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Abstract:  22 

The rapid expansion of human settlement, agricultural land and roads because of population 23 

growth in several regions of the world has contributed to the depletion of forest land. In this study, 24 

novel ensemble intelligent approaches using bagging, dagging and rotation forest (RTF) as meta 25 

classifiers of multilayer perceptron (MLP) were used to predict spatial deforestation probability 26 

(DP) in Gumani Basin, India. The success rate and correctness of prediction of the ensemble 27 

models were compared with those of the MLP. A total of 1000 deforested pixels and 14 28 

deforestation determining factors (DDFs) were used. The novel ensemble models were trained 29 

using 70% of the deforested pixels and validated with the remaining 30%. DDFs were chosen by 30 

applying the information gain ratio and Relief-F test methods. Distance to settlement, population 31 

growth and distance to roads were the most important factors. The results of DP modelling 32 

demonstrated that nearly 16.82%–12.64% of the basin had very high DP. All four models created 33 
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DP maps with reasonable prediction accuracy and goodness of fit, but the best map was produced 34 

by MLP-bagging. The accuracy of the MLP neural net model was increased 2-3% after ensemble 35 

with the hybrid meta classifiers (RTF, bagging and dagging). The proposed method could be used 36 

for deforestation prediction in other areas having similar geo-environmental conditions. 37 

Furthermore, the findings might be used as a basis for future research and could help planners in 38 

forest management.  39 

Keywords: deforestation probability; hybrid ensemble techniques; machine learning; GIS; 40 
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 42 

1. Introduction 43 

Deforestation is a quasi-natural phenomenon occurring on our planet’s surface ( Wan Mohd Jaafar 44 

et al 2020). Worldwide, forests are affected by several threats, including population increase in 45 

urban areas, expansion of farming land and amenities, illegal mining and unregulated property 46 

rights (Newman et al. 2014; Gaveau et al. 2009; Robinson et al. 2014). The conservation of 47 

biodiversity and the removal of substantial carbon sink may help reduce carbon dioxide 48 

concentrations (Buchanan et al. 2008; Wang et al. 2009). Climate change, ambient carbon cycle 49 

imbalance and ecosystem degradation are the main environmental threats correlated with 50 

deforestation. Deforestation is considered as one of the most remarkable aspects of modifications 51 

in land use/land cover. Forest is a vital natural resource that provides a large range of ecological 52 

goods and facilities and plays a critical crucial role in balancing the atmospheric condition and, 53 

thus, climate change; therefore, forest cover change has become a global concern (Kumar et al. 54 

2014). The effects of the growing strain on the environment have culminated in habitat destruction, 55 

deforestation and depletion for biodiversity (Sun et al. 2013; Nandi et al. 2007). Furthermore, the 56 

increased rate of soil erosion due to loss of forest cover may increase the environmental risks, such 57 

as landslide, water pollution and degradation of wetland ecosystem, which may have a major 58 

detrimental effect on the well-being of humans on a large scale (Glade, 2003; Körner et al. 2005; 59 

Wahab et al. 2019). Thus, identifying the underlying forces behind forest cover modification is 60 

crucial for recognising the transformation in our planetary ecosystem and reducing the speculation 61 

regarding spatial and temporal deforestation probability (DP) (Bax et al. 2016). The deforestation 62 



process occurs in a haphazard fashion. On the basis of a set of suitable and desirable characteristics 63 

of physical and anthropogenic factors, forested lands are converted into other land use. For 64 

instance, forest patches near roads may have a high chance of being deforested. Similarly, low-65 

elevation and gentle slope areas are favourable for cultivation, and farmland has a higher 66 

possibility to be expanded than rough terrain (Lambin et al. 2001; Turner et al. 2001). 67 

Understanding the causes of deforestation is, therefore, important in the formulation of effective 68 

mitigation steps and policies (Hosonuma et al. 2012). Causes of deforestation and the severity of 69 

their effects differ considerably from one region to another region and change over time. Most 70 

causes have been described as leading to rather than accelerating deforestation (Geist et al. 2007). 71 

Some deforestation research has focused on anthropogenic forces, although the analysis of 72 

deforestation processes requires considering the natural and anthropogenic aspects of the 73 

ecosystem (Bax et al. 2016; Wan Mohd Jaafar et al 2020).  74 

Traditional approaches used for analysing deforestation suffer from a series of limitations, 75 

such as follows: 1. correlation cannot be regarded as a clear indicator of the source; 2. statistical 76 

models selected for prediction may have minimal explanatory importance; 3. relationships can be 77 

nonlinear. With recent advances in remote sensing (RS), geographic information systems (GIS) 78 

and various statistical techniques, spatial DP can be forecasted preciselymore accurately (Arekhi, 79 

2011; Houet et al. 2006; Pontius et al. 2001; Maya Liyana Hamzah et al. 2020; Siti Nor Maizah 80 

Saad et al. 2020). In the Carpathian Mountains, the increasing accessibility to large temporal 81 

satellite imagery and the development of GIS and RS tools have facilitated the comprehensive 82 

study of past human-induced forest depletion. Many areas have also been studied at national 83 

(Munteanu et al. 2014; 2015) and international scales (Kaim et al. 2018; Sobala et al. 2017; 84 

Szymura et al. 2018; Wan Mohd Jaafar et al. 2020). Several scholars have prepared DP models 85 

based on logistic regression algorithms in tropical areas (Kumar et al. 2014; Bavaghar, 2015; 86 

Kucsicsa et al. 2019). Traditional unsupervised techniques, including regression analysis (Ludeke 87 

et al. 2019), change vector analysis (Nackaerts et al. 2005) and principal component analysis 88 

(Ortega et al. 2020; Deng et al. 2008), have been widely used to detect changes in forest cover. 89 

Artificial intelligence (AI) and machine learning (ML) algorithms have been widely adopted for 90 

mapping different hazards and potentiality, such as gully erosion susceptibility, landslide 91 

susceptibility (Roy et al. 2019), flood susceptibility (Khosravi et al. 2018), land subsidence (Tien 92 

Bui et al. 2018); Individual tree crown detection and delineation (Wan Mohd Jaafar et al. 2018)  93 



and groundwater potentiality mapping (Tien Bui et al. 2019), have been widely adopted for 94 

mapping different hazards and potentiality. In all those cases, ML and AI methods have shown 95 

good capability in modelling hazards. ML techniques are have been currently used for the 96 

prediction of deforestation. Ortega et al. (2020) used the deep learning technique and support 97 

vector machine to detect deforestation. Saha et al. (2020) used random forest and reduced error 98 

pruning trees (REPTree) for modelling the DP. Dlamini (2016), Krüger and Lakes (2015) and 99 

Mayfield et al. (2017) used Bayesian networks for assessing DP, which provided reasonable 100 

results.  101 

In recent years, several authors have used hybrid ensemble methods for mapping landslides 102 

(Fang et al. 2020), gully erosion (Roy et al. 2020) and groundwater potentiality (Rahmati et al. 103 

2018) and; these techniques have achieved better results than individual models. Ensemble method 104 

is a learning in which several models, such as classifiers, are systematically produced and 105 

integrated to solve a specific computational intelligence problem. Ensemble method is mainly used 106 

to enhance a model 'smodel’s efficiency (classification, estimation, etc.) or minimize the 107 

possibility of an unexpected selection of a weak one. The ensemble of hybrid meta classifier and 108 

artificial neural network is still not used in the field of deforestation modelling. These ensemble 109 

methods provided better results than single ML model. On the basis of the accuracy of the hybrid 110 

ensemble models used in the above-mentioned fields, the current work addressed the question that 111 

hybrid ensemble methods are equally accurate for DP modelling or not. We selected ensembles of  112 

multilayer perceptron (MLP) neural nets (MLPnn) and three hybrid ensemble models, i.e. MLP-113 

bagging, MLP-dagging and MLP-rotation forest (RTF), to prepare DP maps of the study area.  114 

