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Abstract 19 

This study  proposes a regional landslide early warning system for Idukki (India), using a decisional 20 

algorithm. The algorithm forecasts the possibility of occurrence of landslide by comparing the rainfall 21 

thresholds with the cumulated rainfall values. The region has suffered severe socio-economical setbacks 22 

during the disastrous landslides that happened in 2018 and 2019. Rainfall thresholds are defined for 23 

Idukki, using the total amount of precipitation cumulated at different time intervals ranging from 1 to 24 

30 days. The first three-day cumulative values were used for evaluating the effect of short-term rainfall 25 

and the remaining days for the effect of long-term rainfall. The derived thresholds were calibrated using 26 

historical landslides and rainfall data from 2009-2017, optimised to reduce the false alarms and then 27 

validated using the 2018 data. The validation results show that the model is effectively predicting 79% 28 

of the landslides that happened in the region during 2018 and can be easily integrated with a rainfall 29 

forecasting system for the prediction of landslides. The model can be further improved with the 30 

availability of better spatial and temporal resolution of rainfall data and can be used as an effective tool 31 

for predicting the occurrence of landslides. 32 
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1. Introduction 34 

Landslides are frequent natural disasters that have severe effects on lives and properties in hilly 35 

terrains (Muhammad et al. 2010; Abd Majid and Rainis 2019). Climate change and associated 36 

extreme weather conditions result in a surge of natural disasters across the world (Easterling et 37 

al. 2000; Morss et al. 2011). In regions where rainfall is the primary triggering mechanism for 38 

landslides, prediction of occurrence of landslides is often associated with a rainfall threshold 39 

condition beyond which landslides are likely to occur (Guzzetti et al. 2008; Sharir et al. 2017). 40 

The threshold defines a critical condition beyond which landslides may occur in the region. 41 

The condition can be defined based on physical parameters  or statistical analysis, and can be 42 

used for providing early warning (Gian et al. 2017; Bordoni et al. 2020). The physically based 43 

models make use of rainfall infiltration models and slope stability analysis, to precisely 44 

calculate the factor of safety of each cell considered for the analysis (Baum and Godt 2010). 45 

Such models are more suitable for site specific or local scale slope stability studies as they 46 

require physical parameters as inputs and need detailed field-based data collection process. 47 

Even if these approaches are less widespread, recent studies show that they can produce reliable 48 

results also at large scale (Fusco et al. 2019; Bordoni et al. 2019). Empirical or statistical 49 

models are mostly followed for regional and global scale studies, due to their simplicity and 50 

easy exportability. The conventional rainfall thresholds consider the short-term effect of 51 

rainfall, or the parameters associated with the immediately preceding rainfall event for 52 

identifying the critical conditions. Such thresholds are used for predicting the occurrence of 53 

future landslides (Althuwaynee and Pradhan 2017) and can be used as a part of regional 54 

Landslide Early Warning System (LEWS) (Ahmed et al. 2020).  55 

LEWS significantly helps in risk reduction by providing more time to the authorities to make 56 

decisions and take necessary actions (Piciullo et al. 2018). It is a cost-effective tool to warn the 57 

public regarding the imminent danger of landslides (Wicki et al. 2020). LEWS can be 58 

considered as a mitigation alternative, subject to upgradation with time, serving the purpose of 59 

risk reduction (Piciullo et al. 2018). Forecasting or modelling is a crucial element in a LEWS.  60 

Rainfall and landslide inventory database of the study area are analysed statistically to derive 61 

threshold models. The most commonly followed thresholds are based on the intensity and 62 

duration of the critical rainfall event (Caine 1980; Crosta 1998; Crosta and Frattini 2001; 63 

Aleotti 2004; Guzzetti et al. 2008; Brunetti et al. 2010; Abraham et al. 2019, 2020b), but the 64 

recent literature shows a shift towards event-duration thresholds (Melillo et al. 2016; Zhao et 65 

al. 2019). Intensity, event and duration are the parameters which are used to define a rainfall 66 
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event; where event is the total amount of rainfall, duration is the total time of continuous rainfall 67 

and intensity is the rate of rainfall, calculated as the ratio of event to duration. The parameters 68 

of a rainfall event responsible for occurrence of landslides are considered for analysis. This 69 

rainfall event is a continuous precipitation, happened immediately before the landslide. It is 70 

generally accepted that shallow landslides are triggered by intense rainfalls of short duration 71 

(Campbell 1974; Crosta 1998) while slow or deep-seated slides are associated with prolonged 72 

rainfall (Bonnard and Noverraz 2001). Hence it is important to consider the effect of long-term 73 

rainfall for predicting slow moving landslides. Choosing the extent of antecedent rainfall to be 74 

considered is critical, and it has to be decided specifically for each region. In conventional 75 

thresholds, a single rainfall event is considered being a triggering factor of landsides and can 76 

be used for predicting shallow landslides. It is crucial to consider the effect of both short-term 77 

and long-term rainfall for regions, which are affected by both rapid and slow moving 78 

landslides. An algorithm-based model, Sistema Integrato Gestione Monitoraggion Allerta 79 

