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Abstract 17 

Floods represent catastrophic environmental hazards which have a significant impact on 18 

environment and human life and their activities. Environmental and water management in many 19 

countries require modeling of flood susceptibility to help in reducing the damages and impact of 20 

floods. The objective of the current work is to employ four data mining/machine learning models 21 

to generate flood susceptibility maps, namely boosted regression tree (BRT), functional data 22 

analysis (FDA), general linear model (GLM), and multivariate discriminant analysis (MDA). This 23 

study done in Wadi Qena Basin in Egypt. Flood inundated locations were determined and extracted 24 

from the interpretation of different data sets, including high-resolution satellite images (sentinel-2 25 

and Astro digital) (after flood events), historical records, and intensive field works. In total, 342 26 

flood inundated locations were mapped using ArcGIS 10.5, which separated into two groups; 27 

training (has 239 flood points locations represents 70%) and validating (has 103 flood points 28 

locations represents 30%), respectively. Nine themes of flood-influencing factors were prepared, 29 

including slope angle, slope length, altitude, distance from rivers, landuse/landcover, lithology, 30 

curvature, slope-aspect, and topographic wetness index. The relationships between the flood-31 
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influencing factors and the flood inventory map were evaluated using the mentioned models (BRT, 32 

FDA, GLM, and MDA). The results were compared with flood inundating locations (validating 33 

flood pointssites), which were not used in constructing the models. The accuracy of the models 34 

were calculated through, the success (training data) and prediction (validation data) rate curves, 35 

according to the receiver operating characteristics (ROC) and the area under the curve (AUC). The 36 

results showed that the AUC for success and prediction rates are 0.783, 0.958, 0.816, 0.821 and 37 

0.812, 0.856, 0.862, 0.769 for BRT, FDA, GLM, and MDA models, respectively. Subsequently, 38 

flood susceptibility maps were divided into five classes, including very low, low, moderate, high, 39 

and very high susceptibility. The results revealed that the BRT, FDA, GLM, and MDA models 40 

provide reasonable accuracy in flood susceptibility mapping. The produced susceptibility maps 41 

might be vitally important for future development activities in the area, especially in choosing new 42 

urban areas, infrastructural activities, and flood mitigation areas. 43 

Keywords: Floods, Remote sensing, Data mining, Modeling, GIS, Susceptibility, Egypt. 44 

 45 

1. Introduction 46 

Floods are common catastrophic environmental hazards in different areas all over the world, where 47 

many cities, highways, and roads were impacted (Taylor et al. 2011; Dawod et al. 2012). These 48 

areas are dissected by many wadis that drain rain water towards low-lying areas. In the major Wadi 49 

Basins, the flash floods are suddenly occurred that are initiated by intense precipitation generated 50 

in rainstorms. The recent rapid urban growth coupled with climate change have led to many 51 

environmental problems (e.g., flooding and associated losses of human lives and property) 52 

(Zwenzner and Voigt 2009; Kjeldsen 2010; Karmaoui et al., 2014). 53 

Floods often represent the most damaging natural hazards in the low-lying areas of different parts 54 

of the world, resulting in loss and injure of human life and properties damage (agricultural and 55 

urban areas, bridges, roads, railways, and highways) (Du et al. 2013; Tehrany et al. 2017, 2019; 56 

Vojtek and Vojteková 2019). These floods might cause huge economic loss and infected urban 57 

areas by microbial development and diseases (Tehrany et al. 2015; Dandapat and Panda 2017). In 58 

addition, records of loss of life and damage caused by floods worldwide showed that these have 59 

continued to rise steadily during recent years (NFRAG 2008). Many countries all over the world, 60 
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that located in an arid zone experienced many devastating events of flash floods such as Morocco 61 

(1995, 2002, 2008，2014) (Saidi 2010; Echogdali et al., 2018), Algeria (1971, 1974, 1980, 1982, 62 

1984, 2001, 2007, 2008, and 2013) (Kenyon 2007; Warner 2004; Yamani et al., 2016), Chad in 63 

2012 (IRIN, 2013). In Egypt, flash floods frequently occurred in many areas, in 1994, 2010, 2016 64 

