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Abstract:  13 

Catastrophic landslides and associated destructions are increasing every year, because of the change in 14 

climatic conditions and land use patterns. The ecologically sensitive zones of Western Ghats are highly 15 

susceptible to landslides and require scientific attention in developing an efficient early warning system. 16 

Definition of empirical rainfall thresholds on local, regional or global scales is the most commonly 17 

followed method of forecasting rainfall induced landslides. The limitations associated with such 18 

thresholds demands for better forecasting performance, incorporating the effect of physical processes 19 

in the initiation of landslides. This study is an attempt to forecast landslides in Idukki district, using 20 

mobility functions. The function separates the impossible and certain mobilisation parts and forecasts 21 

whether landslides can occur or not. Based on the critical value of mobility function, two different 22 

warning levels are proposed for four different reference areas in the district. The study shows that the 23 

model is 97 % efficient in smaller areas with uniform topographical and geological conditions, and the 24 

performance is reduced as the area becomes larger, with varying topographical and geological 25 

properties. The model proves to be an effective landslide forecasting tool that can be integrated with a 26 

rainfall forecasting system, to develop an early warning system for the region. 27 

Keywords: rainfall thresholds; early warning; landslides; Idukki 28 

1. Introduction 29 

Landslides are loss of soil or rock mass, denoted by their movement downslope, directly influenced by 30 

gravity. It is a major geohazard, which affects the hilly regions all over the world, resulting in severe 31 
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destruction. Many landslides are part of natural geological evolution [1]. Due to the population rise, 32 

more hilly areas are now being inhabited, increasing the risk associated with landslides. In India, most 33 

of the landslides occurs during monsoon season, because of severe rainfall events. The rainwater 34 

reduces the shear strength of soil, leading to shear failure [2]. Such events occur within a short span of 35 

time and result in severe destructions such as loss of properties, lives and disruption of transportation 36 

and infrastructure facilities. The socio-economic setbacks caused by landslides demand for a strong 37 

scientific intervention to reduce the risk associated with landslides.  38 

Providing early warning for landslides forecasting is an effective risk reduction approach [3,4]. An early 39 

warning can provide enough time before the landslide event to take necessary decisions and actions. 40 

The authorities and the public should be prepared and well aware of the action plans for the successful 41 

implementation of an operational Landslide Early Warning System (LEWS) [5]. The early warning 42 

should be issued based on the occurrence of the triggering factor (rainfall) and the in-situ site conditions. 43 

The possible slope failure should be foreseen, based on the historical data and physical conditions [6].   44 

Understanding the soil properties and evaluating the stability of slopes is a critical geotechnical 45 

problem, and requires sophisticated inputs regarding the physical, hydrological and shear strength 46 

properties of soil [7]. Collecting such time dependent information with precision is a challenging task. 47 

Such inputs are used in process-based models [8], where infiltration models are used to understand the 48 

phreatic lines and the stability of slopes are calculated using infinite slope model [8,9]. Such analysis 49 

can be conducted for site-specific studies where precise data can be collected through regular 50 

monitoring [7]. When the study area is large, the spatial and topographical variability limits the 51 

availability of reliable input data. Hence the most commonly followed method in forecasting landslides 52 

is the definition of empirical rainfall thresholds [10].  53 

Empirical thresholds are conventionally defined as a linear relationship between the rainfall parameters 54 

on a two-dimensional plane [11–14]. The threshold line defines a critical condition beyond which 55 

landslides are expected to happen in a region. The definition of thresholds is subject to the type of 56 

landslides and the size of the study area. The information regarding the antecedent rainfall within an 57 

interval of a few hours or days is crucial for the initiation of shallow landslides and for deep-seated 58 

failures, the duration of antecedent rainfall to be considered can be much longer, up to a few months. 59 

Considering the size, the thresholds can be defined for single hill slopes to a global scale. The variations 60 

in geology, hydrology, morphology, and climatic conditions can affect the definition of thresholds as 61 

the amount of rainfall required to trigger landslides is highly dependent on these factors. Empirical 62 

models are simple and can be derived for any region using the historical data [11]. But they are often 63 

associated with the limitations due to the simplifying assumptions [15]. Conceptual improvements and 64 

timely updates are required for the possible use of empirical thresholds in LEWS [6,16,17].  65 
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In this study, mobility functions are used to define a threshold condition which can be considered as a 66 

conceptual improvement to the conventional intensity-duration (ID) thresholds [15]. Such functions are 67 

used in the development of Forecasting of Landslides Induced by Rainfall (FLaIR) model and have 68 

been proven effective in forecasting landslides [18–21]. 69 

In India, the Himalayan belt [4,22–24] and the Western Ghats [25,26] are highly prone to landslides. 70 