(SIGMA) is used for predicting the occurrence of landslides and issuing different warning 80 

levels for Idukki district in Kerala, India. The model was first developed for Italy (Martelloni 81 

et al. 2012), and has been found effective in predicting landslides in Indian Himalayas 82 

(Abraham et al. 2020a). Indian Himalayas contribute to a major share of global landslides 83 

(Dikshit et al. 2018; Froude and Petley 2018), is a totally different meteo-geological setting 84 

when compared with Italy. The geology of the landslide prone areas in Emilia Romagna region 85 

is dominated by highly cemented sandstones and clay beds with complex system of folds, faults 86 

and joints. In Darjeeling Himalayas, the study area was a small town, composed of phyllite 87 

quartzite and schist. A major portion of the area was formed by schist only. In the case of 88 

Idukki, the geology is entirely different, composed of peninsular gneissic complex, charnockite 89 

and migmatitic complex. The mean annual precipitation of the study area in Italy was 1072 90 

mm, while in Darjeeling Himalayas, it was 1872 mm and in Idukki it is 3400 mm.    91 

In this study, SIGMA model, which is found to have a satisfactory performance for Italy and 92 

Darjeeling Himalayas, is applied to a different location in the Western Ghats of India. Though 93 

the region suffers from a large number of landslides every year, no LEWS is available for 94 

Idukki. During 2018 monsoon, thousands of landslides have happened in the Western Ghats, 95 

which is being investigated (Vishnu et al. 2019; Kanungo et al. 2020; Meena et al. 2021). Idukki 96 

was the worst hit district in the disaster and suffered major social and economic setbacks due 97 

to the devastating landslides. The district needs an efficient LEWS to reduce the risk due to 98 

landslides. Collecting precise data for physically based models and installation of field 99 
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monitoring systems are not feasible options, considering the vastness and variations in 100 

topography and climatic conditions of the region. The development of statistical rainfall 101 

thresholds is the best suited option in such cases, an economical and viable solution for 102 

developing an LEWS. Some attempts have been made for forecasting landslides in parts of 103 

Western Ghats using rainfall thresholds (Abraham et al. 2019, 2020b; Thennavan et al. 2020) 104 

and antecedent soil wetness (Abraham et al. 2021). However, these models are not ready to be 105 

used in an operational LEWS due to the higher number of false alarms or the complexities 106 

associated with the model. The region is in need for an LEWS model which can balance 107 

between the forecasting performance and ease of use. This study is an attempt to develop a 108 

regional scale LEWS to reduce the risk due to landslides in the region, using SIGMA model, 109 

which has more than 20 years of operational experience.  110 

2. Details of study area 111 

Idukki is a hilly district in the state of Kerala (India), covering an area of 4358 km2.  The district 112 

is the major power source of the state and is well known for Idukki dam, one of the highest 113 

arch dams in Asia. More than half of the district is covered by forest and the transportation 114 

facilities are limited. Idukki belongs to the Western Ghats region and several peaks have an 115 

elevation greater than 2000 m (Fig. 1).  116 

Fig. 1 around here 117 

The topography consists of mid lands, plateau regions and hill ranges. The eastern part of 118 

Idukki lies within the rain shadow region of Western Ghats and receives less rainfall when 119 

compared to the rest of the district. The daily rainfall data for this study has been collected 120 

from the Indian Meteorological Department (IMD)(India Meteorological Department 2019) 121 

from four rain gauge stations (Fig. 2) in Idukki. 122 

The total area of the district has been divided into four, considering the location of rain gauges, 123 

and each unit is called one reference area. This approach has been adopted to account for the 124 

spatial and climatic variability across the district (Lu et al. 2014; Pasculli et al. 2014). The 125 

demarcation has been done using a multi-step procedure. First, the area is divided by straight 126 

lines based on the location of rain gauges, using the concept of Thiessen polygons (Abraham 127 

et al. 2019) (this approach considers the nearest rain gauge for each point to be analysed). 128 

However, from a practical point of view, division of a region into Thiessen polygons is difficult 129 

to execute in an operational LEWS, because local authorities act within their administrative 130 

boundaries. Hence, the polygons were modified according to the nearest administrative 131 



5 
 

boundaries (towns or grama panchayats – the administrative divisions). This can help in issuing 132 

alarms in a more organised way. Moreover, the new boundaries are more in correspondence 133 

with physical elements (e.g. ridges, rivers) than the straight lines of the Thiessen polygons. 134 

