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Abstract 18 

Drought forecasting with a long lead time is essential for early warning systems and risk 19 

management strategies. The use of machine learning algorithms has been proven to be 20 

beneficial in forecasting droughts. However, forecasting at long lead times remains a challenge 21 

due to the effects of climate change and the complexities involved in drought assessment. The 22 

rise of deep learning techniques can solve this issue, and the present work aims to use a stacked 23 

long short-term memory (LSTM) architecture to forecast a commonly used drought measure, 24 

namely, the Standard Precipitation Evaporation Index. The model was then applied to the New 25 

South Wales region of Australia, with hydrometeorological and climatic variables as 26 

predictors. The multivariate interpolated grid of the Climatic Research Unit was used to 27 

compute the index at monthly scales, with meteorological variables as predictors. The 28 

architecture was trained using data from the period of 1901–2000 and tested on data from the 29 

period of 2001–2018. The results were then forecasted at lead times ranging from 1 month to 30 

12 months. The forecasted results were analysed in terms of drought characteristics, such as 31 
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drought intensity, drought onset, spatial extent and number of drought months, to elucidate 32 

how these characteristics improve the understanding of drought forecasting. The drought 33 

intensity forecasting capability of the model used two statistical metrics, namely, the 34 

coefficient of determination (R2) and root-mean-square error. The variation in the number of 35 

drought months was examined using the threat score technique. The results of this study 36 

showed that the stacked LSTM model can forecast effectively at short-term and long-term lead 37 

times. Such findings will be essential for government agencies and can be further tested to 38 

understand the forecasting capability of the presented architecture at shorter temporal scales, 39 

which can range from days to weeks. 40 
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1. Introduction 60 



Droughts are amongst the most complex geohazards, and they have been recognised as the 61 

least understood among all ‘weather and climate extremes’ (Pulwarthy and Sivakumar, 2014).  62 

Droughts can last from a few weeks to decades and span from the local to the national scale 63 

(Pendergrass et al., 2020), causing significant damage to agriculture (Nasim et al., 2018), 64 

water resources (van Loon, 2015; Imad et al., 2019) and socioeconomic factors (Mishra and 65 

Singh, 2010). The impact of droughts is felt across different sectors, making establishing a 66 

universal drought definition practically impossible (Lloyd-Hughes, 2014). Therefore, defining 67 

different drought types on the basis of their impact on a specific sector is necessary (Vicente-68 

Serrano et al., 2020). Historically, drought definitions have been classified into 69 

meteorological, agricultural, hydrological and socioeconomic (Mishra and Singh, 2010). 70 

However, some researchers have argued over expanding the definition to include other critical 71 

areas, such as groundwater (Mishra and Singh, 2010) and ecological (Crausbay et al., 2017) 72 

and environmental aspects (Vicente-Serrano et al., 2020). Such argument is well justified and 73 

will enable us to make a clearer distinction, and consequently, understand the propagation of 74 

drought. To date, however, such a consensus has yet to be reached in the drought community 75 

(Vicente-Serrano et al., 2020). The present study focuses on meteorological drought, which is 76 

a result of rainfall deficiency (Mishra and Singh, 2010). 77 

To understand drought processes and effects, drought characteristics, such as intensity, 78 

duration and spatial extent, should be determined (van Loon, 2015; Parry et al., 2016). Such 79 

quantification can be performed on the basis of the truncation levels of a specific drought-80 

affecting variable or by computing an indicator (Kallis, 2008). In general, indicators are used, 81 

in which a single (McKee et al., 1993) or a combination (Vicente-Serrano et al. 2011) of 82 

drought-affecting variables is utilised, conveying various drought characteristics. A deluge of 83 

information on the types of indices is available, and data should be used with advantages and 84 

limitations. Additional details regarding this can be found in Nagarajan (2009), Zargar et al. 85 

(2011) and Yihdego et al. (2019). One index that has demonstrated high capability in 86 

accurately assessing meteorological droughts under different climatic conditions is the 87 

Standardised Precipitation Evapotranspiration Index (SPEI) developed by Vicente-Serrano et 88 

al. (2010; 2012). SPEI can be considered superior to its predecessor, i.e. the Standardised 89 

Precipitation Index (SPI), which uses only rainfall to compute the index; by contrast, SPEI 90 

uses evapotranspiration and rainfall (Beguería et al., 2014). These indices are calculated at 91 

different time scales, representing short-term droughts (1–3 months) and long-term droughts 92 