(Khidr 1997; Ashour 2002; Moawad 2013; Moawad et al., 2016), and also in Saudi Arabia in 65 

different areas (2009, 20011, 2015, 2017, and 2018 in Jeddah) (Youssef et al., 2016). Most flash 66 

floods in arid areas are generally unpredictable and infrequent (Reid et al. 1994). Flood frequency 67 

and severity in the desert areas vary from year to year (Warner 2004).  68 

There are different flood-influencing factors that could be used to produce the flood susceptibility 69 

map for an area. These factors include lithology, slope-angle, slope-aspect, curvature, altitude, 70 

distance from main wadis, drain type, slope length, topographic wetness index, and land use/land 71 

cover patterns. Many studies have been carried out on flood modeling and susceptibility 72 

assessment using hydrological studies, remote-sensing and GIS techniques (e.g., Talei et al. 2010; 73 

Kisi et al. 2012; Bubeck et al. 2012; Wanders et al. 2014; Pradhan et al. 2014; Mandal and 74 

Chakrabarty 2016; Tehrany et al. 2017; Luu e al., 2018; Mahmoud and Gan 2018; Dano et al., 75 

2019; Kanani-Sadata et al., 2019; Khosravi et al., 2019a; Liu et al., 2019; Wang et al., 2019). 76 

Various modeling approaches were applied to assess flood susceptibility in any specific area which 77 

belongs to: (1) heuristic (multi-criterion analysis), (2) inundating analysis, and (3) statistical 78 

analysis. Each of them has its own advantages and disadvantages. Heuristic models (such as 79 

analytical hierarchy process-AHP) rely mainly on the expert knowledge to assign weights to the 80 

various conditioning factors (e.g., Chen et al. 2011; Rozos et al. 2011; Matori 2012; Zou et al. 81 

2013; Sar et al. 2015; Dandapat and Panda 2017; Vojtek and Vojteková 2019; Youssef and Hegab 82 

2019).  83 

The heuristic models are highly subjective and depend on the site itself. Many authors were 84 

applying inundating flood models to identify the flood-vulnerable areas (Tsakiris 2014; Pakoksung 85 

and Takagi 2016; Pal and Pani 2016; Kumar et al. 2017; Prasad and Pani 2017; Abdelkarim et al. 86 

2019).  87 

Statistical models were also utilized to analyze the flood susceptibility (e.g., artificial neural 88 

networks (ANNs), adaptive neuro-fuzzy interface system (ANFIS), weights-of-evidence (WOE), 89 
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logistic regression (LR), frequency ratio (FR), general linear models (GLMs), decision tree (DT), 90 

Shannon’s entropy (SE), statistical index (SI), support vector regression (SVR), random forest 91 

(RF), boosted regression tree (BRT), classification and regression tree (CART), general linear 92 

(GLM), and weighting factor (Wf) (Liao and Carin 2009; Mukerji et al. 2009; Pradhan 2010a; 93 

Pradhan and Buchroithner 2010; Kourgialas and Karatzas 2011; Sezer et al. 2011; Kia et al. 2012; 94 

Lee et al. 2012; Tehrany et al. 2013, 2014a, b, 2015; Feng et al. 2015; Albers et al. 2016; Gizaw 95 

and Gan 2016; Khosravi et al. 2016a,b; Rahmati et al. 2016; Tehrany et al. 2017; Khosravi  et al. 96 

2018; Mosavi et al. 2018; Muñoz et al. 2018;  Samantal et al. 2018a; Zhao et al. 2018; Choubin et 97 

al. 2019; Park et al. 2019).  98 

Many authors indicated that flood susceptibility map could be crucially used to establish an early 99 

warning system, emergency plans, reduction and prevention of future floods, and executing of 100 

flood management strategies (Bubeck et al. 2012; Mandal and Chakrabarty 2016; Tehrany et al. 101 

2017). 102 

In Egypt, during the last few decades, urban areas and many infrastructures (highways, railways, 103 

and roads) are expanding toward the flood- prone areas, and accordingly, floods occur more 104 

frequently (Youssef and Hegab 2019). Thus, different locations are often prone to flash floods, 105 

which are irregular in time and space since the rainfall differs significantly from north to south. 106 

Such events usually lead to severe damages and mortality. Various authors studied floods in Egypt. 107 

Foody et al. (2004) predicted the sensitive areas to flash flooding based mainly on land cover 108 

distribution and soil properties in the Eastern Desert of Egypt. Milewski et al. (2009) used multiple 109 

remote sensing data-sets to identify the relatively larger precipitation events that are more likely 110 

to produce runoff and recharge in Sinai Peninsula and the Eastern Desert of Egypt. Moawad (2012) 111 

used the hydro-morphometric parameters and soil characteristics to reveal the characteristics of 112 

flash floods in Safaga - El Qusier area along the Egyptian Red Sea Coast. Moawad (2013) used 113 

the black-box model (BBM) based on the curve number (CN) approach developed by the United 114 