The Western Ghats is located along the Western coast of Indian Peninsular region and is the most 71 

prominent orographic feature of the region. 47 % area of the state of Kerala in India is occupied by 72 

Western Ghats [27]. The Western Ghats scarps are most susceptible to landslides as compared to the 73 

other physiographic units [27]. The retreat of scarps along the weaker planes has formed the current 74 

landscape of Western Ghats. Idukki is a hilly district in the Western Ghats and is highly prone to 75 

landslides. A very recent landslide event in 2020 has resulted in the death of more than 60 people [28] 76 

in the district and it is high time that an operational LEWS should be developed for this economically 77 

backward district. This study is an attempt to make use of mobility functions for developing rainfall 78 

thresholds for Idukki district. 79 

2. Details of the study area 80 

Idukki district is in the state of Kerala, whose district boundaries coincide with the limits of Western 81 

Ghats. A major share of the district is covered by rugged mountains and forests. Low-lying regions are 82 

not present in this hilly district whose elevation ranges from midlands to highlands. The highlands are 83 

characterised by deep valleys and steep hills. The midland area comprises small hillocks, forming an 84 

undulating topography. The hill ranges can be divided into the high ranges, plateau region and the 85 

foothills. The midlands grade into the plateau in the narrow foothill zone, with an elevation ranging 86 

from 80 m to 500 m. Foothills are narrow strips with width ranging from 2 km to 8 km. The most 87 

significant physiographic unit of the district is the plateau region, with an elevation up to 1500 m.  88 

The rocks of Peninsular Gneissic Complex (PGC), charnockite group and the migmatite group 89 

constitute a major share of the geology of the region (Figure 1). Regionally folded and well foliated 90 

granite gneiss represents the PGC in the northern part of the district. The widespread charnockite group 91 

in the southern part is mostly massive, with banded varieties with compositions varying from 92 

intermediate to felsic (Figure1). The migmatite complex in the central part is represented by hornblende 93 

biotite gneiss and biotite gneiss.  94 

 95 
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 96 

Figure 1. Location details of the study area (a) India, (b) Geology map of Idukki (modified after [29]) 97 

and location of rain gauges 98 

The major income source of the district is agriculture and depends highly on the south-west and north-99 

east monsoon for meeting the water requirements for agriculture. Most crops are rain-fed, but the 100 

monsoon season also triggers multiple landslides within the district, which results in destruction of lives 101 

and properties, including agricultural land. The eastern part of the region belongs to the rain shadow 102 

region of Western Ghats and the highest rainfall is recorded in the southern most rain gauge, located at 103 

Peerumed. 104 

Most part of the district is drained by Periyar river, one among the major rivers in the state of Kerala. 105 

The river originates at the southeastern border of Idukki and flows west. The Idukki dam, one of the 106 

highest arch dams in Asia, in located across Periyar river. The district houses many reservoirs and 107 

contribute to the power supply and irrigation requirements of the state.   108 

More than 60% of the surface soil is formed by organically rich forest loam soil. Such soil is formed by 109 

the weathering of rock under forest cover. The particles are fine grained and are suitable for plant 110 

growth, due to their high organic content. Lateritic soil is found in the midlands, which are well drained 111 

and have less organic content.  The valleys of undulating terrain have a surface layer of hydromorphic 112 

soils, formed by the transportation and sedimentation of mass from nearby hill slopes. The particle sizes 113 

range from clayey to sandy. Alluvial soils are found along the riverbanks, as narrow strips. The topsoil, 114 
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in general, consists of clayey particles and have low permeability values. This increases the moisture 115 

holding capacity of the soil, making it suitable for agriculture.The highlands have recorded deep seated 116 

landslides while the midlands and plateau regions are suffering from cut slope failures and shallow 117 

landslides, majorly due to the recent land use changes that had happened in the region. 118 