(6–24 months).   93 

Among different types of drought studies, forecasting at different lead times is particularly 94 

challenging (Hao et al., 2018). Historically, forecasting studies have revolved around the use 95 

of stochastic models, such as an autoregressive integrated moving average (ARIMA) model, 96 



which can understand the seasonality and lag in a time series (Han et al., 2010; Mishra and 97 

Singh, 2011). However, droughts are essentially nonlinear in nature, and thus, three types of 98 

models are used, namely, data-driven (Morid et al., 2007), physical (Wanders and Wood, 99 

2016) and hybrid (Wang et al., 2012) models. The advantages and limitations of using these 100 

models have been discussed in the review articles of Mishra and Singh (2011) and Hao et al. 101 

(2018). Recently, focus on the use of data-driven models, which have been demonstrated to 102 

improve forecasting results compared with physical-based models, has increased (Abbott and 103 

Marohsay, 2014; Hao et al., 2018). Artificial neural networks (ANNs) are amongst the most 104 

popular and effective data-driven models, and they have been extensively used in the past 105 

decade and proven to be effective tools for forecasting at short and long lead times (Mishra 106 

and Desai, 2006; Barua et al., 2012; Özger et al., 2012; Dikshit et al., 2020a). Important 107 

references that highlight the advancements of neural networks in droughts or associated 108 

variables can be found in Rodrigues et al. (2018) and Fung et al. (2019). Despite obtaining 109 

satisfactory forecasting results, neural networks are incapable of dealing with non-110 

stationarities in drought estimations and suffer from overfitting due to lag components 111 

involved in time series data (Alizadeh and Nikoo, 2018). Considering the aforementioned 112 

limitations, interest in the use of deep learning approaches, particularly LSTM, which is 113 

capable of retaining information for longer periods due to its recurrent and gate architecture, 114 

has been an increasing (Hochreiter and Schmidhuber, 1997). The use of LSTM in drought 115 

forecasting is still in its infancy, with the majority of studies focusing on forecasting drought 116 

variables, such as rainfall (Gao et al., 2020), sea surface temperature (SST) (Xiao et al., 2019), 117 

evaporation (Majhi et al., 2020) and El Niño–Southern Oscillation (ENSO) (Ham et al., 2019). 118 

In a recent paper published in Nature magazine, Reichestein et al. (2019) highlighted the 119 

various achievements in geosciences by using deep learning models and they provided several 120 

recommendations for future use. The present study is the first to forecast a drought index by 121 

using a stacked LSTM architecture at different lead times.  122 

Drought occurrences are an amalgamation of a multitude of reasons, and thus, modellers are 123 

frequently befuddled when selecting variables that will be used as predictors in forecasting 124 

droughts (Deo et al., 2017). A significant milestone in drought forecasting is the discovery of 125 

atmospheric circulation patterns or teleconnections that affect drought events (Stahl and 126 

Demuth, 1999; Schubert et al., 2004). This finding has encouraged researchers to use climatic 127 

and SST indices as predictors for drought forecasting with long lead times (Woli et al., 2013; 128 

Seager and Hoerling, 2014; Schubert et al., 2016). Kirono et al. (2010) found that the 129 

relationship between climatic drivers and rainfall in Australia is one of the world’s highest. 130 

Thus, the trend towards using large-scale climatic drivers as predictors for forecasting 131 

droughts has been increasing (Hao et al., 2018). Studies that utilise climatic drivers have been 132 

conducted and have achieved improvements in forecasting drought indices or variables. 133 



Abbott and Marohasy (2014) adopted an ANN to forecast monthly rainfall at a lead time of 1 134 

month using lagged climatic variables for the Queensland region of Australia; the ANN  135 

outperformed the dynamic models used by the Bureau of Meteorology. Similarly, Deo et al. 136 

(2017) and Feng et al. (2020) forecasted SPI at different lead times and achieved 137 

improvements in results when using lagged climate variables as predictors. Therefore, the 138 

current research also used climatic drivers as predictors and examined their implications for 139 

forecasting at different lead times.  140 

The novel contribution of this work is to develop and validate the utility of a state-of-the-art 141 

stacked LSTM architecture for monthly SPEI forecasting at different lead times in the 142 

southeastern part of Australia. The methodology used in the present work is illustrated in 143 