States Department of Agriculture, Soil Conservation Service (SCS 1985), and real-time satellite 115 

precipitation (HYDIS) to analyze the 18 January 2010 flash flood event in wadi El Arish (Northern 116 

Sinai).  117 

In this study, four data mining models were adapted to construct a flood susceptibility map using 118 

remote-sensing and GIS tools. These techniques are boosted regression tree (BRT), functional data 119 
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analysis (FDA), general linear model (GLM), and multivariate discriminant analysis (MDA). 120 

These models were selected for a number of reasons, including being newly applied in the field of 121 

flood susceptibility in Egypt, adequate for regional- and semi regional-scale applications, and 122 

relying mainly on remote-sensing datasets rather than intensive field investigations. We believe 123 

that the results obtained from our study provide a considerable contribution to the flood literature 124 

dealing with the spatial flood assessment. The flood susceptibility maps can identify and delineate 125 

flood-vulnerable areas, so that planners and decision-making can choose favorable locations for 126 

future development, such as new urban areas.  127 

2. Study area  128 

The study area includes Wadi Qena Basin, covering an area of 14,558 km2 between latitudes 129 

26°11\44\\ and 28°04\42\\ N and longitudes 32°15\45\\ and 33°37\50\\ E (Fig. 1). Wadi Qena is one 130 

of the largest basin in Egypt. It belongs to the Great Sahara Desert which considered the world’s 131 

largest hot desert (covering ten countries such as Mauritania, Morocco, Mali, Algeria, Niger, 132 

Tunisia, Libya, Chad, Egypt, and Sudan). The most crucial characteristics of the Sahara Desert are 133 

severe aridity, high temperatures, low humidity, and strong winds (Laity 2008). 134 

The Wadi Qena area as part of the Sahara Desert is characterized by the abrupt change of weather 135 

patterns that causes most devastating flash floods. The study area receives flash flood water from 136 

the mountains and foothills that located to the east, west and north through natural drainage Wadis. 137 

Many flood events were occurred in Wadi Qena basin due to intense thunderstorms in the years of 138 

2014-2016, and 2018 causing devastating to the area. Annual average rainfall of the Sahara Desert 139 

is less than 100 mm for about 75% of its area, however, less than 20 mm for the remaining area 140 

(Warner 2004). Most flash floods in the arid desert (e.g., Sahara Desert) are characterized by high 141 

intensity, short duration, fast flowing water, suddenly occurring with little time to respond, and 142 

imposing immense risk to people and property (Sene 2013).  Most of the arid areas rainfall is 143 

variable and spotty (the affected area often limited by the size of the clouds) (Laity 2008). The 144 

elevations of the study area range between 113 m and 1,878 m above mean sea level. 145 

The study area stroked by flash many times before. The most catastrophic events were recorded in 146 

three consecutive events in 2014- 2016. Most of the damages were occurred along different 147 

highways that crossed the area (Fig. 2). In addition to that the Qena City which located at the 148 

mouth of Wadi Qena was impacted.  149 
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 150 

Fig. 1 a) Location of the study area in relation to the surrounding areas; b) a zoomed close up 151 

view of the study area. 152 

 153 

Fig. 2 Different photographs that were captured for various flood events hit the area; a and b) 154 

were taken in 2014 event; c and d) were taken in 2015 event; and e and f) were taken in 2016 155 

event. 156 
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3. Data and methodology 157 

The current work illustrates the utilization of various datasets to be applied in flood susceptibility 158 

mapping. Many stages of methodologies were used in this research including preparation of 159 

various datasets extracted from different sources and types (remote sensing images and geological 160 

and topographical data), establish a flood inventory map, models construction, and finally 161 

checking the models validation (Fig. 3).  162 

 163 

Fig. 3 a fFlowchart showing the data and modeling steps used to produce a reliable flood 164 

susceptibility map. 165 

3.1.  Stage I: Data and  inventory map preparation 166 

Different data sources and types were extracted and used in this research (Table 1). Many field 167 

investigations have been carried out for the study area to collect data related to the existing impact 168 

of the flooded areas at different times, to get information from the local people in the area related 169 

to previous, current, and future problems, and to take photographs to document different situations. 170 

Other data types including historical reports which were collected from different sources such as 171 

the civil defense authority, and from the department of transportation. According to these historical 172 

records, the frequency of flood events could be identified, especially those affected urban and 173 

infrastructure areas. In addition to that satellite images were acquired including, Landsat 8, 174 