The novelty of this work is that the employed hybrid ensembles of MLPnn and bagging, 115 

dagging and RTF models used havehad not been used for deforestation modelling. This work not 116 

only included these methods but also used Friedman and Wilcoxon signed-rank tests for judging 117 

the difference among the DP maps produced by these models, which are also relatively new in this 118 

field. Information about the forest cover changes of this area remains limited. In this situation, RS 119 

is a vital source of data for the effective monitoring of this region. The forest cover changes were 120 

demarcated using the normalised difference vegetation index (NDVI). The DP maps would help 121 

the researchers and decision makers of this region. In addition, these sorts of methods have not yet 122 

been used in this area, as well as in India for the evaluation of DP. The detailed explanation of all 123 

of these methods and parameters would direct future researchers working in this field. 124 



The purpose of this research is to evaluate the DP in the Gumani River Basin, India by 125 

applying the hybrid ensemble frameworks of MLPnn and ensemble strategies, i.e. bagging, 126 

dagging and RTF. Preparation of the probability map for deforestation is helpful for to 127 

policymakersing to for identifying the areas susceptible to deforestation and evaluatinge the 128 

current forest management. 129 

2. Description of the Study Area 130 

The Gumani River is located in the fringe area of the Chhota Nagpur Plateau of India. It is the 131 

tributary of the Ganga River having a length of 120.09 km. Geographically, this basin extends 132 

from 24°37’39”N–25°7’19”N lat. and 87°21’20”E–87°54’20”E lon. (Figure 1), encompassing an 133 

area of 1274.57 km2. The forested area has been decreased from 24.11% (1990) to 14.33% (2020) 134 

of the total area of the basin (Landsat TM 1990 and OLI 2020 images of the USGS Earth Explorer). 135 

The lower part of the basin is agriculturally prosperous, whilst the upper part has a high 136 

concentration of population and settlement. Population growth is high in this study area; the total 137 

population was 560,000 in 1991 and increased to 750,000 in 2011 (Census of India, 2001, 1991). 138 

Therefore, population increase has a detrimental effect on the forest cover, whilst attention should 139 

be given to geographical context and other criteria of forest depletion. Geologically, this area 140 

comprises Rajmahal Traps, lower Vindhya system, lower Gondwana system and new alluvium. 141 

This basin often has different geomorphological nature because the upper portion belongs to the 142 

undulating plateau and the lower portion is a plain area. The elevation of the study area ranges 143 

from 17 m to 581 m from the mean sea level. The climate varies from subtropical humid to 144 

subhumid (Chandniha et al. 2017). Rainfall in this basin mainly occurs between June and 145 

September (Chandniha et al. 2017). The mean annual rainfall is 1,300 mm (Chandniha et al. 2017). 146 

According to the National Bureau of Soil Survey and Land Use, the prevalent soils are fine loamy, 147 

loamy skeleton and clay skeleton. The forest concentration is mainly high in the upper portion of 148 

the basin and low in the lower portion. For the protection ofprotecting the remaining forest areas 149 

in the basin, prediction of deforestation area and formulation of suitable strategies by the local 150 

government are necessary. Our work would help the decision makers in this respect. 151 

Figure 1. SOMEWHWRE HERE 152 

3. Background Theory of Methods Employed 153 



3.1. Ensemble Model for DP Assessment 154 

DP models using ensemble structures of MLPnn and bagging, dagging and RTF for spatial DP 155 

were obtained through four key stages (Figure 2).  156 

1. Selection of deforestation determining factors (DDFs): After the survey of the published 157 

literature, the DDFs were selected. The selected parameters were justified using two 158 

statistical methods, i.e. information gain ratio (IGR) and Relief-F. Deforestation affecting 159 

factors were divided into two classes, namely, natural factors (viz. altitude, slope, forest 160 

density, distance to forest edge, proximity to river, aspect and topographic position index, 161 

[TPI]) and anthropogenic factors (viz. population density, agricultural land density, 162 

distance from agricultural land, proximity to road, settlement density, proximity to 163 

settlement and population growth) in theis, for DP  DP analysis. 164 

2. Collection and preparation of data layers: Data regarding deforested locations and DDFs 165 

were collected to predict spatial DP. In January 2020, an intensive field investigation with 166 

a handheld global positioning system was conducted to validate the deforested locations 167 

from collected through the interpretation of Google Earth images and NDVI prepared from 168 

the Landsat imageries.  169 

3. Assessment of the contribution of the DDFs: A frequency ratio (FR) model was used, and 170 

the percentage shear of the sample deforestation points was calculated for judging the 171 

significance of the DDFs. 172 

4. Preparation of deforestation models and DP maps: To construct deforestation models, 173 

ensemble methods were firstly, implemented to refine the training data set. Input 174 

configured data were then utilised to categorise the groups for the probability of spatial 175 

deforestation by using the MLPnn base classifier. Finally, frameworks of ML ensemble 176 

were built for DP models. 177 

5. Validation and comparison of models: Using the ROC, efficiency, accuracy, MAE and 178 

RMSE DP maps were validated and compared in consideration of the training and testing 179 

data sets. Friedman and Wilcoxon statistical signed-rank tests were performed to check 180 

whether differences exist amongst the DP models or not. 181 

Figure 2. SOMEWHWRE HERE 182 



3.2. Data Used 183 

3.2.1. Deforestation Map 184 

The forest cover change (1990–2020) was considered a dependent variable (Figure 3) for DP 185 

modelling. NDVI was measured from the Landsat images of 30 m × 30 m resolution for 1990 186 

(Figure 3a), 2000 (Figure 3b), 2010 (Figure 3c) and 2020 (Figure 3d) via GIS tools, and NDVI 187 

values greater than 0.3 were considered forest (Gayen et al. 2018; Weier et al. 2000). During these 188 

decades, nearly 9% of forest cover was lost. The forest cover areas are 24.11%, 20.96%, 16.56% 189 

and 14.33% of the total basin area for the years of 1990 (3a), 2000 (3b), 2010 (3c) and 2020 (3d), 190 

respectively. NDVI map of 1990 of the study area was considered as the base map for this study. 191 

A binary map with the groups of ‘deforestation’ and ‘non–deforestation’ was produced by 192 

subtracting the forest cover from 1990 to 2020 (Figure 3e) for the duration of 1990–2020. For 193 

preparing the DP models and obtaining enhanced result, 1000 pixels for both classes, i.e. 194 

deforested and non–deforested, were randomly selected from the total deforestation and non-195 

deforestation pixels (Süzen et al. 2004). Amongst them, 70% were considered for modelling, and 196 

30% were selected for validating the models. 197 
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 199 
3.2.2. Preparation of DDFs 200 

For constructing the DP models, seven natural factors (i.e. altitude, slope, forest density, distance 201 

from forest edge, proximity to river, aspect and TPI) and seven anthropogenic factors (i.e. density 202 

of population and agricultural land, distance from agricultural land, proximity to road, settlement 203 

density, proximity to settlement and population growth rate) were selected (Table 1). These factors 204 

were considered as independent factors, and a thematic layer for each variable was prepared. In 205 

Table 1, methods of preparing the factors and sources of data have been presented.  206 

Table 1. SOMEWHWRE HERE 207 

The regional topography condition plays an important role in the forest cover change. Spatial 208 

variation in the deforestation process is influenced by slope, altitude, aspect and TPI (Bax et al. 209 

2016; Szymura et al. 2018). The slope classes determine the spatial variability in deforestation 210 

process (Kumar et al. 2014; Bavaghar, 2015; Bax et al. 2016; Siles, 2009; Szymura et al. 2018; 211 

Vanonckelen et al. 2015). A slope map (Figure 4a) was extracted from ASTER DEM with a 212 

resolution of 30 m × 30 m (Table 1). Aspect (Figure 4j) controls the amount of sunlight and rainfall 213 



of a particular region (Kumar et al. 2014; Bavaghar, 2015; Bax et al. 2016). It affects the 214 

composition and development of forest cover. The degree of deforestation is also indirectly 215 

connected to slope face (Bayat, 2000). The DEM of the basin was considered the altitude map 216 