Figure 1. The model adopts several hydrometeorological and climatic indices as input to the 144 

model. The major contribution of this work is the use of a global climatological dataset and a 145 

deep learning model to forecast droughts. This study is the first to use both aforementioned 146 

aspects, and it will help future research forecasts droughts at the country/global scale. The 147 

primary objectives of the present study are as follows: 1) to analyse the forecasting capabilities 148 

of deep learning models at longer lead times, 2) to understand variations in the forecasted 149 

results based on different drought characteristics (e.g. drought intensity, number of drought 150 

months and spatial extent) and 3) to use  climatic variables as predictors for drought 151 

forecasting. 152 



 153 

Figure 1. Flowchart of the methodology used in the present study 154 

The remainder of this paper is organised as follows. The ‘Study area’ section describes the 155 

history of droughts in the region and the effects of various climatic indices on drought 156 

occurrence. It also discusses the datasets and the drought indices used in the study. Section 2, 157 

i.e. ‘Model development’, describes the architecture used in the present study. The ‘Results’ 158 

section presents the findings in terms of metrics and drought characteristics. The ‘Discussion’ 159 

section compares the major findings in the present study and the available literature along 160 

with the limitations. Lastly, the ‘Conclusion’ section concludes this study and summarises its 161 

results. 2. Study Area 162 

The study area in the present work is New South Wales (NSW), which is located in the 163 

southeast of Australia. The study area was selected because of its long history of droughts. It 164 

is also one of Australia’s major agricultural belts. The country frequently experiences drought 165 

conditions and is the driest inhabited continent in the world (Ummenhofer et al., 2009). The 166 

economic impact of droughts from 2017 to 2019 was estimated to be US$8.1 billion (Wittwer, 167 

2020). The region suffered three major droughts and several minor droughts since 1900 168 

(Dikshit et al., 2020a). The Millennium Drought (2001–2009) is regarded as the country’s 169 

worst drought. The effect of climate change has worsened the drought situation in NSW, with 170 

increased intensity and frequency during hot days (Cai et al., 2014). The recent bushfires in 171 



this region were aggravated by drought conditions, dry vegetation and temperature increase 172 

(Steffen et al., 2019). 173 

 174 

Figure 2. Location of the study area and the lowest SPEI (1) value during the Millennium 175 

Drought (2001–2009) 176 

2.1 Dataset and Variables 177 

The dataset used for determining SPEI and the potential meteorological predictors can be 178 

either ground-based or interpolated grids (AghaKouchak et al., 2015). The challenge in 179 

ground-based datasets is that they are prone to manual errors and typically lack long time 180 

series data. Interpolated grids are a viable solution to such problems, and they have been 181 

extensively used in various geohazard studies. Sun et al. (2018) examined 30 different 182 

interpolated datasets for rainfall values and found that the Climate Research Unit (CRU) 183 

provided observational values. However, the researchers also suggested that dataset choice 184 

should be based on a study’s objective and research area. The CRU dataset (with a spatial 185 

resolution of 0.5° × 0.5°) was developed by the University of East Anglia and established using 186 

several stations conducting quality control and homogeneity check (Harris et al., 2020). In the 187 

present study, the CRU TS 4.03 dataset, which spans the years 1901 to 2018, was used. 188 

The climatic drivers that affect droughts in the region arise from atmospheric circulation 189 

patterns emerging from the Pacific, Indian, and Southern Oceans (Duc et al., 2017). The 190 

atmospheric ocean phenomenon arising from the Pacific Ocean is known as ENSO and the 191 

Pacific Decadal Oscillation (PDO). The phase and strength of an ENSO event are defined using 192 

an index, which can be based either on SST or surface atmospheric pressure (Hanley et al., 193 

2003). SST-based indices that affect NSW include Niño 3.0, Niño 3.4 and Niño 4.0; 194 

meanwhile, the surface atmospheric pressure index is the Southern Oscillation Index (SOI) 195 

(a) (b) 



(Duc et al., 2017). Similarly, SST anomalies arising from the Indian Ocean are depicted using 196 

Indian Ocean Dipole (IOD), which is known as the Southern Annular Mode (SAM) in the 197 

Southern Ocean. These climatic drivers are known to influence rainfall during different 198 

seasonal periods (Hendon et al., 2007; Risbey et al., 2009; Duc et al., 2017). Power et al. (1998) 199 

found that droughts in the region mostly result from the El Niño phase of the ENSO cycle. 200 

Ummenhofer et al. (2009) determined that the Millennium Drought was caused by a 201 

combination of SAM and the negative IOD phase. Their study also suggested that anomalies 202 

in the Indian Ocean lead to severe drought conditions. The wet periods after the Millennium 203 

Drought were due to a strong La Niña event and a positive SAM event (Gergis et al., 2012). 204 