Operational Land Imager (OLI) images with 30-m resolution acquired in 2018 for the study area 175 

which were obtained from Earth explorer website (https://earthexplorer.usgs.gov). Landsat 8 data 176 
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consists of eleven bands; a layer stacking was conducted  for bands (1-7) to create an image mosaic 177 

with 30-m spatial resolution, followed by image fusion with band 8 (panchromatic 15-m 178 

resolution) to create a final mosaic with 15-m spatial resolution. Also, a high-resolution image was 179 

used (Google Earth images, DigitalGlobe). A Digital Elevation Model (DEM) 30-m spatial 180 

resolution was acquired from ALOS Global Digital Surface Model (ALOS World 3D-30m) which 181 

used to extract different data sets such as stream networks, slope-angle, slope-aspect, curvature, 182 

LS (slope length), TWI (topographic wetness index), and altitude. The topographic maps of 183 

1:50,000-scale was used to verify the main Wadis that were extracted from DEM. Finally, the 184 

Geological map 1:250,000-scale was used to map the lithology units. All the datasets used in the 185 

current study are in a digital format with a unified projection (UTM-Zone 36, WGS84 datum).  186 

Table 2 Data sources and datasets used in the current study. 187 

Dataset  

No. 

Data  

Source 

Data  

Type 

Resolution 

& Scale 

Extracted  

Data 

1 Satellite 

Imageries 

OLI 2014, 2015, 2016, 

2018 

 

 

Sentinel-2 2015, 2016  

 

Astro digital 

Google Earth 2014, 2015, 

& 2016 

30, 15m 

 

 

 

10m 

 

2.5m 

<1m 

- LULC mapping,  extracting 

inundating areas after the 

flood events in 2014, 2015, & 

2016  

-  Mapping inundating areas 

after flood events in 2016 

- Verify the flood locations 

after the events 2014, 2015, 

2016 

2 Geological Data Quadrangle 1985 1: 250,000 - Lithology units 

3 Digital Elevation Model Grid 

 

30 m - Slope-aspect, Slope-angle, 

altitude, TWI, LS, curvature, 

and main Wadis 

4 Field  

Investigation 

Information on the 

inundated and damaged 

areas by flood events in 

2014, 2015 & 2016 

Field trips - Inundated and damages areas 

in 2014, 2015, 2016 events 

  188 

The flood locations were mapped according to previous inundated areas. It is known that recent 189 

floods are more likely to happen under the same conditions of the previous floods (Akgun et al. 190 

2012; Tehrany et al. 2013, 2014a, b; Fotovatikhah et al. 2018). Inventory map considers a crucial 191 

part for hazard susceptibility modeling (landslides and floods) where the relationship between the 192 

existing hazard areas and the factors controlling this hazard is an essential requirement for 193 
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susceptibility mapping (Petley 2008; Rahmati et al., 2016). In the current study, a flood inventory 194 

map was generated according to the integration of different data sources such as historical records, 195 

field surveys, and satellite images interpretation. The  Flood hazards inventory map shows the 196 

spatial distribution of flood hazards in the study area. Different datasets were used to prepare the 197 

flood inventory map  as shown in (Table 1). The historic flood data was collected from the analysis 198 

and interpretation of high- resolution images (Google Earth and Astro digital images) from 2006 199 

till to 2016 and medium resolution images (Landsat OLI 2014, 2015, and 2016) and Sentinel-2 200 

images (2015 and 2016). In addition to that more data related to recent flood events (flood 201 

occurrences) 2014, 2015, and 2016 were collected from field surveys. The flood hazard locations 202 

were identified according to detailed field surveys. Collapses, erosions, and inundated areas caused 203 

by flooding were identified through the field surveys (Fig. 2). . Other data collected from the civil 204 

defense department and previous reports of flash flood for the past 20 years. To extract the real 205 

flood areas using high resolution remote sensing images, two time span imageries of Astro digital 206 

data, with a special resolution of 2.5 m, were used. The first one was acquired on October 13, 207 

2016, before the flood event that was occurred on October 18, 2016. The second imagery was 208 

acquired on November 5, 2016 - after the same flood event. These dates were characterized by a 209 

cloud free and covering the whole Wadi basin. In the current research, a true color imagery (band 210 

1, 2, 3 in RGB) was used for these time spans. The Environment for Visualizing Images (ENVI v. 211 

5.4) software was used to extract the inundated areas from the Astro digital image after the flood 212 

event. Visual inspection was carried out to compare the areas before and after the flood events. 213 