3. Methodology 119 

3.1 Mobility functions 120 
Mobility functions (𝑌𝑌(𝑡𝑡)) are generic functions, that can relate to the empirical rainfall thresholds, for 121 

forecasting the landslides [15]. The mobility functions depend upon the antecedent rainfall 122 

measurements and the definition depends upon historical data. It is assumed that the probability of 123 

occurrence of landslides at time 𝑡𝑡 (𝑃𝑃(𝐿𝐿𝑡𝑡)) depends only on the mobility function 𝑌𝑌(𝑡𝑡) and no 124 

modification has been occurred in the hillslope due to human or other factors [30]. Then the probability 125 

can be calculated as: 126 

𝑃𝑃(𝐿𝐿𝑡𝑡)  =  �
0              𝑖𝑖𝑖𝑖      𝑌𝑌(𝑡𝑡)  < 𝑌𝑌1

𝑔𝑔 [𝑌𝑌(𝑡𝑡)]            𝑖𝑖𝑖𝑖       𝑌𝑌1  < 𝑌𝑌(𝑡𝑡)  < 𝑌𝑌2
1             𝑖𝑖𝑖𝑖      𝑌𝑌(𝑡𝑡)  > 𝑌𝑌2

 (1) 

 127 

Where 𝑔𝑔[ ] is a generic non-decreasing function which can take values from 0 to 1 as 𝑌𝑌(𝑡𝑡) varies from 128 

𝑌𝑌1  to 𝑌𝑌2. The mobilisation is possible for values greater than 𝑌𝑌1 and it is certain when 𝑌𝑌(𝑡𝑡)  > 𝑌𝑌2.  The 129 

equation can be further simplified by using a certain value of 𝑌𝑌(𝑡𝑡) as 𝑌𝑌𝑐𝑐𝑐𝑐  where 𝑌𝑌1  =  𝑌𝑌𝑐𝑐𝑐𝑐    = 𝑌𝑌2. This 130 

approximation simplifies the equation by adopting a critical value as threshold, separating impossible 131 

and certain mobilisation conditions. 132 

 133 

Figure 2. Probability of occurrence of landslides vs mobility function (a) relationship based on Eq. 134 

(1), (b) relationship with threshold condition 𝑌𝑌𝑐𝑐𝑐𝑐   135 
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 136 

For the definition of threshold condition, different criteria can be adopted, depending upon the severity 137 

of landslide events. The most common criteria is the occurrence of one or more landslides [31,32]. In 138 

the hydrological model FLaIR [15], mobility functions are estimated as a convolution between the 139 

infiltration rate 𝐼𝐼 ( . ) and a filter function 𝜓𝜓 (. ). The rate of infiltration is assumed to have a direct 140 

relationship with the intensity of rainfall 𝐼𝐼𝑟𝑟(. ) and it depends upon the type of soil.  Since the 141 

hydrological response is highly site specific, the model is best suited for local scale LEWS,  however, 142 

it can be successfully extended to regional scales [30] assuming the hydro-geological properties are 143 

uniform. In this study, a simple relationship between 𝐼𝐼 (𝜏𝜏 ) and 𝐼𝐼𝑟𝑟(𝜏𝜏 ) is used [15] as follows: 144 

𝐼𝐼 (𝜏𝜏 )  =  �
𝐼𝐼𝑟𝑟(𝜏𝜏 ) 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝐼𝐼𝑟𝑟(𝜏𝜏 )  ≤  𝐼𝐼𝑟𝑟0 
𝐼𝐼𝑟𝑟0    𝑤𝑤ℎ𝑒𝑒𝑒𝑒  𝐼𝐼𝑟𝑟(𝜏𝜏 )  >  𝐼𝐼𝑟𝑟0  (2) 

Where 𝜏𝜏 is the instantaneous time, varying from 0 to 𝑡𝑡. For simplification, we assume 𝐼𝐼𝑟𝑟0  =  +∞ and 145 

hence the mobility function can be directly related to the intensity of rainfall as : 146 

𝑌𝑌(𝑡𝑡)  =  �𝜓𝜓 (𝑡𝑡 − 𝜏𝜏 ) 𝐼𝐼𝑟𝑟(𝜏𝜏 ) 𝑑𝑑𝑑𝑑
𝑡𝑡

0

 (3) 

This formulation assumes a linear behaviour of the model. The choice of filter function is crucial in the 147 

definition of mobility function. In this study, a gamma filter function is used to define the mobility 148 

function. The filter function is given by the equation: 149 

𝜓𝜓(𝑡𝑡)  =  𝛽𝛽𝛼𝛼

 𝛤𝛤(∝)
𝑡𝑡∝−1𝑒𝑒− 𝛽𝛽𝛽𝛽      𝑡𝑡 ≥  0, ∝ >  0, 𝛽𝛽 > 0 (4) 