Since the rainfall data collected is of daily resolution, the model issues a warning which predict 135 

the possibility of at least one landslide within the reference area. During calibration and 136 

validation, when multiple landslides have occurred in a reference area on a single day, it is 137 

considered as a single landslide event. 138 

In the north-south direction, Idukki can be geologically divided into three parts with migmatitic 139 

complex lying in between peninsular gneissic complex in the north and charnockite group in 140 

the south (Department of Mining and Geology Kerala 2016). The peninsular gneissic complex 141 

rocks are well foliated and granite gneiss forms the oldest rock of the region, found in reference 142 

area R4. Among the charnockite group, charnockite is widespread in regions R2 and R3 and 143 

the presence of magnetite quartzite and pyroxene granulite are also observed in parts of 144 

R3(Department of Mining and Geology Kerala 2016). The migmatitic complex comprises of 145 

hornblende-biotite gneiss observed in area R4 and biotite gneiss, which covers a major portion 146 

of R1.  147 

Structural and denudational hills are the predominant landforms in Idukki. Most of the hills are 148 

formed by Precambrian basement rocks with thin regolith thickness. As 60% of the district is 149 

covered by forest (major portions of R2 and R4), forest loam is the predominant soil type 150 

observed. Forest loam is produced by the weathering of rock under forest cover, characterised 151 

by rich organic content. Lateritic soils are found in the midlands of Idukki, formed from 152 

laterites with poor fertility.  The forest loams consist of silts and clays, rich in organic content 153 

with high plasticity, while the grain size of lateritic soil has particles of coarse fraction, with 154 

minor fine content and the shear strength is due to the interparticle friction. According to the 155 

geotechnical map of India (Geological Survey of India 1995), the rocks of Idukki has low 156 

permeability and satisfactory compressive strength, suitable for foundations. But the recent 157 

infrastructure developments and the slope cuttings had adverse effects on the stability of slopes 158 

in the region. The depth of water level varies from 0 to 8 m (Sindhuraj 2013) throughout the 159 

year and during monsoon time, it is close to 0 m for a major share of the district.  160 

Fig. 2 around here (Geological Survey of India 2010) 161 

The topography consists of mid lands, plateau regions and hill ranges. The eastern part of 162 

Idukki lies within the rain shadow region of Western Ghats and receives less rainfall when 163 
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compared to the rest of the district. The daily rainfall data for this study has been collected 164 

from the Indian Meteorological Department (IMD) (India Meteorological Department 2019) 165 

from four rain gauge stations (Figure 2) in Idukki. 166 

The reference area for the first rain gauge, R1 represents the midland region of Idukki with 167 

nearly flat terrain, R2 and R3 represents the hilly area in the eastern side centre respectively 168 

and R4 consists of the peaks and foothills near the mountains in the northern side. The midland 169 

area of Idukki (R1) has a rugged topography, with a slope towards west. R1 is composed of 170 

pediment-pediplain complex of denudational origin. The hilly terrains can be divided into high 171 

ranges, plateau and foothills. The plateau region (R3 and parts of R2) covers maximum area 172 

and is the chief physiographic unit of Idukki. The elevation of this region varies from 500 m to 173 

1500 m above sea level with a slope of around 30 %. A major part of the district is formed by 174 

the hill ranges (R2 and R4) of Western Ghats. The slope of this region is between 30 % to 50 175 

% and occasionally goes upto 80 %. The peaks above 1500 m are characterised as high ranges 176 

(R4). R4 is the steepest zone with several peaks, composed of low dissected hills and valleys. 177 

The region is famous for its tea plantations and the hills have undergone several cutting and 178 

filling activities for infrastructure development, in the recent past. R2 region is formed by 179 

highly dissected hills and valleys.  180 

The annual and cumulative rainfall from 2009 to 2018 is plotted in Fig. 3. From Fig. 3, it is 181 

clear that the rainfall distribution across the district is not uniform.  The highest cumulative 182 

rainfall is recorded in the southernmost part of the district (R2) and the least value is in the rain 183 

shadow region (R4). It should also be noted that during the validation period (2018), the rainfall 184 

received is exceptionally high, reaching upto a maximum of 5788 mm in R2. The maximum 185 

rainfall was received in the district during the month of August 2018.  186 

 187 

Fig. 3 around here 188 

As per the data received from IMD, the monthly rainfall of the region during the study period 189 

has crossed 1000 mm once in R1, eight times in R2 and seven times in both R3 and R4.  The 190 

daily rainfall has crossed 100 mm twenty-four times in R1, with an event in 2010, six in 2011, 191 

two each in 2012 and 2013, three each in 2014 and 2017 and seven events in 2018. In R2, the 192 

daily rainfall has crossed 100 mm 40 times during the study period and among them five were 193 