Analysis of these images indicated that inundated areas can be easily detected on the imagery 214 

acquired after the flood event. In addition to that imaging enhancing processing method (slicing 215 

classification technique) was applied to extract the inundated areas from the image acquired after 216 

the flood event (Fig. 4a). The slicing results were verified by filed investigation for some flooded 217 

areas. survey data and the data collected from civil defense. Subsequently, critical flooded areas 218 

were identified and digitized on the slicing map as point features. Finally, flood locations were 219 

collected and digitized as point features. All the different data sources (point features of flood 220 

locations)These data were collected and assembled together to create the flood inventory map (Fig. 221 

4b). A total of 342 flood locations were identified and mapped in the study area. These flood 222 

locations represents the inundated areas after heavy rainstorms that stroked the area previously 223 

(areas were highly impacted by flood events). Using R statistical software, the data points were 224 
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randomly partitioned. According to Naimi and Araújo (2016), the random partition method is a 225 

splitting technique in which the flood points randomly separated into training and validating 226 

datasets. According to the literature, the percentages commonly applied to split the inventory 227 

dataset are 70% and 30% for the training and validating datasets, respectively (Abdulwahid and 228 

Pradhan 2017; Chen et al., 2019). In the current work, 239 flood locations (70 % of the sites) were 229 

randomly selected for training datasets and the remaining 103 flood locations (30 % of the sites) 230 

were used as validating datasets for verification purposes (Fig. 4b). Field surveys indicated that all 231 

these locations were previously inundated by floods. 232 

 233 

Fig. 4 a) The slicing map extracted from satellite image after the fFlood event showing the 234 

distribution of inundated areas along Wadi Qena basin;. b) flood inventory data used to test and 235 

validate the models. 236 

3.2.  Stage II: Generating the flood-influencing variables 237 

In terms of flood-influencing factors, the selection of the most influential parameters is vitally 238 

important for flood susceptibility analysis. Floods are initiated by rainfall, the most significant 239 

variable in the occurrence of floods. However, many other influential factors are involved (Lawal 240 

et al., 2012). Hölting and Coldewey, (2019) indicated that during precipitation in a drainage 241 

catchment, the runoff depends on the condition of the catchment, for example, catchment area, 242 
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topography, and LULC types. Determining the flood-influencing variables is vitally important for 243 

flood susceptibility analysis. Different flood-influencing variables have been selected in the 244 

current work according to previous literatures (Pradhan 2010a; Kia et al. 2012; Lee et al. 2012; 245 

Tehrany et al. 2014a, b; Rahmati et al., 2016; Khosravi et al., 2016a; Al-Juaidi et al., 2018; Luu et 246 

al., 2018; Mahmoud and Gan 2018; Samanta et al., 2018b; Dano et al., 2019; Kanani-Sadata et al., 247 

2019; Khosravi et al., 2019a; Liu et al., 2019; Mind’je, et al., 2019; Wang et al., 2019; Vojtek and 248 

Vojteková 2019). In the current research, nNine flood-influencing variables were used, which 249 

generated and stored in a database folder in a Geographic Information System (GIS) for data 250 

interpretation and analysis. These variables include distance from wadi, landuse/landcover 251 

(LULC), lithology, slope-angle, TWI, altitude, slope length (LS), curvature, and slope-aspect (Fig. 252 

5). All layers were converted into a grid spatial database by 30×30-m pixel size which have UTM 253 

coordinate system zone 36 with a datum of WGS 84. Seven themes were extracted from DEM 254 

(five layers including slope-aspect, slope-angle, altitude, distance from main wadis, and curvature, 255 

were extracted using ArcGIS 10.5 software and two layers including topographic wetness index 256 

and slope length, were extracted using SAGA software).  257 

The main Wadis consider the pathways for runoff waters where the nearby areas are vulnerable to 258 

flooding (Opperman et al., 2009). The shorter the distance from the main wadis, the higher the 259 

probability of flooding, especially where the wadis have a low storage capacity (Predick et al. 260 

2008). In this study, main Wadis were extracted from the DEM and verified using the topographic 261 

map (1:50,000). Distance from main Wadis was calculated using the Euclidean tool in ArcGIS 262 

10.5 environment (Fig. 5a). This map was categorized into 5 classes from 0-100m, 100-200m, 263 