Where 𝛼𝛼 is the shape parameter 𝛽𝛽 (scale parameter) describes the hydrological response delay of the 150 

occurrence of landslides with respect to the rainfall and defines the temporal scale, and 𝛤𝛤(. ) is the 151 

gamma function. The choice of transfer function depends upon the historical rainfall and landslide data. 152 

For forecasting the occurrence of landslides, Eq. 4 can be divided into two parts given by: 153 

𝑌𝑌(𝑡𝑡)  =  �𝜓𝜓 (𝑡𝑡 − 𝜏𝜏 ) 𝐼𝐼𝑟𝑟(𝜏𝜏 ) 𝑑𝑑𝑑𝑑 +  �𝜓𝜓 (𝑡𝑡 − 𝜏𝜏 ) 𝐼𝐼𝑟𝑟,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝜏𝜏 ) 𝑑𝑑𝑑𝑑
𝑡𝑡

𝜏𝜏

𝜏𝜏

0

 (5) 

where 𝐼𝐼𝑟𝑟,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝜏𝜏 ) is the forecasted rainfall. Thus, the mobility value at a future time 𝑡𝑡 can be computed 154 

using the second part of Eq. (6). This value can be compared with the critical value, to understand the 155 

probability of occurrence of landslides.  156 

The transfer function has been selected in such a way that the maximum value of mobility is obtained 157 

on the day of slope failure. This study uses the rainfall and landslide data for Idukki district from 2010 158 

to 2018. The rainfall data has been collected from India Meteorological Department [33] and the 159 

landslide data has been collected from multiple sources including government agencies and media [32]. 160 

The data from 2010 to 2017 has been used for selecting the transfer function and the data of 2018 has 161 
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been used for the validation process, to verify the reliability of the model. Considering the whole year 162 

will overestimate the performance of the model, due to high number of days without rainfall. Hence the 163 

critical time duration, from June to November is considered for the validation of the model. 164 

3.2 Developing Early Warning 165 
Depending upon the location of rain gauges, the district is divided into for different subzones, called 166 

reference areas, and the rainfall is assumed to be uniform within the subzones. The division was done 167 

using a proximity analysis by using the Thiessen polygon concept [32,34,35] and was improved further 168 

using the administrative boundaries of the district (Figure 3). This division was done due to the variation 169 

in meteorological conditions throughout the district. Also, the variations in topography is minimum 170 

within each reference area, the area R1 represents the midland region of low elevation, R2 and R3 are 171 

parts of hilly region in the eastern and central parts and R4 consists of highly rugged hills and valleys 172 

of higher elevation. The rainfall received in the four reference areas is also varying (Figure 4). The 173 

cumulative rainfall received during the validation period, from June to November 2018 is shown in 174 

Figure 4. It can be observed that the maximum rainfall is recorded in R2, while R1 has recorded the 175 

minimum rainfall. 176 

 177 

Figure 3. The location of rain gauges and reference areas considered for issuing early warning 178 
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The boundaries of reference area are defined in such a way that the rain gauge within the area is the 179 

closest one to each point inside and the boundary coincides with the administrative boundary of the 180 

local government. This helps in the easy and straightforward operation of the early warning system. 181 

 182 

Figure 4. Cumulative rainfall during June to November, 2018  183 

For developing and early warning system, multiple coefficients of the critical value can be used, to 184 

provide different levels of warning to the public [25,36–39]. This can be helpful in developing 185 

awareness among the public regarding different alert levels and actions to be taken for each level of 186 

warning. For defining alert levels, a coefficient is introduced, which is the ratio of mobility function at 187 

time 𝑡𝑡 to the critical mobility value 𝑌𝑌𝑐𝑐𝑐𝑐 , and can be expressed as: 188 

𝐶𝐶 =
𝑌𝑌(𝑡𝑡)
𝑌𝑌𝑐𝑐𝑐𝑐

  (6) 

 189 

The value of 𝐶𝐶 has to be customised depending upon the history of rainfall and landslides in the region. 190 

The variation in climatic and lithological conditions of each reference area will lead to unique values 191 

of 𝐶𝐶 for each reference area. In this study, two levels (𝐶𝐶1,𝐶𝐶2) of warning are defined for the study area, 192 