(Figure 4k). In high-altitude areas, natural hazards, such as weathering, aeolian flooding and 217 

landslide, are the main drivers of deforestation; in low-altitude areas, deforestation is induced 218 

mostly by anthropogenic activities (Ercanoglu et al. 2002). Distance to the river is a parameter that 219 

determines the stability and instability of slope, indirectly influencing the forest cover change 220 

(Yalcin, 2008; Saha et al. 2002). Waterbodies may be exposed to forested areas and reflect 221 

secondary routes for timber collection (Nackaerts et al. 2005). For distance to river, a thematic 222 

layer was prepared in a GIS environment by using the Euclidean distance buffer tool (Figure 4c). 223 

The distance from the margins of forest is an important factor that can regulate deforestation 224 

(Matlack, 1994). This factor is an intermediate area from which forest destruction continues at the 225 

border of existing forest (Kumar et al. 2014; Arekhi, 2011). DP is determined using the nature and 226 

features of forest edge in the core forest region. This thematic layer was also produced using the 227 

Euclidean distance buffer tool (Figure 4f). An inverse relationship exists between forest density 228 

and DP (Bouldin, 2008). A forest density map was prepared by dividing the forested area by total 229 

area based on the forest map of 2020 (Figure 4b). Topographic Position Index (TPI) compares the 230 

elevation of each cell in a DEM to the mean elevation of a specified neighborhood around that 231 

cell. TPI classes affect the spatial variability in the deforestation process (Kumar et al. 2014; 232 

Bavaghar, 2015; Bax et al. 2016; Siles, 2009; Szymura et al. 2018; Vanonckelen et al. 2015; 233 

Wilson et al. 2005). TPI was created on the basis of DEM and applied for extracting the slope 234 

position classes (Jennes, 2006). According to Weiss (2001), TPI was classified into six categories 235 

in this study area (Figure 4n), namely, 1) ridge (TPI > 1SD); 2) upper slope (0.5SD < TPI ≤ 1SD); 236 

3) middle slope (−0.5SD < TPI < 0.5SD, slope > 5°); 4) lower slope (−1SD < TPI ≤ −0.5SD); 5) 237 

flat (−0.5SD < TPI < 0.5SD, slope ≤ 5°); 6) valley (TPI ≤ −1SD). 238 

Different sociocultural and economic practices are mainly responsible for the degradation and 239 

loss of forest (Boudreau et al. 2005). The potentiality of deforestation is multiplied as the 240 

population continues to grow near a forested area (Szymura et al. 2018; Vanonckelen et al. 2015). 241 

As a result, population growth (Figure 4m), population density (Figure 4g), distance to settlement 242 

(Figure 4h) and settlement density (Figure 4i) are the main reasons for deforestation. A reciprocal 243 

relationship exists between forest cover change and settlement density. As settlement density 244 



(Figure 4i) increases, the probability of deforestation in its neighbouring parts will be increased 245 

and vice versa. The installation of road systems across land cover proceeds to divide the forest 246 

land and is the first move towards forest depletion. The road network is a vital deforestation-247 

triggering factor because the forest close to the road is highly prone to degradation and vice versa 248 

(Chomitz et al. 1993). The chances of deforestation are high in accessible areas (Bavaghar, 2015). 249 

Here, a distance-to-road map was produced using the Euclidean distance buffer tool (Figure 4e). 250 

Rapid population increase is the main cause of deforestation (Michalski et al. 2008). Much 251 

inhabitants need substantial food and house and, hence, considerable land for farmland and houses 252 

(Cropper et al. 1994). Overpopulation is considered the major cause of forest destruction in 253 

accordance with international organisations, including FAO. The population density map of the 254 

study area was constructed on the basis of data from the 2011 census (Figure 4g). Agricultural land 255 

density (Figure 4l) is an important factor for assessing the DP of a particular region because it 256 

identifies the concentration of agricultural land in a particular area. The chances of deforestation 257 

are high where the density of agricultural land is high. The distance to agricultural land (Figure 258 

4d) is also an important land use predictor for determining DP. The chances of deforestation will 259 

be increased as the distance decreases and vice versa because a high probability of building or 260 

other human land usage will occur near an agricultural field. Population growth can be followed 261 

by a high rate of forest cover change (Szymura et al. 2018; Vanonckelen et al. 2015). The 262 

population growth (Figure 4m) data were collected from the Census of India (2011). High rates of 263 

population growth lead to the increase in settlement and agricultural area in the area of forest cover 264 

(Minetos et al. 2010). 265 

Figure 4. SOMEWHWRE HERE 266 

 267 

3.32. Factor Selection 268 

The selection of conditioning variables is a challenging task in any study because no specific 269 

criteria are available. Bui et al. (2016) and Roy et al. (2020a) identified effective factors by using 270 

statistical models for natural hazard assessment. Gayen et al. (2018) used multicollinearity analysis 271 

for selecting DDFs. Different statistical methods, such as correlations, regressions, Relief-F tests, 272 

IGR, probabilistic models and ML models, can also be used to select DDFs. In this study, the IGR 273 

and Relief-F methods were applied for selecting the important deforestation determining factors. 274 

IGR solves the weakness of information gain related to attributes that can take on a vast range of 275 



different values that could learn the set of training too well. IGR has been used to assess which of 276 

the factors are perhaps the most significant. Relief-F algorithms have often been used as a form of 277 

selecting features that is implemented in a pre-possessing period well before the model is trained 278 

and is one of the most powerful pre-processing algorithms. 279 

3.32.1. Information Gain Ratio (IGR) 280 

For DP, anthropogenic and natural factors do not have the same diagnostic power and may even 281 

reduce the predictive capacity of a model. If we remove the irrelevant DDFs from the model, 282 

enhanced findings and prediction can be obtained (Martínez-Álvarez et al. 2013). IGR is amongst 283 

the most effective factor selection strategies (Tien Bui et al. 2016). Information is gained on the 284 

basis of an intelligent principle that helps reduce variance and shows the importance of influencing 285 

variables. In data mining, IGR is an important strategy for quantifying factor predictability (Witten 286 

et al. 2011). Quinlan (1993) established the IGR, in which a high ratio means a great predictive 287 

capacity. In the supplementary material section, equations used to calculate IGR are mentioned 288 

(S1). In this study for identifying as well as selecting the important DDFs IGR was used.Here, 289 

IGR was calculated using Equation 1.  290 

Given training data S consisting of n input samples, n(Li, S) is the number of samples in the training 291 

data S belonging to class Li (deforestation, non–deforestation). The information (entropy) needed 292 

to classify S was calculated as 293 

2
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for land subsidence A was estimated as 296 
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The IGR for a certain conditioning factor for land subsidence A was computed as 298 
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where SplitInfo(S, A) reflects the information gained by separating training data S into subsets. 301 

SplitInfo(S, A) was calculated as 302 



2
1

( , ) log
m

j j

j

S S
SplitInfo S A

S S=

= −∑
.                                                                                         (4) 303 

3.32.2. Relief-F Test Method 304 

The Relief-F method, implemented by Kira and Rendell (1992), iteratively changes the 305 

weights of features in accordance with their capacity to distinguish between adjacent shapes. The 306 

principal concept of the Relief-F algorithm is similar to the specific rules of the k-nearest 307 

neighbour algorithm (Altun et al. 2007). Being in the same class is likely to yield a distance close 308 

to a given distance. If the attribute is useful, the closest distances of the same class are expected to 309 

be closer to the range given throughout this attribute than the closest distances of all other classes 310 

(Altun et al. 2007). Mathematically, X is assumed to be a randomly drawn sample of the outcomes 311 

of a binary test. Two closest neighbours, one from the same class (strike or NH) and the other from 312 

another class (miss or NM) should be evaluated. Then, the weight (wi) for the i-th feature is 313 

updated via a heuristic computation (Cai et al. 2012), i.e. 314 

( ) ( )i i i i
i iw w x NH x NM← + − − −

.                                                                                          (51) 315 

Further information on the algorithm is provided in the paper of Liu and Motoda (2008). 316 