200-300m, 300-400m, and >400m. 264 

Landuse/landcover in any area has a crucial impact in runoff velocity, interception, percolation, 265 

and evapo-transportation (Yalcin et al., 2011). Different soil characteristics can impact the extent 266 

of runoff in the basin area. Some soil types has greater infiltration of rainfall compared to others, 267 

which leads to a smaller runoff volume (Tehrany et al. (2019). Many studies indicated that LULC 268 

map is vitally important in identifying of flood-prone areas (Karlsson et al., 2017; Komolafe et al., 269 

2018). The landuse/landcover map was prepared from the interpretation of Landsat satellite images 270 

(OLI) acquired in 2018. Four LULC types were extracted, including bare rock, bare soil, rainfed 271 

less tree crop, and grass land (Fig. 5b).  272 
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Lithological units can affect have an important role onthe hydrological processes (the amount and 273 

speed of water flow) due to the differences in permeability of rocks and sediments in any watershed 274 

area (Ward and Robinson, 2000; Regmi et al. 2013; Khosravi et al. 2019b). In this study, lithology 275 

units were extracted from the geological database (1:250,000 scale). Four main lithological units 276 

were mapped including (1) Wadi deposits, (2) gravel deposits, (3) sedimentary rocks, and (4) 277 

Precambrian rocks (Fig. 5c).  278 

Slope-angle considers an important physiographic parameter in flood behavior where the runoff 279 

velocity increased in high slope areas and water will inundated low slope areas (Meraj et al., 2015; 280 

Tien Bui et al., 2016; Rahmati et al. 2016). Tehrany et al. (2019) mentioned that steep slopes have 281 

less time for infiltration, which causes an increase in water flow. The slope-angle map, was 282 

generated from the DEM layer in ArcGIS environment, . In the study area, the slope-angles rangese  283 

from 0.0° to 84° (Fig. 5d). 284 

Topographic wetness index (TWI) represents the spatial variations of wetness (amount of water 285 

collected) in a watershed area (Gokceoglu et al. 2005; Rahmati et al. 2016). It is applied to measure 286 

topographic control on hydrological procedures (Chen and Yu, 2011). TWI is calculated according 287 

equation (1): 288 

𝑇𝑊𝐼 = 𝑙𝑖𝑛 
A

tan 𝐵
                  (1) 289 

where A is the specific catchment area (m2) and β is the slope gradient (in degrees), respectively.  290 

TWI shows the water infiltration capability in an area, and subsequently, the regions with potential 291 

for floods. In fact, flat area absorbs more water than steep terrain, where the gravity acting increase 292 

the water flowing down the hilly slopes towards flat areas (Tehrany et al. (2019). Areas around 293 

streams and flat lands (flooded areas) have greater TWI value than that in areas with slopes. In the 294 

current study, the TWI was calculated in the SAGA-GIS environment ranging from 2.39 to 24.79 295 

(Fig. 5e). 296 

Flood occurrence is likely affected by altitude where low elevation regions are more prone to 297 

floods (Botzen et al. 2013). Runoff moves from the hillsides of mountains (high elevation areas) 298 

and reaches the lower ground (lower elevation areas), causing flooding. altitude Altitude is 299 

controlled by several geological and geomorphological processes (material types, wind action, 300 
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rainfalls, and erosions) (Tehrany et al. 2014a,b; Tien Bui et al. 2016; Khosravi et al. 2016a). Kia 301 

et al. (2012) indicated that the altitude considers an amplifying factor in the occurrence of floods 302 

because it has an influence on the amount and velocity of runoff. Subsequently,  altitude has a vital 303 

role in identifying areas that are susceptible to flooding. Altitude values of the study area range 304 

from 113 to 1,878 m (Fig. 5f). 305 

Slope length (LS) is an important factor, which  in which soil erosion can be detected (Bohner and 306 

Selige 2006). describes soil erosion, represents the combined effects of slope length and steepness, 307 

and affects soil particle transport (Bohner and Selige 2006; Park et al. 2019). Bera (2017) indicated 308 

that as the slope length increases, the soil erosion due to water also increases as a result of greater 309 

accumulation of surface runoff. It was calculated in the SAGA-GIS environment using the 310 

universal soil loss equation (USLE) based on slope and specific catchment area. In the current 311 

study, slope length (LS) ranges from 0 to 73.6 (Fig. 5g).  312 

 313 

Slope-aspect can be defined as the direction of the maximum slope of the earth surface. The slope-314 

aspect map was derived generated from in ArcGIS environment from the DEM map in ArcGIS 315 

environment. The slope-aspect layer is shown in classes of flat (−1), North (0°–22.5°; 337.5–360°), 316 

North-East (22.5–67.5°), East (67.5–112.5°), South-East (112.5–157.5°), South (157.5–202.5°), 317 