The aforementioned studies highlight that large-scale climatic indices are intertwined with 205 

drought occurrences, and thus, considering these variables as predictors is essential.  206 

2.2 Drought Index and Characteristics 207 

Amongst available drought indices, SPEI has been found to be a useful index for encapsulating 208 

drought characteristics. SPEI has been tested extensively in different parts of the world, 209 

highlighting various climatic regions (Vicente-Serrano et al., 2012). The determination of SPEI 210 

involves the use of climatic water balance (CWB), which is the difference between rainfall and 211 

potential evaporation(PET). CWB is computed at different time scales (1 month for the present 212 

study), and the calculated values are fit to a log‐logistic probability distribution, which 213 

transforms the original values to standardised units (Beguería et al., 2014). A detailed 214 

explanation for the calculation was provided by Vicente-Serrano et al. (2010) and Beguería et 215 

al. (2014). The global SPEI database at different monthly scales using the CRU dataset can be 216 

accessed from https://spei.csic.es/database.html. Once the values are computed, they can be 217 

used to understand different drought characteristics. Figure 3(a) describes the monthly SPEI 218 

variation, and Figure 3(b) depicts the spatial precipitation regression map for the NSW region 219 

from January 2010 to December 2018 based on the mean gridded value of the CRU dataset. 220 

The marker highlights the lowest SPEI value (i.e. drought intensity) from 2011 to 2018. 221 

Drought onset is initiated when SPEI values become negative, and it ends when the values 222 

become positive. The period between onset and end is called drought duration, which can 223 

range from a few months to several years (Deo and Şahin, 2015). Drought severity is the 224 

cumulative deficit of SPEI values during a drought event (Zhang et al., 2015). The spatial 225 

extent of droughts is illustrated in Figure 1(b). The values are representative of different 226 

drought conditions, as highlighted in Table 1. 227 

https://spei.csic.es/database.html
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 229 

Figure 3. (a) Temporal SPEI 1 variation and (b) spatial regression rainfall map of the region 230 

from 2010 to 2018 based on the CRU TS dataset 231 

Table 1: Drought categories per SPEI values (Rhee and Im, 2017) 232 

SPEI classifications Categories 

≤−2.0 Extremely dry 

−1.99 to −1.5 Severely dry 

−1.49 to −1.0 Moderately dry 

−0.99 to 0.99 Near normal 

1.0 to 1.49 Moderately wet 



1.5 to 1.99 Severely wet 

≥2.0 Extremely wet 

3. Model Development 233 

After collecting SPEI data, the values of all the predictors were collected from relevant sources. 234 

The predictors used in the present study can be categorised into the following: a) 235 

hydrometeorological, which includes variables, such as temperature (minimum, maximum 236 

and mean), PET, rainfall and cloud cover and b) climatic indices (SOI, PDO, SAM, IOD and 237 

Niño indices 3, 3.4 and 4). Hydrometeorological variables were collected from the CRU 238 

dataset, and climatic indices were collected from the Earth System Research Laboratory 239 

(2020). The objective of this study is to provide maximum input datasets for training and a 240 

sufficient testing dataset. Therefore, data were trained from 1901 to 2000 and tested from 241 

2001 to 2018. The next step was to determine the lag periods of large-scale climate predictors. 242 

The number of lag months to be used is not definite, and different studies have used varying 243 

lag periods, with each period fulfilling their respective objective. For example, Mekanik et al. 244 

(2016) used a lag period of 3 months to forecast rainfall, and Feng et al. (2020) used a lag 245 

period of 12 months to forecast SPI.  246 

In the present study, instead of testing different lag periods, the lag of climatic indices based 247 

on the mean gridded SPEI value was analysed using cross-correlation. Cross-correlation was 248 

applied between the SPEI values and the predictor variables during the training period (Deo 249 

et al., 2017). Table 2 provides the optimum lag and the corresponding correlation coefficients 250 

of various climatic indices with a maximum lag period of 12 months. The results show that the 251 

SSTs exhibit a lag period of 2 months. Meanwhile, amongst the climatic indices, PDO has a lag 252 

period of 8 months. In the case of meteorological variables, rainfall and cloud cover are highly 253 

correlated with no lag period and their coefficients are 0.94 and 0.78, respectively. This finding 254 

is significant because most studies have disregarded cloud cover, primarily due to the use of 255 

ground-based data sources, which lack such datasets. From the obtained results, the proposed 256 

architecture considered climatic variables and meteorological variables as input and 257 

forecasted monthly SPEI at different lead times. The influence of lag periods on forecasting 258 

was also assessed. 259 

Table 2. Correlation coefficients between climatic indices and monthly SPEI 260 

Predictor Optimum lag time (in 

months) 