greater than 200 mm and two were greater than 300 mm. Both the events with daily rainfall 194 

greater than 300 mm were recorded in 2018. Similar to R1, the number of severe rainfall events 195 
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has increased over time. The daily rainfall has crossed 100 mm on 20 days in R3 and 200 mm 196 

on 3 days among them. In case of R4, the numbers are 31 and 4, respectively. It can be 197 

understood that even if the cumulative rainfall is least recorded in R4, the number of severe 198 

rainfall events (greater than 100 mm per day) is the least in R1.  199 

The anthropogenic activities in the recent past have led to cutting of slopes for infrastructure 200 

development, which considerably reduced the stability of slopes. The joints and cracks within 201 

the rocks are exposed to rain, resulting in slope failures. Earth and debris slides and debris 202 

flows have become common landslide types in the region which is mainly affected by shallow 203 

landslides (Kuriakose et al. 2008, 2009). Still some earth slides were reported to continue over 204 

a long period of time, along the major road corridors which can be attributed as the result of 205 

long-term rainfall. The types of landslides vary from translational earth and debris slides along 206 

the slope cuts to the long runout debris flows. The region R1 is mostly affected by shallow 207 

landslides while most of the debris flows have reported in R3 and R4. Around 65 % of the total 208 

landslides considered were shallow landslides, 30 % debris flows, and the remaining were rock 209 

falls.  210 

The occurrence of landslides was found to be associated with the occurrence of severe rainfall 211 

events. Multiple landslides were recorded on the same day, across the district, following the 212 

occurrence of daily rainfall greater than 100 mm. Landslides were recorded on the same day, 213 

or within a short span of time after the occurrence of rainfall. Some landslides have occurred 214 

on days with very less rainfall recorded in the reference rain gauge. These can either be the 215 

effect of prolonged rainfall over the study area, or due to localised heavy rainfalls, which were 216 

not recorded in the reference rain gauge. Hence, it is important to study the effect of both long-217 

term and short-term rainfall in the initiation of landslides within the study area. According to 218 

the authors who firstly proposed it, SIGMA method is conceived to deal with very different 219 

landslide types: shallow landslides (triggered by short and intense rainfalls) and deep-seated 220 

landslides (triggered by prolonged rainfalls) (Martelloni et al. 2012; Lagomarsino et al. 2013). 221 

This idea is supported by at least 20 years of test and operation use (Lagomarsino et al. 2015; 222 

Segoni et al. 2018a). This study is an attempt to explore the use of SIGMA for the study area 223 

in Western Ghats. 224 

 225 
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3. SIGMA model 226 

As the name point out, SIGMA model takes the standard deviation of a statistical distribution 227 

as the key parameter for threshold definition. The thresholds are defined as a function of the 228 

standard deviation, to predict the possible occurrence of landslides in a region. As the model is 229 

purely based on statistical analysis of historical rainfall and landslide data, it can be easily 230 

exported to be used in different areas (Martelloni et al. 2012; Segoni et al. 2018b). However, 231 

apart from the region for which it was first developed, SIGMA has been applied to very few 232 

regions (Abraham et al. 2020a). On account of its predicting capacity and ability to define 233 

multiple levels of warning, SIGMA has the potential to be used as an LEWS. This study is an 234 

endeavour to evaluate the applicability of SIGMA mode for Idukki district in India. The 235 

methodology has been adopted from Martelloni et al. (2012) (Martelloni et al. 2012) and the 236 

model has been customised for developing an LEWS for Idukki. The customisations are done 237 

according to the statistical distribution of rainfall data of Idukki, to minimise the missed and 238 

false alarms generated.  239 

The daily precipitation data has been collected for the study area for four different rain gauges 240 

(India Meteorological Department 2019) and for each rain gauge, the daily precipitation data 241 

were cumulated at ‘𝑛𝑛’ days, with a window which shifts at daily timesteps with ‘𝑛𝑛’ day width. 242 

The value of ‘𝑛𝑛’ has been varied from 1 to 365.  For each dataset, the cumulative distribution 243 

function (𝐹𝐹) was calculated with a standard distribution as target function (Martelloni et al. 244 

2012). This target function is used to relate the cumulative rainfall (𝑧𝑧) with the distribution 𝑦𝑦 =245 

 𝑎𝑎. 𝜎𝜎 ('𝑎𝑎'  is a multiplication constant and ‘𝜎𝜎’ is the standard deviation of each series). The 246 

values of 𝑧𝑧 are sorted in ascending order for each series of 𝑛𝑛 day width.  247 

𝑧𝑧1 < 𝑧𝑧2 < 𝑧𝑧3 < ⋯ < 𝑧𝑧𝑘𝑘 < ⋯ < 𝑧𝑧𝑛𝑛 (1) 

