain type. The elevation was included because it affects the extent of rock 206 

weathering and is used by many scholars for landslide susceptibility assessment (Ayalew and 207 

Yamagishi, 2005). The elevation of the investigation region was in the range from  690 to 1487 208 

meters. The slope is another important factor, often included in landslide susceptibility studies 209 

(Kamp et al., 2008). The slope values ranged from 0° to 78.88°. We also included the slope 210 

direction (also known as slope aspect) because its task is to control concentrations of 211 

topographic wetness affected by precipitation and solar radiation. In addition, plan, profile and 212 

total curvature were also used (Ozdemir and Altural, 2013). In general, curvature affects slope 213 

instability. Plan curvature represents the curvature when it is vertical to the path of the highest 214 

slope. Profile curvature is parallel to the slope and designates the maximum slope orientation. 215 

It affects the speeding up and slowing down of stream movement (Lee et al., 2004). The total 216 

curvature is formed by combining the plane and profile curvatures (Romer and Ferentinou, 217 

2016). If the surface is convex, the curvature is considered as positive; if it is concave, then it 218 

is considered as negative. The value of zero reveals a linear surface  (Al-Najjar et al., 2019).  219 

Lithology and LULC were also used as conditioning factors for the preparation of landslide 220 

susceptibility mapping. Lithology is important for landslide susceptibility assessment studies 221 

because it affects the nature and system of landslides as rocks vary in form of mineral structure 222 

besides internal formation (Kornejady et al., 2017). The lithology types in the study area are 223 

mostly granite. The study area also contains schist, phyllite and slate types of lithology 224 

(Pradhan and Lee, 2010). Human activities are also considered influential to landslides because 225 
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they affect patterns of land use and land cover. The LULC map of the study area obtained from 226 

the Department of Survey and Mapping, Malaysia which shows that the area contains forest, 227 

agricultural areas, urban areas, water bodies, transportation, barren lands and others (industrial, 228 

infrastructure and utilities, institutions and community facilities). Also, the distance to the road 229 

and river were included in our analysis.  230 

Moreover, four hydrological factors were used in this study. These factors are topographic 231 

wetness index (TWI), sediment transport index (STI), stream power index (SPI) and terrain 232 

roughness index (TRI). SPI represents the movement of solid particles when gravity plays its 233 

role on deposits (Rotigliano et al., 2012). STI represents slope failure and deposition. TRI 234 

describes the coarseness of the local terrain which affects the topographic and hydrological 235 

processes in the development of landslide occurrence. TWI reflects the direction and slope of 236 

the flow, which is considered as a measurement for mastering the hydrological processes. 237 

These factors were calculated using the following formulas (Yilmaz, 2009). Finally, vegetation 238 

density was also used as a landslide conditioning factor. The vegetation density was calculated 239 

using the normalized difference vegetation index  variable (Pradhan, 2013) extracted from 240 

Landsat 8 images. A vegetation density map was classified under four types, i.e. high-density 241 

vegetation, medium density, poor density and non-vegetation. 242 

SPI = As ×  tanβ                               (1) 243 

STI = (
As

22.13
)

0.6

× (
sinβ

0.0896
)

1.3

  (2) 244 

TRI =  √𝐴𝑏𝑠 (max2 − min2)         (3) 245 

TWI = ln (
As

tanβ
)                              (4) 246 
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where, 𝐴𝑠 is defined as a specific area of the catchment (m²/m); (𝛽) in radian, is a slope gradient 247 

(in °); min and max values represent the highest and lowest number of rectangular cells within 248 

nine DTM windows, respectively. The definition of the specific catchment is the area of the 249 

slope in the upper slide per unit of the length of a contour, which is the area of cells divided by 250 

the size of the cell (Kalantar et al., 2018).  251 

4. Methodology 252 

4.1. Overview 253 

The proposed method creates synthetic inventory data using GANs for improving the 254 

prediction of landslides. Fig. 3 illustrates the overall workflow of the current study. First, a 255 

landslide inventory of 156 landslide locations and 15 conditioning factors were set as inputs 256 

for the models. The inventory dataset was split into 70% of training and 30% of testing samples. 257 