Correlation coefficient 

SOI 0 0.31 

PDO 8 0.15 



SAM 0 0.16 

IOD 0 0.12 

Niño 3 2 0.23 

Niño 3.4 2 0.26 

Niño 4 2 0.25 

 261 

3.1 LSTM Architecture  262 

A detailed explanation of the LSTM model was provided in Olah (2015) and Goodfellow et al. 263 

(2016). A brief summary of this architecture is presented in this paper. The structure of LSTM 264 

is similar to a chain, as shown in Figure 4, wherein the basic building block is a cell and its 265 

state is the key to the mode. Gates that determine cell state have three types: input, forget and 266 

output gates. The gates analyse and control the amount of information that can pass through 267 

them, and they consist of a sigmoid neural layer and point-wise multiplication operation 268 

(Olah, 2015). The working mechanism of the gates and information flow can be expressed 269 

using the following equations: 270 

𝑓𝑓𝑡𝑡 =  𝜎𝜎(𝑊𝑊𝑓𝑓 . [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] +  𝑏𝑏𝑓𝑓),        (1) 271 

𝑖𝑖𝑡𝑡 =  𝜎𝜎(𝑊𝑊𝑖𝑖 . [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] +  𝑏𝑏𝑖𝑖),     (2) 272 

𝐶𝐶′𝑡𝑡 =  𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝐶𝐶 . [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] +  𝑏𝑏𝑐𝑐),       (3) 273 

𝐶𝐶𝑡𝑡 =  𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 +  𝑖𝑖𝑡𝑡 ∗ 𝐶𝐶′𝑡𝑡,         (4) 274 

𝑜𝑜𝑡𝑡 =  𝜎𝜎(𝑊𝑊𝑜𝑜 . [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] +  𝑏𝑏𝑜𝑜),        (5) 275 

ℎ𝑡𝑡 =  𝜎𝜎𝑡𝑡 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝐶𝐶𝑡𝑡),      (6) 276 

where 𝑥𝑥𝑡𝑡 is the input vector at time t and σ is the activation function similar to Sigmoid or 277 

ReLU. 𝑊𝑊𝑓𝑓, 𝑊𝑊𝑖𝑖, 𝑊𝑊𝐶𝐶 and 𝑊𝑊𝑜𝑜  are the applied weights to the concatenation of the new input 𝑥𝑥𝑡𝑡 and 278 

output ℎ𝑡𝑡−1 from the previous cell, with 𝑏𝑏𝑓𝑓, 𝑏𝑏𝑖𝑖, 𝑏𝑏𝑐𝑐 and 𝑏𝑏𝑜𝑜 as the corresponding biases (Xiao et 279 

al., 2019). 𝑓𝑓𝑡𝑡, 𝑖𝑖𝑡𝑡 and 𝑜𝑜𝑡𝑡 are the outputs of three sigmoid functions, σ, and their values range 280 

from 0 to 1. They control the information that is forgotten in the old cell state 𝐶𝐶𝑡𝑡−1 and passed 281 

to the new cell 𝐶𝐶𝑡𝑡, with the new information being 𝐶𝐶′𝑡𝑡 and ℎ𝑡𝑡 being the output information 282 

from the cell.  283 



 284 

Figure 4. Structure of the LSTM network (modified from Olah, 2015)  285 

In the present study, the LSTM architecture has 5 layers, which consists of 14 input layers, 2 286 

LSTM layers and 2 dense layers. This network provided reliable results based on several 287 

experiments. In the LSTM network, the network is a 3D tensor, which represents the batch 288 

size for training (sample_size), the time window used to forecast SPEI (time_step) and the 289 

number of features (feature_n). In the case of the time step window, the sequence length was 290 

set as 20 based on the trial-and-error approach, indicating that the last 20 months of SPEI 291 

sequence were used to forecast the 21st month. In terms of features, the input features were 292 

the hydrometeorological variables and climatic indices. The number of cells in the first and 293 

second LSTM layers was 50 and 25, respectively. Meanwhile, the dense layers were set as 12 294 

and 1, respectively. A dropout mechanism was applied after the LSTM layer to prevent 295 

overfitting, which was set as 0.25. The LSTM deep neural network was applied with Keras 296 

(Francois, 2015) using TensorFlow as the back end. The architecture of the network used is 297 

shown in Figure 5.  298 



 299 

Figure 5. LSTM architecture used in the present study 300 

Forecasting at multiple time steps was reviewed by Taieb et al. (2012), and they described five 301 

multiple time step forecasting techniques. In the present study, the sequence-to-sequence 302 