 248 

The cumulative frequency of sample is defined as 249 

𝑃𝑃𝑘𝑘  =   
𝑘𝑘
𝑛𝑛
−  

0.5
𝑛𝑛

 =  𝐺𝐺(𝑦𝑦) (2) 

 250 

for each value of k, varying between 1 to 𝑛𝑛. The cumulative distribution function of 𝑧𝑧, 𝐹𝐹(𝑧𝑧) is 251 

used to establish the probability that the value of 𝑧𝑧 is less than 𝑧𝑧𝑘𝑘  252 
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By using 𝑃𝑃(𝐾𝐾) and a target function (Goovaerts 1997), the variable 𝑧𝑧 can be transformed to 𝑦𝑦 253 

as:  254 

𝐺𝐺−1(𝐹𝐹(𝑧𝑧))  → 𝐺𝐺−1(𝑃𝑃𝑘𝑘)  =  𝑦𝑦 (3) 

 255 

where 𝐺𝐺 is the target function and 𝑃𝑃𝑘𝑘 is defined as 𝐺𝐺(𝑦𝑦). Once the transformation is complete, 256 

for any multiples of standard deviation, the corresponding cumulative frequency of sample can 257 

be estimated. For all values of 𝑛𝑛, the same procedure has been repeated to plot the sigma curves 258 

(𝜎𝜎 curves or precipitation curves). The algorithm for SIGMA model uses these 𝜎𝜎 curves as 259 

input. The algorithm compares the value of cumulated rainfall recordings for a specific duration 260 

with the 𝜎𝜎 curves. The duration is determined by trial and error, based on the historical rainfall 261 

data. SIGMA considers both short term and long-term effect and hence the duration for 262 

different levels of warning and different types of slope failures can be different. Using this 263 

algorithm, a warning level is issued everyday based on the rainfall.   Alerts are issued for every 264 

day, based on the rainfall threshold. The cumulated rainfall recordings for daily timesteps were 265 

compared to the 𝜎𝜎 curves to issue an alert (Martelloni et al. 2012).  The thresholds take into 266 

account the effect of both short term and long-term rainfall. For the short term effect, to issue 267 

a warning on highly and moderate critical events which are rapid to very rapid, the effect of 268 

cumulative rainfall up to two days were considered. The condition used to check the high and 269 

moderate criticality cases are given in equation 4 below. 270 

𝐶𝐶1−3  =   ��𝑃𝑃(𝑡𝑡 + 1 − 𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

�
𝑛𝑛=1,2,3

≥ [𝑆𝑆𝑛𝑛(∆)]𝑛𝑛=1,2,3 (4) 

 271 

where, 𝛥𝛥 =  𝑎𝑎. 𝜎𝜎,  the vector𝐶𝐶1−3 represents the total rainfall cumulated at time 𝑡𝑡 and 𝑆𝑆𝑛𝑛(∆) 272 

are the rainfall thresholds for 𝑛𝑛 days and 𝛥𝛥 (Martelloni et al. 2012; Segoni et al. 2018b). For 273 

slow movements, the algorithm checks for the effect of precipitation from 4 days upto N days, 274 

where N is the upper limit of long-term rainfall considered, and is different for the four different 275 

rain gauges considered. The condition for issuing an ordinary criticality warning is:  276 

𝐶𝐶4−N  =   [∑ 𝑃𝑃(𝑡𝑡 − 2 − 𝑖𝑖)𝑛𝑛+3
𝑖𝑖=1 ]𝑛𝑛=1,2,…60 ≥ [𝑆𝑆𝑛𝑛+3(∆)]𝑛𝑛=1,2,…N−3  (5) 

 277 
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The definitions of the cumulative rainfall vector 𝐶𝐶 are kept the same as defined by the 278 

developers, to derive rainfall thresholds for Idukki.  279 

4. Analysis 280 

The first step of developing SIGMA model is the understanding of distribution of cumulated 281 

rainfall data and the selection of target function. The rainfall data from 2009-2018 were used 282 

for the analysis, for which the first 9 years (2009-2017) were used for calibration and the last 283 

year (2018) for validation. The data of 2009 has been used as a buffer to calculate daily 284 

cumulates up to 365 days for the year 2010. From During the calibration period, 𝑛𝑛 day 285 

cumulative precipitations were calculated with the value of 𝑛𝑛 ranging from 1 to 365. Then for 286 

each value of 𝑛𝑛, cumulative distribution functions were plotted, after sorting the values in 287 

ascending order. It was found that when the number of days is smaller; the distribution is found 288 

to be similar to that of log-normal and for higher values of 𝑛𝑛, the distribution tends towards 289 

normal. Hence normal distribution was chosen as the target function and the threshold values 290 

for all values of 𝑛𝑛 (𝛥𝛥 =  𝑎𝑎. 𝜎𝜎 ) were calculated using the transformation as mentioned in Eq. 3 291 