Then, five machine learning models (e.g. DT, RF, SVM, RF and Bagging ensemble) utilized 258 

to evaluate the landslide susceptibility without additional samples. Thereafter, the GAN 259 

method was used to create additional training samples with the existing inventory dataset; these 260 

new samples were combined with the original training dataset and used to train the same 261 

machine learning models again. Once the models were trained, they were tested with the same 262 

test dataset used in the first case (without additional samples). Finally, the landslide 263 

susceptibility maps were produced by the proposed models. Each map was classified into five 264 

susceptibility categorical classes. These models were then validated and assessed using the area 265 

under the receiver operating characteristic curve (AUROC). 266 

4.2. Description of machine learning techniques 267 

The following subsections describe the machine learning models used in this study. 268 

4.2.1. ANN model 269 
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ANNs exhibit advantages over traditional computational methods (e.g. rule-based) because the 270 

model does not require a straightforward practice to estimate desired yields (Jain et al., 271 

1996).After deciding on the number of hidden layers and the number of processing units in an 272 

individual layer, the ANN starts learning from the training samples (Aditian et al., 2018).  273 

4.2.2. SVM model 274 

The goal of SVM models is to find the widest margin between two classes in feature space, by 275 

a hyperplane (Vapnik, 1995). In landslide susceptibility, the aim is to discriminate between 276 

susceptible (1) and not susceptible (−1) pixels. Its main advantages include mapping the data 277 

to a high dimensional space where it is easier to classify with linear decision surfaces, also 278 

reformulating problems so that data is mapped implicitly into this space.  279 

4.2.3. Decision tree (DT) model 280 

The DT model is a supervised and nonparametric machine learning technique that is operable 281 

without prior knowledge about data distribution, with easy interpretation and capability to 282 

model as well as it handles the reduction of data complexity and the relationships between 283 

variables. Compared to other models, it is a flexible, fast, and robust algorithm that can be used 284 

to control the nonlinearity between the input features and discrete classes so that nonlinear 285 

relationships between parameters do not affect tree performance. Moreover, DT models are 286 

simple to construct and clarify for decision-makers (Kadavi et al., 2019; Saito et al., 2009; 287 

Yeon et al., 2010). 288 

 4.2.4. Random forest (RF) model 289 

RF is a group of DTs that form an ensemble learning model used for classification and 290 

regression problems (Liaw and Wiener, 2002). These models are effective for prediction 291 

because they utilize the strength of each tree and their correlations and less sensitive to over-292 

fitting problems. The difference between RF and DT is that a decision tree is built on a whole 293 



13 

 

dataset, utilizing all the variables of interest, while a random forest randomly adopts 294 

observations and specific variables to construct multiple decision trees from, and then averages 295 

the results. In the present study, samples for landslide and non-landslide events were selected 296 

to construct the classification tree (30% of the samples were kept aside from the training and 297 

500 nodes were set as a favorite value).  298 

4.2.5. Bagging ensemble model 299 

In machine learning, several classifiers sometimes are combined and trained to boost the 300 

prediction competence of a model (Polikar, 2012). Several combination methods, such as 301 

Bagging, AdaBoost, multi boost and stacking can be used such as averaging or majority voting 302 

(Breiman, 1996; Freund and Schapire, 1995; Kadavi and Lee, 2018; Webb, 2000). In landslide 303 

susceptibility, Bagging has shown superiority over the other methods. Bagging, which is also 304 

known as bootstrap aggregating, is a method of sub-dataset generation and combining learners. 305 

In this study, the bootstrap samples were employed to build base learners utilizing similar 306 

classification approaches, such as SVM and ANN. These based learners were then united by 307 

the dominant voting technique. 308 

4.3. Additional data creation with GANs 309 

The GAN which was introduced by Goodfellow et al., (2014) is a type of neural network that 310 

trained in an adversarial pattern to produce novel data mimicking specific divisions or 311 

distributions. Since their invention, numerous upgraded versions of GANs (concerning 312 

firmness of training and perceptual quality) have been developed, including Wasserstein, 313 

conditional, Laplacian pyramid and deep convolutional GANs. GANs have been applied for 314 

the generation of images, image in-painting, semi-supervised learning and image super-315 

resolution in various domains. 316 
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The general design of a GAN consists of two functions (Goodfellow et al., 2014), i.e. a 317 

generator (G) and a discriminator (D) which its functionality is demonstrated in (Fig. 4). In 318 

consideration of a random uniform distribution, the G maps a sample from the data distribution. 319 