(seq2seq) forecasting approach or sliding window technique was used, wherein the forecasted 303 

value at time ti is shifted towards the forecast values at time ti+1. Moreover, the second dense 304 

layer increased as the number of forecasted lead months increased. Similarly, if the lead time 305 

is 6 months, then the second dense layer will be six instead of one. 306 

The statistical metrics used to analyse the performance of the model were implemented using 307 

the coefficient of determination (R2) and the root-mean-square error (RMSE) method. RMSE 308 

is frequently used as a metric because it penalises large errors and is suitable for forecasting 309 

purposes. R2 represents the extent of association between the observed and forecasted values. 310 

The value ranges from 0 to 1, where 1 indicates an exact match and 0 denotes no association. 311 

By contrast, a lower RMSE value depicts better performance. The history of performance 312 

metrics used in forecasting with machine learning (ML) models was highlighted in Botchkarev 313 

(2018).   314 

4. Results 315 

The statistical metrics at different lead times during the test period are depicted in Figures 316 

6(a) and 6(b). The results signify that the forecasting capability of the model diminishes as 317 

lead time increases.  318 



 319 

Figure 6. Statistical metrics (a) R2 and (b) RMSE for monthly SPEI forecasting at different 320 

lead times  321 

Analysis of the forecasted results was conducted in terms of different drought characteristics 322 

at four different lead times (1 month, 3 months, 6 months and 12 months), as shown in Figure 323 

7. Depicting all the forecasted results during the test period is infeasible. Thus, the first 324 

instance of the forecasted SPEI sequence was presented. That is, for a lead time of 1 month, 325 

the comparison between the observed and forecasted values is shown for January 2001. 326 

Similarly, for a lead time of 3 months, the comparison is made for March 2001; for a lead time 327 

of 6 months, the comparison is made for June 2001 and for a lead time of 12 months, the 328 

comparison is made for December 2001. The number of grids in the region was 310. Amongst 329 

these grids, the percentage of pixels under the influence of drought (SPEI <−0.99) was 22.9% 330 

in January 2001 and 21.9% in June 2001. No pixels were observed during the drought periods 331 

of March and December 2001. The forecasting results showed that the percentage of pixels 332 

under drought periods was 27.7%, 26.1% and 4.5% for lead times of 1 month, 6 months and 12 333 

months, respectively. No pixel was found during drought periods at a lead time of 3 months. 334 

As the results indicate, although no pixel was found during the drought periods at a lead time 335 

of 12 months, the forecasted result depicted specific pixels during drought periods. Such 336 

variation is expected because the lower limit of near-normal drought class (SPEI <−0.99) is 337 

within the vicinity of the mild drought class (Table 1). Therefore, examining drought intensity 338 

values in terms of different drought characteristics and not relying solely on statistical metrics 339 

are essential.  340 

(a) (b) 



  341 

Figure 7. Comparison of the observed and forecasted SPEI 1 values at the first instance with 342 

lead times of a) 1 month, b) 3 months, c) 6 months and d) 12 months. The top row depicts the 343 

observed values, and the bottom row depicts the forecasted values. 344 

To examine the importance of the LSTM architecture, annual rainfall and mean temperature 345 

anomaly maps are shown in Figures 8(a) and 8(b). The black line indicates the splitting of 346 

the dataset into training and testing sets. For forecasting, ML models learn uniform 347 

weightage across time steps. As the figure suggests, a significant variation in rainfall and 348 

temperature anomalies is observed during the entire study period. This phenomenon 349 

necessitates the use of decay over weights across periods. Hence, the use of LSTM is 350 

encouraged to learn decayed weights. The forget gate in LSTM ensures that the model can 351 

effectively capture the decay-weighted lag–lead sequence relationship without the vanishing 352 

gradient problem. This condition is also reflected in the spatial anomaly maps of rainfall and 353 

mean temperature (Figure 9). Temporal and spatial anomaly maps were prepared with the 354 

baseline period of 1961–1990. The studied months in Figure 9 depicts the initiation of the 355 

Millennium Drought. Ummenhofer et al. (2009) found that the droughts during this period 356 

(a) (b) (c) (d) 



resulted from high temperatures and climatic anomalies. 357 

 358 

 359 

Figure 8. Temporal anomaly graphs of (a) rainfall and (b) mean temperature from 1901 to 360 