(Fig. 4).  292 

 293 

The threshold curves were plotted with the values of 𝑛𝑛 on x axis and the threshold values on y 294 

axis as shown in Fig. 5. These threshold values were compared with the everyday cumulated 295 

values using a decisional algorithm to identify the critical rainfall events. 296 

Fig. 5 around here 297 

For the customised model, a simple algorithm was defined, with four different levels of 298 

warning. The alert levels were defined according to the local system, which is in practice for 299 

forecasting other disasters. The highest criticality case is considered as a red alert, moderate 300 

criticality as orange, ordinary criticality as yellow and no criticality as green. The general 301 

public is already aware of these alert levels, hence it is easy to follow the LEWS. 302 

A starting algorithm was used commonly for the whole district after calibration, and was 303 

optimised separately for each reference area. The decisional algorithm which was used in the 304 

initial stage of calibration is shown in Fig. 6. 305 

Fig. 6 around here 306 
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The algorithm is designed very simple, for easy understanding and exportability. The algorithm 307 

compares the n day cumulates corresponding to the rainfall forecast, with the threshold curves, 308 

to issue an alert. If the threshold is crossed, an alert is issued based on the severity of the 309 

possible landslide event. The algorithm first considers the effect of short-term rainfall, to 310 

identify the most critical rainfalls, and issue red alert. If the extreme condition does not exist, 311 

it searched for the medium criticality case for short-term rainfall and if the threshold value is 312 

crossed, an orange alert is issued. For both red and orange alerts, only short-term rainfall is 313 

considered as they lead to very fast shallow landslides while long-term rainfall is considered 314 

issuing the ordinary criticality level or the yellow alert for slow movements. If both high and 315 

moderate levels of criticality conditions are not crossed, the algorithm consider the long-term 316 

rainfall and checks if the threshold is crossed within Nth day considered, to issue yellow alert. 317 

It should also be noted that on days for which red or orange alerts are issued, there are chances 318 

that the long-term threshold is also crossed. Hence red and orange alert predicts the possibility 319 

of occurrence of both rapid and slow-moving landslides while yellow alert predicts the 320 

possibility of occurrence of slow-moving landslides only. The value of N has been selected by 321 

trial and error for each reference area separately. For starting the algorithm, it was considered 322 

as 63 as in the SIGMA models previously developed (Martelloni et al. 2012; Abraham et al. 323 

2020a).  324 

The threshold is exceeded when any of the elements in the vector C crosses the threshold value. 325 

The values used in the starting algorithm were optimised for each reference area separately, 326 

using a separate module which uses the threshold criteria with the occurrence of landslides. 327 

The thresholds were raised in small increments for each day to verify if false alarms are reduced 328 

as shown in Fig. 7. The procedure continues till any true alarm is missed.  329 

Fig. 7 around here 330 

5. Results  331 

The procedure of optimisation is used to reduce the false alarms and fine tuning of the 332 

thresholds. After the analysis, 1 σ 1.25σ and 1.5σ considered in the starting algorithm (Fig. 6) 333 

were customised for each area. During this process (Figure 7), the threshold values were 334 

increased slightly to reduce the number of false alarms. The events which have issued false 335 

alarms were considered for this process and threshold value is increased in minor increments, 336 

so that the false alarm can be avoided with the condition that no true alarm is missed. The 337 

values of N were also customised for each region, to reduce the number of false alarms 338 



12 
 

generated. The process of calibration was a trial-and-error approach. The values of thresholds 339 

and N were varied in such a way that the number of false alarms is reduced, at the cost of a 340 

minimum number of missed alarms. Several trials were conducted for each reference area, to 341 

find a best suited value for N, with a balance between the false and missed alarms. Which 342 

means, the value less than N will lead to many missed alarms and any value greater than N will 343 

issue more false warnings. Idukki district receives rainfall events of longer duration and the 344 

daily resolution of rainfall data makes it extremely difficult to separate events with dry periods 345 

less than 24 hours. Hence the long-term rainfall considered for the analysis was customised for 346 

each case in order to improve the performance of the model. The values of thresholds modified 347 

after optimisation for each reference area are listed in Table 1. 348 

 349 

Table 1 around here 350 

The opitimised thresholds were then validated using the rainfall and landslide data of 2018. 351 

The region R1 consists of the flat terrains, which is less susceptible to landslides. Most of the 352 

cases reported in this area are cut slope failures and other shallow landslides, hence only short-353 

term rainfall is considered for issuing warnings in this region. The threshold values are not too 354 

high, implying the possibility of less severe rainfalls triggering landslides in the area.  355 