Meanwhile, the D is trained to discriminate whether the generated sample has a place in the 320 

genuine distribution of the data. The G and D are generally learned together following game 321 

theory, although they can be learned through other approaches and techniques.  322 

For each duty, a sample from arbitrary noise 𝑧 is created by the 𝐺 to mislead 𝐷. Then, the real 323 

samples are presented by the 𝐷, as well as the samples created by the 𝐺, to categorize the 324 

samples as fake or real. By producing samples that can fool the 𝐷, the 𝐺 is rewarded. By 325 

generating correct classification, 𝐷 is also rewarded. Both tasks are continuously revised until 326 

a Nash equilibrium is obtained. Then, the repetition is paused. More particularly, let 𝐷 (s) be 327 

the likelihood that 𝑠 originates from genuine information (real data) rather than the generator. 328 

𝐺 and 𝐷 play a minimax game with the following value function (Goodfellow et al., 2014).   329 

min
G

max
D

V(D, G) = Es~pdata(s)[logD(s)]  + Ez~pz(z)[log(1 − D(G(z)))]      (5) 330 

4.4. Validation of susceptibility maps 331 

For a given set of models, the validation was tested by calculating the area under the receiver 332 

operating characteristic curve (AUROC). The inventory dataset was split into 70% of training 333 

and 30% of testing samples. The ROC was created by plotting the sensitivity of the model 334 

versus 1-specificity. The values of AUROC ranged from 0.5 to 1.0, where a high value 335 

indicates the superiority of a model.  336 

 337 

5. Results 338 

5.1. Application of RFs in selecting factors for modeling 339 
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This study applied RFs to remove irrelevant factors from the analysis. The model was used 340 

with 180 base estimators and the entire inventory dataset. After the model was trained, the 341 

importance values of the 15 factors along with the standard deviation values were computed. 342 

Table 1 shows the results of this analysis. The results indicate that the slope factor has the 343 

greatest importance value (0.178), followed by LULC (0.171) and aspect (0.125). Most of the 344 

landslides have occurred in moderate to high steep areas (slope > 18°). This characteristic 345 

allowed the model to distinguish slides from non-slide pixels easily. Similarly, past landslides 346 

have occurred in certain land use areas, such as forest, agriculture and barren lands. Schist 347 

bedrock is more frequently exposed to slopes facing north through the southwest. The 348 

remaining factors, except SPI and STI, also have significant contributions to landslide 349 

occurrence. Thus, only SPI and STI were removed from the analysis in this study. 350 

5.2. Evaluation of five applied models (without additional data) 351 

The five models were evaluated by the most commonly used statistical measure, AUROC, 352 

where 70% and 30% of the inventory samples were used as training and test data, respectively. 353 

In all five models, the best values of the hyper-parameters as computed by the grid search over 354 

a specific search space were used, which is shown in (Table 2). Table 3 shows the results 355 

obtained for the studied models. The highest AUROC values for the training and test datasets 356 

were achieved by the RF (0.94) and SVM (0.85) models, respectively. Using either the training 357 

or test dataset, the ANN model has the lowest AUROC value compared with the other models. 358 

The Bagging ensemble model was disadvantageous in the current study when SVM was used 359 

as a base learner. The training and test accuracy of the SVM model was decreased by 0.04 and 360 

0.1, respectively after the Bagging ensemble model was used. Therefore, the SVM model was 361 

a good choice for the study area. However, SVM still faces challenges. For example, it slows 362 

down with additional factors, its predictive capability can be degraded with a smaller training 363 
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sample size and it requires careful optimization of the penalty parameter and the kernel 364 

function. 365 

5.3. Evaluation of applied models (with additional data) 366 

Additional training samples were generated by the proposed GAN model. These new samples 367 

were combined with the original training dataset and used to train the same models again. Once 368 

the models were trained, they were tested with the same test dataset used in the previous section 369 

(Section 5.2). Thus, a fair comparison was conducted to evaluate the proposed GAN model. 370 

Table 4 shows the AUROC values obtained for the five models using the training (with 371 

additional samples) and test datasets. The highest training accuracy was achieved by the RF 372 

model (0.94). The RF and SVM models achieved the same accuracy (0.82) using the test 373 

dataset. ANN has the lowest training accuracy of 0.75. However, ANN is as accurate as of the 374 