South-West (202.5–247.5°), West (247.5– 292.5°), and North-West (292.5–337.5°) (Fig. 5i). 318 

In the current study, the flood-influencing variables were nominal, ordinal, and scale. Some factors 319 

are ordinal, such as slope-angle, curvature, distance from main Wadis, TWI, and LS, while altitude 320 

was in a ratio scale; however, after classification it transformed to an ordinal scale. In addition, the 321 

nominal factors are lithology, LULC, and slope aspect.  322 

 323 

 324 
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   325 

   326 

   327 
Fig. 5 List of all the flood-influencing data layers. a) Distance from main Wadis, b) LULC c) 328 

Lithology unit, d) Slope-angle, e) TWI, f) Altitude, g) LS, h) Curvature, and i) Slope-aspect    329 
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3.3.  Stage III: Application and validation of machine learning techniques 330 

3.3.1. Application of BRT 331 

The BRT, which has been proposed by Friedman (2001), is a combination of statistical and 332 

machine learning methods. It The BRT is aiming to enhance the performance of a single model by 333 

fitting and combining many models together (Schapire 2003; Park and Kim 2019). Elith et al. 334 

(2008) indicated that the BRT model does not required data transformation or elimination of 335 

outliers, and can fit complex nonlinear relationships and automatically address interaction effects 336 

between variables. In the BRT model, two algorithms, a regression tree and a boosting algorithm 337 

namely boosting and regression, are used where their strengths are combined to enhance the model 338 

accuracy and decrease the model variance (Aertsen et al. 2010; Rahmati et al. 2018). Boosting 339 

technique, a powerful learning method, is improving model accuracy due to iteratively fitting new 340 

trees to the residual errors (RE) of the existing tree assemblage (Cao et al. 2010; Döpke et al. 2017; 341 

Pourghasemi and Rahmati 2018). For example, by using the dataset D, the boosting algorithm 342 

enhances the regression tree model, F(x) by adding an estimator, h(x) to derive a new BRT model, 343 

𝐹𝑛𝑒𝑤(𝑥) as shown in Equation (2). This is an iteration process, where the number of iterations (M) 344 

plays a crucial role in the performance of the final BRT model. To construct the loss function, 345 

equation (3) is used. 346 

𝐹𝑛𝑒𝑤(𝑥) = 𝐹(𝑥) + γℎ(𝑥)            (2) 347 

where γ ∈ (0, 1) is the learning rate which is applied to control the problem of over-fitting. 348 

𝐿 =
1

2
[𝑦 − 𝐹(𝑥)]2                      (3) 349 

At each iteration, a new tree add to the original model must confirm the reduction of the loss 350 

function. The BRT training phase will be completed when the pre-defined number of iterations is 351 

achieved.  352 

3.3.2. Application of FDA  353 

The FDA method, was firstly proposed by Ramsay and Dalzell (1991), is suitable for the 354 

observation data consisting of a series of real functions. FDA is efficient in solving the problem 355 

that some key data points may be omitted or deleted. In addition, with the data described as 356 

function forms, some dynamic information hidden in data sets can be analyzed by derivation and 357 

dimension reduction. Battista et al., (2016) and Wagner-Muns et al., (2018) indicated that the main 358 
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point of FDA is to consider all data of an observation object containing functional properties as an 359 

integral instead of a sequence of observed values. FDA has been widely applied in the problem of 360 

classification (Cho et al., 2016; Seifi Majdar and Ghassemian, 2017; Chen et al., 2019). The basic 361 

analysis objects of FDA are a sequence of observations expressed as functions. FDA can be applied 362 

with machine learning methods in classification problems. The basic steps to apply FDA include: 363 

1) selecting training and testing data sets and executing functional data representation; 2) 364 

extracting function data features using functional principal component analysis (FPCA); 3) 365 

categorizing data features via machine learning methods; and 4) verifying the validation of the 366 

classification model by testing data sets. In the current study, the FDA method was utilized to 367 

develop the flood susceptibility assessment model based on existing methodologies and theories 368 

according to species distribution modeling (SDM) package in R (Naimi and Araújo, 2016). 369 

3.3.3. Application of GLM 370 

Generalized linear model (GLM) is an extension of linear regression models in which the special 371 

and temporal variables could be quantified and incorporated (McCullagh and Nelder 1989; Dobson 372 