3.3. Data Used 317 

3.3.1. Deforestation Map 318 

The forest cover change (1990–2020) was considered a dependent variable (Figure 3) for DP 319 

modelling. NDVI was measured from the Landsat images of 30 m × 30 m resolution for 1990 320 

(Figure 3a), 2000 (Figure 3b), 2010 (Figure 3c) and 2020 (Figure 3d) via GIS tools, and NDVI 321 

values greater than 0.3 were considered forest (Weier et al. 2000). During these decades, nearly 322 

9% of forest cover was lost. The forest cover areas were 24.11%, 20.96%, 16.56% and 14.33% of 323 

the total basin area for the years of 1990 (3a), 2000 (3b), 2010 (3c) and 2020 (3d), respectively. 324 

For the duration of 1990–2020, a binary map with the groups of ‘deforestation’ and ‘non–325 

deforestation’ was produced by subtracting the forest cover from 1990 to 2020 (Figure 3e). For 326 

preparing the DP models and obtaining enhanced result, 1000 pixels for both classes, i.e. 327 

deforested and non–deforested, were randomly selected (Süzen et al. 2004). Amongst them, 70% 328 

were considered for modelling, and 30% were selected for validating the models. 329 
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3.3.2. Preparation of DDFs 332 

For constructing the DP models, seven natural factors (i.e. altitude, slope, forest density, distance 333 

from forest edge, proximity to river, aspect and TPI) and seven anthropogenic factors (i.e. density 334 

of population and agricultural land, distance from agricultural land, proximity to road, settlement 335 

density, proximity to settlement and population growth rate) were selected. These factors were 336 

considered independent factors, and a thematic layer for each variable was prepared. ,Data were 337 

gathered from different sources, such as ASTER digital elevation model (DEM), Landsat images 338 

of 30 m × 30 m from the USGS, topographical sheets of 1:50000 scale from the Survey of India 339 

and population data from the Census of India, to produce the thematic layers of the selected DDFs.  340 

The regional topography condition plays an important role in forest cover change. Spatial 341 

variation in the deforestation process is influenced by slope, altitude, aspect and TPI (Bax et al. 342 

2016; Szymura et al. 2018). The slope classes determine the spatial variability in deforestation 343 

process (Kumar et al. 2014; Bavaghar, 2015; Bax et al. 2016; Siles, 2009; Szymura et al. 2018; 344 

Vanonckelen et al. 2015). A slope map (Figure 4a) was extracted from ASTER DEM with a 345 

resolution of 30 m × 30 m. Aspect (Figure 4j) controls the amount of sunlight and rainfall of a 346 

particular region (Kumar et al. 2014; Bavaghar, 2015; Bax et al. 2016). It affects the composition 347 

and development of forest cover. The degree of deforestation is also indirectly connected to slope 348 

face (Bayat, 2000). The aspect map (Figure 4j) was extracted from the ASTER DEM. The DEM 349 

of the basin was considered the altitude map (Figure 4k). In high-altitude areas, natural hazards, 350 

such as weathering, aeolian flooding and landslide, are the main drivers of deforestation; in low-351 

altitude areas, deforestation is induced mostly by anthropogenic activities (Ercanoglu et al. 2002). 352 

Distance to the river is a parameter that determines the stability and instability of slope, indirectly 353 

influencing the forest cover change (Yalcin, 2008; Saha et al. 2002). Waterbodies may be exposed 354 

to forested areas and reflect secondary routes for timber collection (Nackaerts et al. 2005). For 355 

distance to river, a thematic layer was prepared in a GIS environment by using the Euclidean 356 

distance buffer tool (Figure 4c). The distance from the margins of forest is an important factor that 357 

can regulate deforestation (Matlack, 1994). This factor is an intermediate area from which forest 358 

destruction continues at the border of existing forest (Kumar et al. 2014; Arekhi, 2011). DP is 359 

determined using the nature and features of forest edge in the core forest region. This thematic 360 

layer was also produced using the Euclidean distance buffer tool (Figure 4f). An inverse 361 

relationship exists between forest density and DP (Bouldin, 2008). A forest density map was 362 



prepared by dividing the forested area by total area (Figure 4b). TPI classes affect the spatial 363 

variability in the deforestation process (Kumar et al. 2014; Bavaghar, 2015; Bax et al. 2016; Siles, 364 

2009; Szymura et al. 2018; Vanonckelen et al. 2015; Wilson et al. 2005). TPI was created on the 365 

basis of DEM and applied for extracting the slope position classes (Jennes, 2006). According to 366 

Weiss (2001), TPI was classified into six categories in this study area (Figure 4n), namely, 1) ridge 367 

(TPI > 1SD); 2) upper slope (0.5SD < TPI ≤ 1SD); 3) middle slope (−0.5SD < TPI < 0.5SD, slope 368 

> 5°); 4) lower slope (−1SD < TPI ≤ −0.5SD); 5) flat (−0.5SD < TPI < 0.5SD, slope ≤ 5°); 6) 369 

valley (TPI ≤ −1SD). 370 

Different sociocultural and economic practices are mainly responsible for the degradation and 371 

loss of forest (Boudreau et al. 2005). The potentiality of deforestation is multiplied as the 372 

population continues to grow near a forested area (Szymura et al. 2018; Vanonckelen et al. 2015). 373 

As a result, population growth (Figure 4m), population density (Figure 4g), distance to settlement 374 

(Figure 4h) and settlement density (Figure 4i) are the main reasons for deforestation. A reciprocal 375 

relationship exists between forest cover change and settlement density. As settlement density 376 

(Figure 4i) increases, the probability of deforestation in its neighbouring parts will be increased 377 

and vice versa. The installation of road systems across land cover proceeds to divide the forest 378 

land and is the first move towards forest depletion. The road network is a vital deforestation-379 

triggering factor because the forest close to the road is highly prone to degradation and vice versa 380 

(Chomitz et al. 1993). The chances of deforestation are high in accessible areas (Bavaghar, 2015). 381 

Here, a distance-to-road map was produced using the Euclidean distance buffer tool (Figure 4e). 382 

Rapid population increase is the main cause of deforestation (Michalski et al. 2008). Much 383 

inhabitants need substantial food and house and, hence, considerable land for farmland and houses 384 

(Cropper et al. 1994). Overpopulation is considered the major cause of forest destruction in 385 

accordance with international organisations, including FAO. The population density map of the 386 

study area was constructed on the basis of data from the 2011 census (Figure 4g). Agricultural land 387 

density (Figure 4l) is an important factor for assessing the DP of a particular region because it 388 

identifies the concentration of agricultural land in a particular area. The chances of deforestation 389 

are high where the density of agricultural land is high. The distance to agricultural land (Figure 390 

4d) is also an important land use predictor for determining DP. The chances of deforestation will 391 

be increased as the distance decreases and vice versa because a high probability of building or 392 

other human land usage will occur near an agricultural field. Population growth can be followed 393 



by a high rate of forest cover change (Szymura et al. 2018; Vanonckelen et al. 2015). The 394 

population growth (Figure 4m) data were collected from the Census of India (2011). High rates of 395 

population growth lead to the increase in settlement and agricultural area in the area of forest cover 396 

(Minetos et al. 2010). 397 
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3.4. Deforestation Occurrence in Relation to DDFs and Analysis of Its Influence 399 

The percentage of deforestation samples and the FR of subclasses of each factor were calculated 400 

to understand the influences of the selected DDFs on the deforestation process. The percentage of 401 

deforested sample in subclasses of each explaining variable was calculated by overlaying each 402 

raster representing independent variables with the randomly selected deforestation pixels. FR 403 

provides a proportion of deforestation pixels in a specific category for each input layer (Lee et al. 404 