The optimisation process has effectively reduced the number of false alarms during validation 356 

as shown in Fig. 8. It can be observed that the number of false yellow alerts has reduced 357 

considerably due to optimisation. The highest number of false alarms generated are yellow, 358 

implying ordinary criticality, then red alerts and orange alerts are the least generated. It can 359 

also be noted that the optimised values for former 1.25 σ do not vary much and hence the 360 

reduction in false orange alarms after optimisation is also the least. 361 

 362 

Fig. 8 around here 363 

During the period of validation, the decisional algorithm was used to issue different alert levels 364 

for each day, which were compared with the occurrence or non-occurrence of landslides to 365 

validate the model. The classical approach of confusion matrix was used for the evaluation, to 366 

quantify the performance of SIGMA model for each reference area (Lagomarsino et al. 2015). 367 

The number of correct predictions are termed as true positives (TP) and true negatives (TN); 368 

where TP is the number of landslides correctly predicted and TN is the number of non-369 
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landslides correctly predicted. Similarly, incorrect predictions are called false positives (FP) 370 

and false negatives (FN) where FP indicates the false alarms and FN indicates missed alarms.  371 

The results of validation for each reference are listed in Table 2 below: 372 

 373 

Table 2 around here 374 

It can be noted that the algorithm is correctly predicting all the landslides except in the case of 375 

R3 and R4, where the topography is highly varying, and the reference area is the largest. The 376 

algorithm correctly predicts 79% of the total landslides happened in the region. The 377 

performance is the best in the midlands region (R1) where all landslides are correctly predicted, 378 

but at the cost of minimum false alarms. Since only short-term rainfall is considered for the 379 

analysis of R1, the false alarms generated is very less in this case. The higher number of false 380 

alarms are expected as the threshold values are lesser, especially in the case of yellow alert, 381 

where there is a high possibility of a threshold being crossed at any of the long-term period 382 

considered. The number of false alarms is the maximum in case of yellow alert and the least in 383 

case of red alert. This is again due to the less threshold value considered for yellow alert. 384 

Another reason for the increase in number of false alarms is the change in rainfall pattern 385 

observed during the period of validation, 2018.  The rainfall received during 2018 was more 386 

than 1.5 times the average annual rainfall during the study period, in all four regions. The 387 

rainfall has crossed the derived threshold many times, issuing a number of false alarms in all 388 

cases. Hence the model should be improved further to reduce the number of false alarms, to 389 

make it operational as a part of LEWS (Segoni et al. 2018b).  390 

6. Discussions 391 

The obtained results show that SIGMA model has a satisfactory performance in three out of four 392 

reference areas considered for study. SIGMA model uses a decisional algorithm to predict the landslides 393 

based on historical rainfall and landslide data. The model considers the effect of both short-term and 394 

long-term rainfall, in order to predict both shallow and deep-seated landslides. 395 

The less rain gauge density and variations in topography of the district have led to some missed alarms 396 

in regions R3 and R4 (Fig. 9). When multiple landslides have occurred on the same day, the one closest 397 

to rain gauge is considered for representation of TP and FN. The variations in elevation between the 398 

location of rain gauge and landslide has resulted in this error in prediction. The variation in topography 399 

is a key factor to be considered in identifying the responsible rainfall. The poor rain gauge density in 400 

the study area in the major reason of less efficiency in regions R3 and R4. The recorded rain gauge is 401 
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varying from the actual one, duet to the spatial and topographical variations. This has also resulted in 402 

the lesser threshold values, as the thresholds were lowered, to minimise the number of missed alarms. 403 

This has resulted in the increased number of false alarms. In the case of R4, the locations near the rain 404 

gauge in R4 belongs to the rain shadow region of Idukki which receives very less amount of rainfall. 405 

The missed landslides have happened at the southern side of the rain gauge in R4, possibly as a result 406 

of a higher amount of rainfall. To identify correctly the responsible rainfall, the district requires a much 407 

stronger network of rain gauges. 408 

During the process of optimisation, the threshold values did not vary much, but the false alarms 409 

were reduced mainly by varying the number of days considered for the long-term rainfall 410 

criteria. The highly varying topography and climate of the region demands for higher rain 411 

gauge density, to correctly identify the rainfall events responsible for each landslide. The lesser 412 

rain gauge density cannot identify the localised storms or cloud burst that have resulted in slope 413 

failures and essentially identifies a less severe rainfall, recorded at the reference gauge as the 414 

responsible rainfall event. It can be observed from Fig. 9 that most of the missed landslides 415 

happened at locations far from the rain gauges at a different elevation. This leads to the 416 

occurrence of landslides at lesser threshold values, which ultimately lead to higher false alarms. 417 