2018. The black line indicates the splitting of data into training and testing sets. 361 

(a) 

(b) 

Training Testing 

Training Testing 



 362 

Figure 9. Spatial anomaly maps of precipitation and mean temperature  363 

Thereafter, a comparison between the mean gridded observed and forecasted SPEI values was 364 

conducted. Subsequently, variations in terms of drought intensity, drought duration and 365 

number of drought months were analysed. The variation in drought intensity values at 366 

different lead times is illustrated in Figures 10(a) and 10(d). A period was considered a drought 367 

month when the mean SPEI grid value was less than −0.99. On the basis of this assumption, 368 

the number of observed drought months during the test period was 41 months (~19%), with 369 

the first drought onset in January 2001. To understand the forecasted results with the 370 

observed values, a useful statistical metric, namely, threat score (TS), was used. TS measures 371 

the fraction of correctly predicted forecasted results corresponding to the observed values. The 372 

mathematical formula is 𝑇𝑇𝑇𝑇 =  ℎ𝑖𝑖𝑖𝑖𝑖𝑖
ℎ𝑖𝑖𝑖𝑖𝑖𝑖+𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚+𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

 (Jollifee and Stephenson, 2003). The 373 

value of TS ranges from 0 to 1, with 1 being the perfect score and 0 indicating no skill. The 374 

results indicated that TS was 0.93 in the case with a lead time of 1 month, 0.91 in the case with 375 

a lead time of 3 months, 0.86 in the case with a lead time of 6 months and 0.78 in the case 376 

with a lead time of 12 months. These results show that the model is capable of adequately 377 

forecasting monthly SPEI values. In addition, the forecasted results were analysed in terms of 378 

other drought characteristics, such as onset, end and duration. A closer look at the results 379 

showed that drought duration and end are generally correctly forecasted at lead times of 1 380 



month and 3 months. However, onset is frequently erratic, i.e. either predicted earlier or later 381 

than observed. Similarly, for lead times of 6 and 12 months, onset and end are inconsistent 382 

with the observed values. Therefore, understanding the objective of the study and using the 383 

model adequately are of utmost importance. The results of the present study suggest that the 384 

model can determine drought onset at shorter lead times; however, caution is necessary when 385 

specifically determining onset at longer lead times. 386 

 387 

 388 

 389 
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 390 

Figure 10. Variation between observed and forecasted monthly SPEI values at lead times of 391 

(a) 1 month, (b) 3 months, (c) 6 months and (d) 12 months 392 

5. Discussion 393 

Recent studies have aptly highlighted the superiority of deep learning models over traditional 394 

ML models in forecasting various drought aspects (Xiao et al., 2019; Reichstein et al., 2019; 395 

Ham et al., 2019; Dikshit et al. 2020c). Poornima and Pushpalatha (2019) forecasted SPEI for 396 

the city of Hyderabad, India using a single LSTM layer at a lead time of 12 months with 397 

hydrometeorological variables. Their study, which used rainfall and relative humidity as 398 

predictors, achieved an RMSE value of 0.2 and an accuracy of 97.05%. Their findings indicated 399 

that the LSTM model performed better than other stochastic and ML models. Agana and 400 

Homaifar (2017) used a deep belief network to forecast the Standardized Streamflow Index 401 

(SSI) for the Colorado River basin by using lagged values of SSI as input. They found that this 402 

network performed better than ML models. Earlier studies in the NSW region have used 403 

different ML models to predict droughts. For example, Deo and Sahin (2015) used ANN to 404 

predict the monthly SPEI at five different sites and achieved an R2 value of 0.992. Similarly, 405 

Feng et al. (2019) predicted the SPEI for 3 months along agricultural belts by using three ML 406 

models. They found different statistical metrics for each specific study site. However, when 407 

considering the entire state and using a global climatological dataset, Dikshit et al. (2020a) 408 

found the R2 value to be 0.72. This result showed that more emphasis should be given on 409 

studying larger areas and using a global climatological dataset, which will be helpful in 410 

regional drought management planning. 411 

The critical findings of the present study can be grouped into two parts. The first is 412 

understanding the variables that affect drought forecasting at different lead times, and the 413 

second includes the findings regarding drought characteristics. In terms of variables, specific 414 

predictors, such as minimum and mean temperatures, did not considerably affect statistical 415 

metrics and can be eliminated if computational resources are scarce. The present study 416 

(d) 



complements the previous findings of using lagged climatic variables as predictors, which 417 

improves drought forecasting results at longer lead times.  Moreover, the impact of climatic 418 

driver changes over time should be noted (Ummenhofer et al., 2009). The architecture of the 419 