2006). FR values (Equation 2) based on the frequency of deforestation samples were calculated 405 

using the following equation: 406 

f
tfFR x
tx

=

,                                                                                                                                    (26) 407 

where, f refers to the pixels of deforestation in the explanatory variable subclass, tf indicates the 408 

total deforestation pixels, x denotes the total pixels in the explanatory variable subclass, and tx is 409 

the total number of pixels. 410 

3.5. Base Classifier of MLPnn 411 

MLPnns are regarded as the techniques of artificial neural networks (ANN) and are commonly 412 

utilised in classification (Haykin, 2009). MLPnn is a feedforward neural network and for the 413 

training process, it uses backpropagation. No decision has been reached about the relative values 414 

of individual input variables, the plurality of inputs is set on the basis of weight adjustment 415 

throughout the training phase, and the distribution of the training data set is independent of the 416 

pre-assumptions in these techniques (Gardner et al. 1998). Three main sequences exist for creating 417 

the neural networks in MLP, i.e. input, hidden and output layers (Figure 5). In accordance with a 418 

specific application, every layer in a network contains adequate neurons. The input layer is inactive 419 

and rarely gathers data (e.g. data from various DDFs). Hidden and output layers analyse 420 

information on a constant basis. Input layers are known as variables influencing deforestation, 421 

output layers are regarded as the graded outcomes of inferring deforested or non deforestednon-422 

deforested groups, and hidden layers are the categorising layers for converting inputs into outputs. 423 



MLP Neural Nets have shown to be a strongerperforming better than conventional classification 424 

methods (Benediktsson et al . 1990). There are some benefits of using this approach: (1) there are 425 

no pre-assumptions as to the distribution of the training dataset, (ii) there is no need to decide on 426 

the relative importance of the various input measures, and (iii) the weights are changed to choose 427 

the most input measures during the training process (Gardner and Dorling 1998). 428 

MLPnns are subject toof two key phases: (I) inputs are transmitted via the hidden layers to the 429 

output values, then the output values are compared with the pre-values to approximate the 430 

differentiation; (II) in achieving the best performance, weights are balanced to eliminate the 431 

disparity. Let x = xi, i = 1, 2,..., 14 is the vector of the 14 factors impacting deforestation, and y = 432 

1 (deforested) or 0 (non-deforested). The number of neurons in the input and output layers is 433 

generally calculated via operation. The number of hidden layers and their neurons is quantified by 434 

trial and error (Gong, 1996). For a classification question, MLPnn data processing includes three 435 

stages: learning, weighting, and classification stages. The learning phase happens with the issuance 436 

of random initial relational weights, which are continuously revised until the correct training 437 

efficiency is achieved. Subsequently, the modified weights derived from the prepared network are 438 

often used to process test data and assess the overall precision and effectiveness of the application. 439 

The network efficiency is assessed by evaluating the consistency of training and test data in terms 440 

of the percentage and overall accuracy of classification (Congalton, 1991). Learning information 441 

from the input neurons is considered to acquire the information of the output neurons by using the 442 

hidden neurons. Neuron j obtained from neuron i in its corresponding input layer in the first hidden 443 

layer can be represented as: 444 

1
'

t

ij i
i

x w p
=

=∑
,                                                                                                                                    (37) 445 

where wij reflects the weight of the association between input neuron i and hidden neuron j, pi is 446 

the data at input neuron I, and t is the input neuron number. The output value generated in the 447 

concealed neuron j, pj, is the transfer function, f, which is evaluated as the amount provided in 448 

neuron j, xˈ. f, the transfer function, can be described as  449 

'
1( ')

1j xp f x
e−= =

+ .                                                                                                                        (48) 450 

Function f is typically a nonlinear sigmoid feature that is implemented to the weighted sum of 451 

input data until the data are transferred to the next stage.  452 



The sum of the squared differences between the expected and actual output neurons E values 453 

is defined as follows (Subasi, 2007): 454 

21 ( )
2 dj j

j
E Y Y= −∑

                                                                                                           (5) 455 

where Ydj is the expected output neuron j and Yj is the actual output neuron. Each wji weight 456 

is adjusted to lessen the value E based on the training algorithm used. In this study, MLPnn was 457 

fitted with 500 epochs, 5 1 hidden layers and validitvalidationy threshold of 20 generated from the 458 

trial-and-error process to avoid overfitting cases. 459 
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3.6. ML Ensemble Techniques 461 

3.6.1. RTF 462 

RTF is an ensemble approach assembled with individual decision trees (Kuncheva et al. 2007) and 463 

initially proposed for classification by Rodriguez et al. (2006). It is based on the concept of a 464 

random forest approach aimed at creating reliable and flexible classifiers (Rodriguez et al. 2006). 465 

An individual tree is configured inside the RTF with compressed data sets associated with the 466 

space rotated using a functionPrincipal Component Analysis (PCA). In this model, bootstrap 467 

samples are used as a training set for specific classifiers (Kuncheva et al. 2007). Throughout this 468 

process, points are derived from training datasets using base classifier to generate learning sub-469 

training datasets (Pham et al., 2016b). The function of DDFs in this analysis is470 

( )1 2 nx= x ,x ,........x . ( )1 2Y= y ,y denotes the main vector divisions, deforested or not deforested. 471 

D stands for the training data. 1 2 nF ,F ,...F are categorizsed in accordance with the ensemble. T specifies 472 

a certain set of DDFs and is divided into sub-classes k. A new training nonempty subset X ′
ij  is 473 

prepared by applying the bootstrap method where Fij is the jth subset of features to run classifier 474 

Di. Further, a linear transformation is used to X ′
ij to prepare coefficients of matrix Cij wherein size 475 

of each matrix of X ′
ij is M×1 with the coefficients of (1)

ijr ….. ( )k
ijr . Ensemble RTF is established on 476 

the basis of the rotation matrix formed using the basic methods of characterisation and conversion 477 

(Xia et al. 2007). The rotation matrix is obtained by rearranging Ri matrix.  478 

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed



(1) (2) (S1)
1 1 1

(1) (2) (S2)
1 1 1

i

(1) (2) (Sk)
1 1 1

ri ,ri ,....ri 0 ..... 0
0 ri ,ri ,....ri ..... 0

R =
0

0 0 ..... ri ,ri ,....ri

 
 
 
 
 
 

  
                                                  (6) 479 

 480 

In this matrix, columns of R are reorganized as per original feature and a novel reorganized rotation 481 

matrix is called as i
rR  wherein i

rxR  signify the altered training set for classifier Di and all classifiers 482 

are to be run in a similar method.The obtained coefficients that are created for each entity class are 483 

organised using a sparse rotation matrix called Ri via the average mixture strategy. 484 

n
r( )

ij i
i=1

1= d (x ), j=1,2..........cR
n

x
jµ ∑ ,                                                                                        (79) 485 

where ( )x
jµ  is the chief confidence allocated to the class of yi, the likelihood allocated by the 486 

classifier Di and the regression dij is 
r

ij id (x )R . In this hypothesis, x is from class yi, and c is the 487 

number of classes (Rodriguez et al., 2006).shows the generated probability of Ci classifier 488 

regarding hypotheses, and k class is activated using ε. ε is attributed to the highest support group. 489 

3.6.2. Dagging 490 

Dagging is a well-known re-sampling ensemble approach that produces and integrates a number 491 

of classifiers utilizing the same learning algorithm for base-classifiers. Ting and Witten proposed 492 

dagging in 1997. The procedure varies in many respects from the process of boosting and bagging. 493 

For example, based on the outcome of the previously generated classifiers, the boosting technique 494 

adapts the training data set in terms of distribution, while bagging modifies it stochastically and 495 

boosts the basis of the success of each classifier as a voting weight. For multiple disjoint 496 

experiments, dagging is used as a replacement for bootstrap experiments to obtain base classifiers 497 

(Ting and Witten, 1997; Kotsianti et al. 2007). Furthermore, strong empirical indications prevail 498 

that dagging in noisy settings is far more resilient than boosting. A resampling ensemble strategy 499 

is used to merge multiple classifiers for ensuring improved predictive performance of base 500 

classifiers dependent on majority voting (Kotsianti et al. 2007). For this purpose, we created an 501 

ensemble in this research using dagging ensembles with MLPnn base classifier through voting 502 

methodology. 503 
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3.6.3. Bagging 504 