“Alert” and “Attention”. When “Attention” is issued on a day, landslide events of ordinary criticality 193 
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can be expected in the region and when “Alert” is issued, severe events can be expected. The forecasting 194 

module must be integrated with a rainfall forecasting system for providing sufficient time of 195 

intervention, so that necessary actions can be taken prior to the occurrence of landslides.  196 

4. Results 197 

The gamma function was used to define the mobility functions for forecasting landslides in Idukki, 198 

India. The critical value of mobility function has been identified using the historical rainfall and 199 

landslide data of the region, and customised warning levels were defined for each region. The mobility 200 

functions for each reference area are shown in Figure 5. It can be observed that the maximum value of 201 

mobility functions has been recorded in all areas during the time of 8th to 10th August 2018, when all 202 

areas received a daily rainfall greater than 200 mm. The mobility functions are correlated with the daily 203 

intensity of rainfall. The maximum value of mobility function has been recorded in R2, where the 204 

district has received maximum rainfall.  205 

 206 
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 207 

Figure 5. Mobility functions for different reference areas in Idukki district June to November 2018 208 

The multipliers of critical mobility values for each area has been derived by using a trial-and-error 209 

procedure, so as to get a maximum number of true warnings and a minimum number of false warnings. 210 

Based on the procedure, an algorithm for issuing warning is proposed, as shown in Figure 6. First 211 

rainfall intensity in mm/day is calculated from rainfall forecasts and the value is used as an input for 212 

the transfer function. These values are compared with the critical mobility value for each area, 213 

multiplied with the coefficients (𝐶𝐶1,𝐶𝐶2) to issue warning. The algorithm first check if “Alert” has to be 214 

issued or are there chances for critical events. If the condition is not satisfied, it checks for the 215 

probability of occurrence of ordinary critical events (“Attention”). If both the conditions are not 216 

satisfied, no warning is issued for the day.  217 
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 218 

 219 

 220 

Figure 6. Algorithm proposed for the LEWS for issuing warnings based on mobility function 221 

 222 

The performance of the algorithm shown in Figure 6 has been evaluated using a confusion matrix [40]. 223 

The warnings issued for 183 days from 1st June to 30th November 2018 has been compared with the 224 

observed record of landslides in the study area, to count the number of statistical attributes like True 225 

Positives (TP), False Positives (FP), False Negatives (FN) and True Negatives (TN). These values 226 

indicate the performance of the model. When warning is issued and landslides have happened, it is 227 

counted as TP and if no landslide has happened on a day with warning; it is counted as FP. Landslides 228 

can happen on the days without warning also, and such days are counted as FN, while the days on which 229 

no warning is issued and no landslide has happened are counted as TN. Both TP and TN are positive 230 
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outcomes, and FP and FN are negative outcomes. Our objective while customising the coefficients is 231 

to maximise the positive outcomes and minimise negative outcomes. 232 

Table 1. Statistical attributes and customised coefficients for the reference areas 233 

Reference 

area 

TP FP FN TN Efficiency Threshold 

Alert 

C1 

Attention 

C2 

R1 3 4 0 176 0.97 0.8 0.6 

R2 4 4 0 175 0.97 0.8 0.4 

R3 6 5 3 169 0.95 0.8 0.4 

R4 8 4 6 165 0.95 0.8 0.4 

 234 

Efficiency is a term which is used to evaluate the performance of the model, which is expressed as the 235 

ratio of positive outcomes to the total number of outcomes. The more the efficiency, the better is the 236 

model. It can be understood from Table 1 that the efficiency of the model is greater than 95 % in all 237 

four reference areas. Also, the value of 𝐶𝐶1 is obtained as 0.8 in all the cases. In the case of 𝐶𝐶2, the 238 

performance is better in R1 when the value is 0.6, but the optimum value is 0.4 in all other areas. For 239 

both the larger reference areas (R3 and R4), there are missed warnings, counted as FN, which reduces 240 

the performance of the model. Even though the efficiency is high for both R1 and R2, it should be 241 

observed that the ration of FP to TP is greater than or equal to 1 in both the cases. This means that out 242 

of the total warnings issued, at least 50 % are false alarms. This ratio is lesser in the case of areas R3 243 

and R4. Attempts have to be made to reduce this ratio, without increasing the number of FN, for the 244 

LEWS to be efficient. 245 

5. Discussion 246 

From the analysis, it was observed that the performance of the model, even with same coefficients 247 