LSTM model helps capture this phenomenon. Although SOI was correlated with SPEI, it did 420 

not significantly affect forecasting. By contrast, the Niño indices were identified as crucial 421 

factors that affect forecasting. One possible reason for this finding can be the nonlinear impact 422 

between the indices captured by the LSTM model. Previous studies have shown that a 423 

nonlinear relationship exists between precipitation anomalies and ENSO events (Power et al., 424 

2017; Fung et al., 2020).  425 

Furthermore, a comparison between the observed and forecasted results based on different 426 

drought characteristics was conducted to understand the forecasting results. The drought 427 

characteristics used were intensity, duration, onset, termination and number of drought 428 

months. The analysis based on drought characteristics shows that drought intensity variation 429 

increases as lead time becomes longer. However, considering that only a few pixels were 430 

located on the borderline between drought and non-drought, the results may have 431 

overpredicted or underpredicted the values, leading to different drought classes. This result is 432 

not a reflection of the model’s limitation, but instead, of the manner in which drought indices 433 

have been categorised. Given that droughts involve a multitude of characteristics, forecasting 434 

studies for any lead time should analyse results in terms of different characteristics and not 435 

focus solely on drought intensity. This suggestion was highlighted while analysing the 436 

variation between the observed and forecasted values within the spatial context (Figure 7). 437 

When examining disparity in terms of drought characteristics, TS also decreased as lead time 438 

increased. However, the interesting finding was that the accurate forecasting of drought onset 439 

and end diminished as lead time became longer. In fact, onset was typically determined later 440 

at longer lead times, suggesting that the architecture can fulfil some of this study’s objectives 441 

and can provide a general understanding of future drought scenarios. Understanding that an 442 

index value is not an absolute reflection of ground reality but a possible drought scenario is 443 

also essential. Considering the manner in which drought categories have been designed, the 444 

index value frequently reflects different drought conditions, particularly at a pixel level. When 445 

combining all the pixel values, errors add up and can often depict contrasting results. 446 

However, the architecture presented in this work can be used to fulfil specific drought 447 

forecasting objectives in terms of different drought characteristics. Moreover, this study’s 448 

results will be more helpful when a regional drought management plan is being considered 449 

instead of a localised management plan. 450 

One limitation of the present work is understanding the spatial variation or autocorrelation of 451 

SSTs and climatic indices, which is a useful direction that should be considered in the future 452 



(Legendre, 1993). The relationship between predictors and the forecasted monthly SPEI at the 453 

spatial scale requires further examination. Such an examination can be conducted using 454 

convolutional neural network LSTM architecture, wherein a certain grid size is used for feature 455 

extraction. In a recent study on forecasting ENSO at longer lead times of up to 18 months, 456 

Ham et al. (2019) used such an architecture to identify the hot spots of predictors. This study 457 

is the first to use a stacked LSTM architecture in drought forecasting. On the basis of the 458 

findings, deep learning approaches can outperform traditional ML models.  459 

6. Conclusions 460 

Droughts are amongst the most complex natural hazards due to the multitude of variables that 461 

affect their occurrences. One of the most challenging tasks towards effective drought 462 

management is forecasting droughts at long lead times. Accordingly, a deep learning model 463 

was used in the present study to forecast droughts at different lead times by using 464 

meteorological and climatic variables as predictors in the NSW region of Australia. A stacked 465 

LSTM model was developed to forecast monthly SPEI using the 1901–2018 dataset. This 466 

dataset was divided into the training period (1901–2000) and the testing period (2001–2018). 467 

Thereafter, a sliding window technique was used to forecast SPEI at different lead times during 468 

the testing period. The findings of this study indicated that the lagged climatic variables 469 

improve forecasting capabilities at longer lead times but do not have a significant effect at 470 

shorter lead times (1–3 months). Assessment of the forecasted results was performed on the 471 

basis of statistical metrics and by examining different drought characteristics. With regard to 472 

statistical metrics, the results showed that the LSTM model outperforms traditional data-473 

driven models. Future work should explore deep learning models by improving the proposed 474 

architecture and experimenting with different models, such as ensemble models. In terms of 475 

drought characteristics (intensity, onset and end), the results varied across different lead 476 

times. The findings of this study demonstrate that statistical metrics do not provide sufficient 477 

assurance as researchers delves into understanding drought forecasting in terms of drought 478 

characteristics. This study can be highly useful to regional drought management planners, 479 

helping them prepare for future drought scenarios.   480 
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