Bagging, designed by Breiman (1996), combines several cases of training dataset and uses 505 

bootstrap aggregation technique to achieve results of strong predictive precision centered on a 506 

based classifier (Wu et al. 2020). It was used to provide a precise mapping of DP. For very large 507 

ensembles, bagging gives great results; having a greater number of estimators results in increasing 508 

the accuracy of these approaches in comparison to RTF model. Such ensemble is chosen because 509 

a slight change in the training data represents and enhances the capacity for estimation (Wu et al. 510 

2020). Random selection of bootstrap samples to create a range of training subsets, generation of 511 

classifiers of several models, and combining the classifier development in the final model are the 512 

three main steps in bagging (Bui, et al. 2016). In bootstrap experiments, one third of instances are 513 

not exterminated in the early test process. Bagging classifier in the bagging system uses the 514 

displacement approach to produce a bootstrap sample from the actual training dataset. The bagging 515 

hybrid ensemble solution enhances the success to each array of classifiers by linking them to the 516 

original feature scheme for the bagging categorisation phase. These cases were recognised by 517 

Breiman (1996) as off-bag tests. A Bagging fits each base classifier on random subsets of the initial 518 

dataset and then aggregates their individual predictions to form a final prediction (either by voting 519 

or by averaging). 520 

3.7 Construction of DP Models and DP Maps 521 

DP models utilising hybrid ML ensemble frameworks were developed using training data sets to 522 

predict the deforestation in the study area. For running the ML models continuous values of 523 

continuous factors and categorical values of categorical factors were used. The continuous DDF 524 

were classified based on the natural break classification method for the frequency ratio model as 525 

to know the influence of the sub-categories of the DDF through FR model. Deforested and forested 526 

pixels were considered as the training datasets. Pixels (70%) from both classes were randomly set 527 

as training datasets for running the models. The deforestation and non-deforestation were 528 

characterised as 0 and 1 codes, respectively. Once all the four models were effectively run in the 529 

training phase, the relational weights of the models were applied to compute the DP indices for all 530 

pixels. The measuring variables were standardised by training via the trial-and-error method to 531 

construct such DP models. Generally, 1 to 2 hidden layers are enough for pixel based mapping. 532 

For modelling the DP in this study using ensemble models ArcGIS and R-studio were used. Caret, 533 

rpart, ipred, rotationForest, neuralnet packages of R studio were used for predicting the 534 



deforestation probability in this research. In this analysis, we used 1 hidden layers, 0.3 learning 535 

rate, 0.2 momentum, 0 seed, 500 training times and 20 validation thresholds for the MLPnn to: 536 

decide the quantity of data for reduced-error pruning, upgrade weight, add value to the weight, 537 

divide the data, and build the ensemble and finish the calibration testing (Pham et al. 2016; Onan, 538 

2016). The validation threshold is the value being used by validation test to be terminated. A 539 

threshold function is a Boolean function which determines whether a certain threshold is crossed 540 

by the value equality of its inputs. The percentage bag size indicates the training range size (Sedano 541 

et al. 2013). Likewise, 16 iterations, 1 seed, 100% of bag size (training range size) and MLPnn as 542 

base classifiers were set for bagging. Eighteen iterations, 2 seeds and MLPnn as base classifiers 543 

and 8 iterations, 1 seed and principal component analysis as base filters were used. 544 

 545 

3.87. Validation Techniques 546 

3.87.1. Threshold-dependent methods  547 

ROC curve remains the most effective and acceptable approach that can effectively test models 548 

(Kumar et al. 2011). In this study, three threshold dependent methods i.e. ROC, precision and 549 

accuracy were used for effectively evaluate the performance of the used models. The area under 550 

the curve (AUC) indicates the effectiveness and consistency of the models (Pepe et al. 2000). The 551 

ROC curve has been used in various disciplines and branches (e.g. engineering and medical). 552 

Accuracy and precision have been considered for checking the robustness of models. Equations of 553 

AUC, sensitivity, specificity, precision and accuracy are mentioned in the supplementary material 554 

section (S2). High values of AUC, precision and accuracy indicate the good capability of models. 555 

AUC values vary from 0 to 1; an AUC value is highest with 1 which suggests a perfect estimation, 556 

whereas an AUC value < 0.5 implies poor results (Can et al. 2005). 557 
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=
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=
+ ,                                                                                                                   (14) 562 

where, TP, TN, FP and FN indicate true positive, true negative, false positive and false negative, 563 

respectively; P and N are the total numbers of deforestation and non–deforestation pixels, 564 

respectively. AUC values vary from 0 to 1; an AUC value is highest with 1 which suggests a 565 

perfect estimation, whereas an AUC value < 0.5 implies poor results (Can et al. 2005). 566 

3.87.2. Statistical Techniques 567 

Statistical evaluation techniques, such as MAE and RMSE, were selected for this study to validate 568 

the models. MAE is the amount sum of difference in the total number of observations between 569 

predicted and actual DP values of  anythe data sets. RMSE is defined by the square root of MAE 570 

(Supplementary material-S3). MAE and RMSE were determined using the following equations: 571 
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where, n indicates the total training and test samples, Ypredicted is the expected value, and Y actual is 574 

the output value. Can et al. (2005) set a cut-off value of 0.5. A value above 0.5 suggests poor 575 

results, whereas a value less than 0.5 suggests good performance. 576 

3.87.3. Friedman and Wilcoxon Statistical Signed-rank Tests 577 

The focus of this sub-subsection was to review the results of ensemble ML classifiers via statistical 578 

tests on multiple data sets. The classifiers of ML ensembles were tested using the same random 579 

samples. The main objective of these tests was to determine which of used methods vary 580 

statistically in performance. In this respect, Friedman and Wilcoxon rank tests are suitable because 581 

these tests do not presume homogeneity of regular distributions or variance (Tien Bui et al. 2016). 582 

The signed-rank tests of Friedman (2012) and Wilcoxon (1937) were applied in this work to 583 

analyse the major differences amongst model outputs. A decision was obtained in consideration of 584 

the likelihood of hypotheses (p-value); if the p-value is valid, then the alternative and null 585 

hypotheses are denied, and a considerable gap exists amongst the models and vice versa (Tien Bui 586 

et al. 2016). The signed-rank Wilcoxon determines the statistical importance of the systematic 587 

pairwise variations amongst the DP models. For this test, p-value and z-value were considered to 588 



determine the important variations amongst the models. If the p-value is smaller than 0.05 and the 589 

z-value reaches the threshold z values (−1.96 and +1.96), then the null alternative hypothesis will 590 

be accepted and the results of the DP models will be substantially different (Tien Bui et al. 2016; 591 

Chen et al. 2018). 592 

4. Results  593 

4.1. Relief-F Test and IGR 594 

The IGR and Relief-F approaches were used to examine the relative importance of each of the 595 

DDFs for modelling DP probability. IGR and Relief-F were calculated for the training data, as 596 

shown in Figure 6 and Table 12. The resulting IGR and Relief-F indicated that selected variables 597 

provided have good predictive valuescapability. Distance from settlement provided shown the 598 

maximum prediction capability; the IGR and Relief-F values were 0.3100 and 0.0922, 599 

respectively. Aspect contributed the least predictive value with IGR and Relief-F values of 0.0023 600 

and 0.0052, respectively. 601 
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 604 
4.2. Frequency of Deforestation in Relation to DDFs 605 

The selected input factors led to a spatial heterogeneity in deforestation process across the study 606 

area. The percentage of deforestation samples and FR value in each subclass of DDFs was 607 

calculated to understand the different influences of DDFs. The histograms (Figure 7) depict the 608 

relationship of deforestation with the different DDFs. 609 

For each slope class, deforestation varied (Figure 7a). The maximum deforested samples were 610 

identified in the low-slope class (56.7%), followed by those in the moderate-slope class. Similarly, 611 

the FR value was highest in the low-slope class, i.e. 1.08. The relationship between deforestation 612 

occurrence and aspect was also analysed (Figure 7b). The percentage of deforested samples and 613 