(𝐶𝐶1,𝐶𝐶2) are different for different reference areas considered. The prediction performance of the model 248 

depends highly on the uniform meteo-hydrological properties of the region. This is because the 249 

hydrological response highly depends upon the properties of soil. When soil properties are varying, the 250 

relationship between precipitation and infiltration will also vary. It depends upon a number of factors 251 

ranging from slope of terrain to the properties of soil in the unsaturated conditions. But the methodology 252 

discussed in this study is only based on the historical data and does not consider the detailed site specific 253 

responses for each slope. The method is a conceptual improvement of the conventional empirical 254 
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thresholds, where the linear threshold is modified using a mobility function. No warnings are missed in 255 

R1 and R2, where the topography and the geological conditions are relatively uniform. The efficiency 256 

of the model is 97 % in both the regions. All the landslide events in these two regions were correctly 257 

forecasted by the model, making it highly sensitive. Sensitivity of a model can be defined by the ratio 258 

of TP to the sum of TP and FN. From Table 1, it can be understood that the model is 100 % sensitive 259 

in R1 and R2 while the sensitivity is reduced in the case of R3 and R4. 260 

For the days with no landslides, the results show that false warnings are issued by the model multiple 261 

times during a monsoon. The term specificity deals with the prediction performance on non-landslide 262 

days, and can be defined as the ratio of TN to the sum of TN and FP. In no reference area, the model 263 

has given 100 % specific results. The forecast is always associated with false alarms. The rate of false 264 

alarms is much lesser than the empirical thresholds, which makes the use of mobility functions a 265 

possible tool for use in LEWS. The process of optimisation of coefficients for warning has reduced the 266 

number of false alarms considerably. In regions R3 and R4, this came with the cost of many missed 267 

alarms.  268 

The use of mobility functions is a conceptual improvement from the conventional statistical thresholds 269 

to a hydrological threshold, yet it is not associated with the complex process of evaluating physical 270 

processes in detail. Though it overcomes the major limitation of the conventional empirical thresholds, 271 

the high number of false alarms, the performance should be further improved for making the model 272 

operational in R3 and R4. This can only be done with a higher rain gauge density and more precise 273 

rainfall forecasts. The reference areas can be made smaller, so that the properties are uniform 274 

throughout. Further research has to be done on this aspect, and the forecasting ability of the model can 275 

be improved significantly. For large areas like Idukki district with sophisticated morphology, it is 276 

difficult to do detailed physically based analysis and the empirical models are often associated with 277 

very high false warnings. Hence the use of mobility functions is a promising approach in forecasting 278 

the probability of occurrence of landslides within the study area. 279 

The method can be exported to other parts of the world also, by using the historical landslide and rainfall 280 

database for a particular study area. Thresholds can be developed on both local and regional scales. The 281 

thresholds, when exported, should be customised for each study region based on its meteo-hydrological 282 

properties and landslide histories. The threshold values and the relationship between precipitation and 283 

infiltration will be different for each region, and the model has to be calibrated using regional specific 284 

data.  285 

6. Conclusions 286 
A tool for forecasting the occurrence of landslides in the South Indian district of Idukki was derived by 287 

using mobility functions. Unlike the conventional empirical thresholds, the mobility functions are 288 

related to the rate of infiltration and calculates the probability of occurrence of a landslide event using 289 



14 
 

a mobility function. The model thus considers the complex hydrological processes using a generic 290 

function and can be used for landslide forecasting, using the historical database. 291 

The study shows that the use of mobility functions results only in a few false alarms for the study region. 292 

The region was divided in to four reference areas, based on the location of rain gauges, and the 293 

performance of the model was evaluated using the rainfall and landslide data from June to November 294 

2018. The minimum efficiency obtained by the model is 95 % in regions R3 and R4, which have highly 295 

varying topography and geology. The major limitations of the model are associated with the assumption 296 

that the meteo-hydro-geological properties of the reference area remain the same. The model has very 297 

good performance in regions R1 and R2, with an efficiency of 97 % and sensitivity 1. 298 

The proposed model is a promising landslide forecasting tool that can be used in an operational LEWS, 299 

along with a precise rainfall forecasting module. The study is significant for the region, which is highly 300 

susceptible to landslides as the development of an efficient LEWS is a necessity for the safety of lives 301 

and properties n hilly terrains.  302 
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