If the thresholds are raised, it will result in missed alarms, which is a more critical case. Hence 418 

the model can be improved further with the availability of rainfall data with better spatial and 419 

temporal resolutions. Even with this limitation, SIGMA model has the advantage of being a 420 

simple method which requires only historical landslide and rainfall database as inputs and can 421 

be used to predict both rapid and slow failures in the region.  422 

 423 

Fig. 9 around here 424 

 425 

The procedure of optimisation was adopted to minimise false alarms to the best possible extent, and the 426 

procedure involved many trials, in order to finalise the number of days and threshold values considered 427 

in the analysis. All four areas differ in their morphology and geology and climatic conditions. Hence 428 

the values were customised for each area separately. Optimisation has improved the performance of the 429 

model considerably. Increasing any of the threshold values or decreasing the number of days considered 430 

for daily cumulates will result in missed alarms and were determined by several trials. 431 

In this study, the cumulated rainfall upto 3 days has been considered for predicting shallow landslides 432 

in Idukki district (India). Shallow slides include shallow debris flows, soil slips etc, which are the results 433 

of short-term rainfall. The long-term rainfall is used for predicting slow movements and deep-seated 434 
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landslides in the region. The long-term cumulates are essential for predicting the slow movements 435 

observed in the region, but they lead to much more false alarms than the short-term cumulates.  436 

When SIGMA was applied to the study area in Italy, the first prototypal version had a likelihood ratio 437 

of 8.38, which was then updated conceptually later and the likelihood ratio was improved to 17.01 438 

(Segoni et al. 2018a). For the second study area in Darjeeling Himalayas, the likelihood ratio of the 439 

model was found to be 11.28 (Abraham et al. 2020a). For Idukki, the likelihood ratio is varying from 440 

2.39 to 12.45 which proves the model need further improvements using better resolution rainfall and 441 

landslide data. 442 

The rainfall data used from 2009 to 2018 has been used for the analysis, to understand the statistical 443 

distribution of cumulated rainfall. The use of a much longer term may result in a lesser mean value and 444 

higher threshold limits. Even though the most recent data has been used, the sudden change in rainfall 445 

pattern happened during 2018 has issued many false alarms. The model has to be updated continuously 446 

with more recent rainfall data, to incorporate the variations in rainfall pattern due to the changing 447 

climate. 448 

The base algorithm for SIGMA can easily be exported to other parts of the world also and can be 449 

customised using regional specific rainfall and landslide data. Hence the model proves to be a simple 450 

tool that can be used as a part of LEWS, with conceptual improvements that can reduce the false alarms 451 

in the region. 452 

7. Conclusions 453 

A landslide prediction system for Idukki district (Kerala, India) has been developed using SIGMA 454 

model, considering the long-term and short-term effect of rainfall in the initiation of landslides in the 455 

region. The model uses statistical distribution of rainfall data and the cumulative distribution function 456 

to derive rainfall thresholds which are compared with the daily cumulated rainfall values. A decisional 457 

algorithm is used for comparing the rainfall vector with the thresholds, which issues different levels of 458 

alert based on the severity of rainfall condition. The has been divided in to four reference areas, 459 

considering the topographic variability and location of rain gauges. The database from 2009-2017 were 460 

used for calibration of the model. From a common algorithm used for the entire district, the threshold 461 

values and number of days considered for the analysis were optimised for each reference area, to reduce 462 

the number of false alarms issued. The optimised model was then validated using a completely different 463 

dataset of 2018 to evaluate the prediction performance. 464 

SIGMA model for Idukki was found to be effective in predicting all the landslides in three reference 465 

areas but with a higher number of false alarms. The best performance of model was found in R1, with 466 

an efficiency of 92.05% and likelihood ratio 12.45. If the number of false alarms can be reduced by 467 
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introducing physical parameters or further constraints in the decisional algorithm, SIGMA can be used 468 

as an effective early warning system for the region.  469 

The model has its advantages of being simple and lesser inputs in decision making and can be integrated 470 

easily with any rainfall forecasting system to issue the warning. Unlike the conventional empirical 471 

approaches, SIGMA can be used to issue multiple levels of warning based on the cumulated rainfall 472 

value. The incorporation of multiple warning levels makes the model a better prediction tool for issuing 473 

early warning. The use of long term and short term and data helps in predicting both rapid and slow 474 

movements within the region, which has helped the algorithm to correctly predict all the landslides in 475 

three reference areas. As observed from the study, better spatial and temporal resolutions of rainfall 476 

data can considerably reduce the number of false alarms and improve the performance of the model. 477 

The simplified model with good prediction performance is important from the scientific perspective as 478 

an important step towards establishing an effective LEWS for the region. If the limitations of poor 479 

resolution of data can be improved using a network of rain gauges, the authors believe that the 480 

developed tool can help in reducing the risk due to landslides in this hilly district of Kerala, India. 481 
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