FR value (Table 23) were maximum for the flat area. For elevation (Figure 7b), the 614 

numberpercentage of deforestation pixels was 67% between 17 and 145 m elevation, and it reduced 615 

in the high-altitude classes. The FR value was maximum (1.13) for the 79–145 m elevation class. 616 

A similar pattern could be observed in TPI (Figure 7d). The highest deforested samples were 617 



observed on flat land (53%). Most of the forest reductions were connected with distance to forest 618 

edge. In the first 62 m buffer ring, above 46% of the overall deforested samples were concentrated 619 

and within 0.5 km, which was 92% of the samples (Figure 7j). The FR value was also maximum 620 

(1.49) for the first buffer ring (0–62 m). A remarkable relationship was found between 621 

deforestation occurrence and proximity to the river. The maximum FR value (1.29) was achieved 622 

in the 0–156 m buffer ring. The incidence of forest loss decreased with increasing distance from 623 

settlement and roads (Figures 7f and 7k). For proximity to settlement and road, 91% and 87% of 624 

the total deforested sample pixels were concentrated within 0.5 km. The FR value of the 0.10–0.50 625 

km road buffer ring was the maximum at 2.12, and the 71–142 m settlement buffer ring had the 626 

maximum FR value of 1.11 (Table 23). Deforestation occurrence was negatively associated with 627 

forest density (Figure 7g). The percentage shear of deforestation samples and FR value were 628 

highest for the low-forest density class.  629 

A negative association was also found in case of distance to agricultural land (Figure 7m). A 630 

high rate of deforestation occurrence (73%) was determined at less than 200 m from agricultural 631 

land, and FR value was maximum for the 0–58 m buffer ring. The concentration of deforestation 632 

samples and FR values were high in the areas with high settlement (Figure 7i) and agricultural 633 

land density (Figure 7l). Figures 7e and 7n reveal that heavy deforestation occurred in areas marked 634 

by high population density and fast population growth. 635 
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 638 

4.3. Construction of DP Models and MapsAnalysing the deforestation probability 639 

DP models utilising hybrid ML ensemble frameworks were developed using training data sets to 640 

predict the deforestation in the study area. Deforested and forested pixels were considered the 641 

training data sets. Pixels (70%) from both classes were randomly set as training data sets for 642 

running the models. The deforestation and non-deforestation were characterised as 0 and 1 codes, 643 

respectively. Once all the four models were effectively run in the training phase, the relational 644 

weights of the models were applied to compute the DP indices for all pixels. The measuring 645 

variables were standardised by training via the trial-and-error method to construct such DP models. 646 

In this analysis, we used 5 hidden layers, 0.3 learning rate, 0.2 momentum, 0 seed, 500 training 647 

times and 20 validation thresholds for the MLPnn to decide the quantity of data for reduced-error 648 

pruning, upgrade weight, add value to the weight, divide the data, build the ensemble and finish 649 



the calibration testing (Pham et al. 2016; Onan, 2016),. The percentage bag size indicates the 650 

training range size (Sedano et al. 2013). Likewise, 16 iterations, 1 seed, 100% of bag size (training 651 

range size) and MLPnn as base classifiers were set for bagging. Eighteen iterations, 2 seeds and 652 

MLPnn as base classifiers and 8 iterations, 1 seed and principal component analysis as base filters 653 

were used. 654 

The DP indices of all pixels were created calculated of thein total area, and each pixel was 655 

allocated with a specific probability index. Probability indices for deforestation were reclassified 656 

using a statistical approach. For this analysis, the methodology of geometrical interval was used 657 

as a statistical tool to reclassify DP indices. The approach of geometric interval is ideal for 658 

classifying continuous data as DP indices whilst minimising variance (Frye, 2007). The DP indices 659 

were classified into five probability classes on the basis of this method, namely, very low, low, 660 

moderate, high and very high (Figure 8). The outcome of the MLP model indicated that 25.16%, 661 

22.19%, 21.02%, 14.81% and 16.82% of the overall forest area of the basin fell under very low, 662 

low, moderate, high and very high DP classes, respectively (Table 34). The outcomes of the MLP-663 

RTF model showed that 34.98%, 15.67%, 18.98%, 16.87% and 13.50% of the basin’s total forest 664 

area fell under very low, low, moderate, high and very high DP classes, respectively. In the MLP-665 

dagging model, very low, low, moderate, high and very high DP classes covered 37.44%, 22.52%, 666 

16.17%, 11.23% and 12.64% of the basin’s total forest area, respectively. The land occupied by 667 

very low, low, moderate, high and very high PD classes were 33.48%, 19.15%, 17.88%, 16.00% 668 

and 13.49%, respectively, in accordance with the MLP-bagging method. 669 

 670 
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4.4. Validation and Comparison of DP Models 673 

The robustness of the DP models was judged using three threshold-dependent methods (AUC of 674 

ROC, precision and accuracy), two threshold-independent methods (MAE and RMSE) and two 675 

statistical tests (Friedman and Wilcoxon signed-rank tests). The AUCs showed that the precision 676 

of the DP maps reached more than 86% (0.86) for the test and validation data sets (Table 54). The 677 

MLP-bagging method for training and testing achieved the highest accuracy, followed by MLP-678 

dagging, MLP-RTF and MLPnn. The AUC values of success rate curve (training data) and 679 

prediction rate curve (test data)for was the highest for the MLP-bagging (0.902 and 0.943) and the 680 



lowest for the MLPnns (, MLP-bagging, MLP-dagging and MLP-RTF were 0.869 and 0.885), 681 

0.921, 0.902 and 0.887, respectively; the corresponding AUC values of prediction rate curve (test 682 

data) were 0.885, 0.943, 0.928 and 0.902 (Figure 9). The highest values of precision and , accuracy, 683 

MAE and RMSE of MLP were 0.77, 0.77, 0.22 and 0.37 by using the training data sets and 0.71, 684 

0.71, 0.29 and 0.43obtained by the MLP-bagging and the lowest by the MLPnn, respectively 685 

(Table 5) when utilising the test data sets, respectively. The values of precision, accuracy, MAE 686 

and RMSE of MLP-bagging were 0.87, 0.85, 0.22 and 0.29 for the training data sets and 0.87, 687 

0.80, 0.19 and 0.34 for the test data, respectively. The values of precision, accuracy, MAE and 688 

RMSE of MLP-dagging were 0.82, 0.80, 0.22 and 0.29 for the training data sets and 0.84, 0.76, 689 

0.24 and 0.38 for the validation data set, respectively. The values of precision, accuracy, MAE and 690 

RMSE of MLP-RTF were 0.77, 0.77, 0.20 and 0.32 by using the training data and 0.79, 0.74, 0.27 691 

and 0.37 by using the validation data, respectively. The values of statistical measures, i.e. MAE 692 

and RMSE, were calculated in consideration of the training and validation data sets. The lLowest 693 

values (0.24 and 0.38) were obtained for the MLP-bagging ensemble model. On the other hand, 694 

the highest values (0.29 and 0.43) were obtained by the MLPnn model. 695 

Therefore, from the validation results, it was found that the accuracy of the MLP model was 696 

improved after combining with the selected three meta classifiers. On an average AUC of 697 

prediction and success rate curves was increased by 3%.  The highest increase of AUC values of 698 

both curves were found in the MLP-Bagging ensemble modes i.e. 5.4% (in success rate curve) and 699 

5.8% (In prediction rate curve) respectively. However, as per the results of ROC, precision, 700 

accuracy, MAE and RMSE, the robustness level of the MLP-bagging model was higher than those 701 

of the other MLPnn and ensemble models. 702 

Figure 9. SOMEWHWRE HERE 703 

Table 45. SOMEWHWRE HERE 704 

Friedman and Wilcoxon signed-rank tests were used to ascertain the DP models. The results 705 

of the Friedman test are presented in Table 56. The mean ranking values for the MLPnn, MLP-706 

bagging, MLP-dagging and RFB-RTF models were 2.77, 2.22, 2.42 and 2.48, respectively.  707 