DT model on the test dataset.   375 

The additional samples created by the GAN model contributed to increasing the training 376 

accuracy of the five models, except that the RF model that achieved the same accuracy in both 377 

cases. The ANN model gained the greatest benefit from the additional samples as its training 378 

accuracy increased by 0.06. Using the test dataset, the additional samples improved the 379 

predictive capability of the models, except that of the SVM model whose test accuracy was 380 

decreased by 0.03.  381 

By employing the proposed models, five landslide susceptibility maps were generated from the 382 

study area using natural break methods (Fig. 5). Each map was classified into five categorical 383 

classes, i.e. very low, low, moderate, high and very high. The blue indicates a low susceptible 384 

area, whereas red indicates a highly susceptible area.  385 

5.4. Influence of additional samples created by GANs on model performance 386 
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Various numbers of additional samples (5, 10, 20, 30, 40, 50, 100 and 500) were tested to 387 

analyze the influence of the number of generated samples on the performance of the models’ 388 

prediction (Fig. 6). The analysis showed that the DT model performed the best using 10 389 

additional samples on the training dataset, but performed worse using more than 50 additional 390 

samples. On the test dataset, the DT model performed the best with 40 additional samples. 391 

Meanwhile, the SVM model suffered from over-fitting on the training dataset using additional 392 

samples. With 500 additional samples, the SVM model achieved 0.97 AUROC on the training 393 

dataset, but it achieved only 0.72 AUROC on the test dataset. Similar results were observed for 394 

the Bagging ensemble model. With 500 additional samples, the model achieved 0.94 AUROC 395 

on the training dataset and 0.65 AUROC on the test dataset, thereby indicating over-fitting. 396 

Similarly, the ANN model also suffered from over-fitting on the training dataset. It achieves 397 

0.75 AUROC with 5 additional samples and 0.91 with 500 additional samples. Among the 398 

models, the RF model was less sensitive to the number of additional samples. The best accuracy 399 

remained with the 50 additional samples on both datasets. The generation of samples with 400 

GANs does not always guarantee to improve model accuracy. Various tests should be evaluated 401 

before deciding on the final susceptibility models.   402 

6. Discussion 403 

Machine learning has been an effective landslide susceptibility mapping method. However, 404 

with insufficient data, these machine learning models often suffer from generalizing to areas 405 

other than the training area. Especially in landslide susceptibility mapping, gathering inventory 406 

data is expensive, and some areas have not experienced a large number of landslides. 407 

Nevertheless, many studies have attempted to develop models that work with insufficient data. 408 

For example, sampling strategy and validation methods have been validated to address the 409 

challenges of modeling with limited data effectively. Given that randomness of the training, 410 

data selection influences the model performance (Kalantar et al., 2018), sampling strategies 411 
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that avoid model over-fitting to the training data have been proposed (Aktas and San, 2019; 412 

Conoscenti et al., 2016). More often than not, landslide inventory data are incomplete. Such 413 

incomplete data affect the selection of the absence samples. For this problem, Steger et al. 414 

(2016) suggested that models can correlate with landslide inventory incompleteness, and thus, 415 

they should be rejected regardless of their performance. Techniques such as factor 416 

optimization, development of new factors and model ensembling have also been extensively 417 

discussed in the recent literature.   418 

Removing insignificant factors was useful to decrease the impact of model over-fitting due to 419 

the limited training. The RF model showed that SPI and STI were not influential and thus were 420 

removed from the analysis. Estimation of the factors also plays an important role in obtaining 421 

insights into the factors included in the model. Similar to previous studies, the present study 422 

found the slope to be a significant factor. The landslide inventory dataset showed that most of 423 

the landslides have occurred in moderate to high steep areas. A significant number of past 424 

landslides have occurred in certain land use areas, such as forest, agriculture and barren lands. 425 

The results of the RF model were also consistent with the inventory data, where LULC and 426 

aspect were found to be significant. 427 

The evaluation of the models with and without additional samples showed that the proposed 428 

GAN can improve the performance of the susceptibility model. When the training data were 429 

used, the GAN model improved the accuracy of all the models except RF. Some models, such 430 

as ANN, performed better than others. Using the test data contributed to increasing the 431 

accuracy of all the models except SVM. Moreover, the number of additional samples 432 

significantly affected the modeling performance. The DT, SVM and ANN models over-fitted 433 

the training data when a large number of additional samples were included in the training set. 434 