The signed-rank test of Wilcoxon was applied to determine the gaps in pairs amongst the ML 708 

models at a relevance level of 5% (Table 67). When p (value) < 5% (0.05) and z (value) > z (−1.96 709 



and +1.96), the capabilities of the models in the Wilcoxon rank test varied substantially [106]. 710 

Analysis suggested (Table 67) a substantial disparity amongst all DP models. 711 

Table 56. SOMEWHWRE HERE 712 

Table 67. SOMEWHWRE HERE 713 

5. Discussion 714 

The changes in the forest cover of the Gumani River Basin are well recognised, with numerous 715 

factors primarily focused on institutional, financial and economic forces aspects (Vanonckelen et 716 

al. 2015), the low performance of protected areas (Bălteanu et al. 2016) and environmental 717 

disruptions (Săvulescu et al. 2011). The estimated evaluations for DP are limited, with only a few 718 

works assessing the relative impacts of biophysical, socio-demographic and land use approaches 719 

on the changes in the forest cover at temporal scales (Munteanu et al. 2015; Vanonckelen et al. 720 

2015). Thus, we measured the future possibility of deforestation across the Gumani River Basin 721 

in this study by using hybrid ensemble frameworks, MLP-bagging, MLP-dagging and MLP-RTF. 722 

In this analysis for preparing the DP models first, hybrid ensemble methods were used to optimize 723 

the input data using training dataset. Thereafter, optimized input data were used to categorize 724 

classes for spatial DP considering the MLPnn base classifier (Roy et al. 2020). Ultimately, 725 

frameworks of the machine learning ensemble were developed for the DP models. The results of 726 

training sets of DP were used for the creation of DP maps. Ensemble approaches are classification 727 

methods for data processing, whilst MLPnns are regarded as ANNs with excellent results in the 728 

spatial modelling of deforested areas.  729 

The findings of this study indicated that all probability models of deforestation utilising hybrid 730 

ML ensemble increased the efficiency of the MLPnn (AUC=0.869) base classifier. This result is 731 

reasonable because DP models using hybrid ML ensemble systems are well recognised to be very 732 

successful in enhancing the efficiency of base classifiers. The DP models in this analysis produced 733 

a satisfactory result and allowed basic performance indicators (such as accuracy, precision, AUC, 734 

RMSE, MAE and Friedman and Wilcoxon signed-rank tests) to be used to evaluate the models. 735 

The outcomes produced through the ensemble modes were shown theshowed a better accuracy 736 

than the previously used individual model for the mapping the probability of deforestation (Sahana 737 

et al. 2018; Kumar et al. 2014; Bavaghar, 2015; Kucsicsa et al. 2019; Saha et al., 2020; Dlamini, 738 

2016; Krüger and Lakes; 2015; Mayfield et al. 2017). Due to the less error and very low overfitting 739 

problem, the ensemble methods provided better results than previous works done by the different 740 



scholars (Roy et al. 2020). The quantity or overall area of deforestation is helpful for planning or 741 

zoning, but the models could not be used for measurement. Another drawback of the used models 742 

is that the assumed predictors of deforestation do not alter with time. This drawback is common 743 

amongst many ML models, but it is especially applicable to our models because deforestation 744 

predictors were chosen on the basis of predisposing risk factors for deforestation (Geist et al. 2001; 745 

Mas et al. 2004). Despite these drawbacks, the findings showed that data sets that are publicly 746 

accessible could be considered to estimate the DP within the research area. 747 

DP models utilising ensemble frameworks were compared. The results of the evaluation of 748 

the DP maps were obtained using ROC, efficiency, accuracy, MAE, RMSE and two statistical 749 

tests, i.e. Friedman and Wilcoxon signed-rank tests (Tables 45–76). The results showed that MLP-750 

bagging considerably outperformed the other models. MLP-bagging (AUC=0.943) had the 751 

strongest predictive capacity, followed by MLP-dagging (AUC=0.928), MLP-RTF (AUC=0.884) 752 

and MLP models (AUC=0.902). MLP-bagging is more efficient in mitigating volatility and 753 

discrimination compared with other ensemble approaches (Pham et al. 2016; Sedano et al. 2013). 754 

Feature selection approach is widely used to test the predictive capacity of variables to improve 755 

model performance by eliminating unwanted or unimportant factors in advance (Pham et al. 756 

2016a). The Relief-F and IGR methods were utilised in this analysis for selecting and judging the 757 

predictive potentiality of different DDFs for DP models. On the basis of these methods, the 758 

distance to settlement and the distance to road and population growth showed the strongest 759 

influences on DP models because most of deforested locations were identified on or along road 760 

and settlement. The remaining factors, such as forest density, distance to forest edge, proximity to 761 

river, population density, agricultural land density, distance to agricultural land, density of 762 

settlement, altitude, slope and aspect, also indicated good contributions to DP models, as 763 

confirmed in other similar studies (Sahana et al. 2018). A relative difference of nearly 3% was 764 

determined from the comparison results of the DP models on the basis of the ROC curve, but it 765 

was substantial for the DP maps (Table 45). Therefore, even minor changes in the efficiency of 766 

DP models would contribute to increased change in the reliability of DP maps. Furthermore, the 767 

efficiency of such probability models for deforestation depends greatly on optimising the 768 

predictive parameters.  769 

The output of this research might help researchers to analyse deforestation in other areas. 770 

Hybrid ensemble approaches could also be used to assess data and serve as reliable alternatives to 771 



conventional computational strategies for modelling DP. The use of soft computing approaches 772 

would inspire the scientific communities to use sophisticated techniques for precisely modelling 773 

probable deforestation areas. In populated countries, such as India, this work would assist the 774 

policymakers in making strategic plans for managing the existing forest cover. 775 

6. Conclusions 776 

In this research, hybrid ensemble frameworks, MLP-bagging, MLP-dagging and MLP-RTF, were 777 

effectively implemented for the analysis of DP of the Gumani River Basin. ROC, accuracy, 778 

precision, MAE, RMSE and Friedman and Wilcoxon signed-rank tests were used to validate and 779 

compare four DP models. The findings indicated that DP models utilising ML ensemble systems 780 

worked well in this study, and substantial differences existed amongst the models. The MLP-781 

bagging model achieved the maximum predictive efficiency, followed by MLP-dagging, MLP-782 

RFT and MLP. The efficiency of the base classifier of MLPnn was increased greatly by the 783 

architectures of the hybrid ensemble.  784 

• Among the MLPnn, MLP-Bagging and MLP-Dagging model, the MLP-Bagging model 785 

produced the best performance in terms of accurateness (efficiency, accuracy and AUC) 786 

and reliability (RMSE and MAE). It may be concluded that to prepare thean accurate 787 

precise deforestation probability map, MLP-Bagging model can be very effective. 788 

• After ensemble of meta- classifiers with the base classifier, the accuracy of the MLPnn 789 

model was increased significantly. 790 

• Delineating deforestation probability areas by means of field based methods are very 791 

expensive and time- consuming, especially for the large watersheds. Therefore, as a very 792 

contemporary deviceas an alternative, application of ensemble machine learning models 793 

along with RS-GIS based data and interfaces could be very effective in creating 794 

deforestation probability map. 795 

• Finally, the produced deforestation probability maps for the Gumani River basin displayed 796 

the areas having high and very- high probability of deforestation, which could be an 797 

effective device for policymakers and environmental planners.  798 



This research indicated that the ML models are powerful devices techniques that can be used for 799 

the DP evaluation of an area. The adequate precision acquired by the ensemble models and 800 

validation methods confirmed that the models have acceptable precision. The results would also 801 

provide spatial evidence to execute appropriate policies and strategies for forest managers and 802 

environmental planners. In fact, the deforestation process is closely correlated with certain natural 803 

and anthropogenic factors. The findings might be valuable for deforestation predictions in other 804 

regions having similar geo-environmental conditions. Furthermore, the findings would provide a 805 

foundation for future research. Existing DDFs might be combined with other DDFs, modified as 806 

per changes in the physical or socio-economic context of the Gumani River Basin, to enable for 807 

an improved and realistic simulation of DP. 808 
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