The RF model was less sensitive to the number of additional samples than other models. Thus, 435 

adding newly generated samples to the training set may not always lead to an increase in model 436 
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accuracy, especially on the test data. Therefore, the number of additional samples should be 437 

considered as a parameter and fine-tuned before training any machine learning model.  438 

7. Conclusions 439 

This study addressed the aforementioned problem with a GAN-based method. This model was 440 

used to create an additional training sample with the existing inventory dataset. The proposed 441 

method was evaluated on a dataset taken from Cameron Highlands, Malaysia. Five machine 442 

learning and statistical models were implemented to assess the proposed GAN model. The 443 

outcomes revealed that using additional samples created by the proposed GAN model can 444 

improve the predictive capability of the studied models, except SVM.  445 

Generative models, such as GANs, can be useful for landslide susceptibility mapping, 446 

especially when the training data for the area under study are inadequate. However, the used 447 

models should be carefully analyzed to avoid over-fitting to the training samples. In addition, 448 

the hyper-parameters of the used models can be optimized to improve the overall performance 449 

of the landslide susceptibility models when samples created by generative models are used. 450 

Improvements in landslide susceptibility maps can help in the implementation of land use 451 

planning and the design of landslide mitigation strategies. Improvements in landslide 452 

susceptibility models also contribute towards improving landslide hazard and risk assessment. 453 

The proposed method, therefore, can be a useful tool for engineers, geoscientists and planners. 454 
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Figure caption 694 

Fig. 1. Location of the study area and landslide inventory map 695 

Fig. 2a-f. Maps of landslide conditioning factors: (a) Elevation, (b) Slope, (c) Aspect, (d) Plan 696 

curvature, (e) Profile curvature, and (f) Total curvature. 697 

Fig. 2g-l. Maps of landslide conditioning factors: (g) Lithology, (h) LULC, (i) Distance to road, (j) 698 

Distance to river, (k) SPI, and (l) STI. 699 

Fig. 2m-o. Maps of landslide conditioning factors: (m) TRI, (n) TWI, and (o) Vegetation density. 700 

Fig. 3. Overall workflow used in this study. 701 

Fig. 4. The general architecture of GANs. 702 

Fig. 5. Landslide susceptibility maps produced by proposed (a) DT, (b) RF, (c) SVM, (d) Bagging 703 

ensemble, and (e) ANN models. 704 

Fig. 6. Training and test AUROC values calculated for the five models trained with original training 705 

dataset and additional samples created by GANs. 706 
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Table caption 708 

Table 1. Importance of affecting factors. 709 

Table 2. Optimised parameters of five models and search spaces. 710 
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Table 3. AUROC values of five models using training and test datasets. 711 

Table 4. AUROC values of models using training (with additional samples) and test datasets. 712 
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Factor RF importance value Standard deviation

Slope 0.178 0.022

LULC 0.171 0.012

Aspect 0.125 0.013

Elevation 0.09 0.026

Vegetation density 0.073 0.017

TWI 0.063 0.023

Distance to river 0.061 0

TRI 0.06 0.018

Lithology 0.041 0.019

Total curvature 0.038 0.014

Plane curvature 0.034 0.039

Profile curvature 0.032 0.015

Distance to road 0.029 0.045

SPI 0 0

STI 0 0.015

Table 1



Model Parameters Search space

Best value (grid 

search with 10-fold 

cross validation)

DT Maximum tree depth [2–13] 5

RF
Number of base 

estimators
[10–1000] 180

C [1–1000] 5

Kernel function
[Linear, RBF, 

Sigmoid]
RBF

Learning rate [10
−5
–1.0] 0.01

Activation function
[ReLU, Tanh, 

Sigmoid, Linear]
ReLU

Number of hidden 

layers
[1–12] 1

Number of hidden units 

in a hidden layer
[2–1024] 62

Bagging ensemble Base learner [DT, RF, SVM, ANN] SVM

SVM

ANN

Table 2



Model Training AUROC Test AUROC

DT 0.9 0.76

RF 0.94 0.81

SVM 0.86 0.85

ANN 0.69 0.72

Bagging ensemble 0.82 0.75

Table 3



Model Training AUROC Test AUROC

DT 0.92 0.78

RF 0.94 0.82

SVM 0.88 0.82

ANN 0.75 0.78

Bagging ensemble 0.84 0.8

Table 4
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