2001; Guisan et al. 2002). The GLM is a very popular statistical model due to its capability to 373 

carry out non-linear relationships and various statistical distributions characterizing spatial data 374 

types (Hjort et al. 2007; Marmion et al. 2008). The relationship between the expectation of the 375 

response variable and the linear combination of explanatory variables can be established using the 376 

link function of GLM (Venables and Dichmont 2004; Ahmedou et al. 2016; Kéry and Royle 2016; 377 

Soch et al. 2017). The expectations and variances of the response variables can be calculated by 378 

equations (4, 5):  379 

𝜇𝑖 = 𝐸[𝑌𝑖] =  𝑔−1(∑ 𝑋𝑖𝑗𝛽𝑗 + 𝜀𝑖𝑗 )            (4) 380 

𝑣𝑎𝑟[𝑌𝑖] =
𝜙𝑉(𝜇𝑖)

𝜔𝑖
                                        (5) 381 

where 𝑌𝑖 is the vector of response variables, 𝑋𝑖𝑗 is the matrix of explanatory variables, 𝛽𝑗 is 382 

the vector of pending parameters, 𝜀𝑖 is the interference terms, g(x) is the corresponding link 383 

function, V(x) is the variance function, 𝜙 is the dispersion parameter of V(x), and 𝜔𝑖 is the 384 

weight of the i-th observed value. 385 
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In the current study, suppose Y is the response variable, which represents where flood inundation 386 

has happened in a raster, and 𝑋𝑖 is the i-th flood conditioning factor. So, the occurrence probability 387 

of event Y can be expressed as equation (6). By logistic transformation, the link function 𝑔(𝑦𝑖) is 388 

shown in equation (7). 389 

𝑃 =
exp (𝑐0+𝑐1𝑋2+𝑐2𝑋2+⋯+𝑐𝑖𝑋𝑖)

1+exp (𝑐0+𝑐1𝑋2+𝑐2𝑋2+⋯+𝑐𝑖𝑋𝑖)
                (6) 390 

𝑔(𝑦𝑖) = 𝑐0 + ∑ 𝑐𝑖𝑥𝑖 + 𝜀𝑖                         (7) 391 

where P is the occurrence probability of event Y, and 𝑐0 ; 𝑐1 ;...;  𝑐𝑖  are logistic regression 392 

coefficients,  𝜀𝑖 is the residual errors. 393 

In the current research, R statistical package was used to build the GLM model. A simple Gaussian 394 

family was identified to be the link function for the normally distributed response data. Aertsen et 395 

al. (2009) indicated that independent variables should enter the model individually using a 396 

smoothing spline with only 2 degrees of freedom in a polynomial fit of degree 2 to avoid over 397 

fitting.  398 

3.3.2. Application of MDA 399 

The MDA is considered to bebeing a linear discriminate analysis (LDA). In LDA, a collection is 400 

assumed to be a portion of the nearest cluster. The distance is generally calculated by the normal 401 

distribution of the variables, and in each category, it is assumed that the variability and correlation 402 

among the variables are equal (Lombardo et al. 2006). In MDA, multiple normal distributions are 403 

used within each category. According to Hair et al. (1998), the MDA can derive the linear 404 

combinations using equation (27). 405 

𝑌 =  𝑊1𝑋1 + 𝑊2𝑋2 + 𝑊𝑛𝑋𝑛                                          (27) 406 

where Y is a discriminant score, Wi (i = 1,2,3, …, n) are discriminant weights, and Xi (i=1,2,3,…, 407 

n) are independent variables. 408 

 409 

3.3.3. MulticolinearityMulticollinearity of flood eEffective fFactors 410 

Before models run, a multicollinearity analysis of the independent variables needs to be conducted. 411 

Multicolinearity is a statistical approach in which numbers of independent variables in a multiple 412 

regression model are strongly correlated, the variables with significant collinearity are eliminated 413 

Commented [BP1]: Reference plz 
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(Chen et al. 2017; Pourghasemi et al. 2017; Saha 2017). Commonly -used indicators are two 414 

exponents, Variance Inflation Factors (VIF) and Tolerance (TOL), which applied for considering 415 

multicollinearity of variables. They can be calculated using equations (8, 9): 416 

 417 

 𝑇𝑂𝐿 =  1 − 𝑅𝐽
2                                          (8) 418 

𝑉𝐼𝐹 = [
1

𝑇
]                                            (9) 419 

where, 𝑅𝐽
2  is the coefficient of determination of a regression of explanatory J on all the other 420 

explanatory.  421 

Various literatures indicated that a TOL of less than 0.10 and VIF of more than 5 indicate multi-422 

colinearitycollinearity problems (Hosmer and Lemeshow 1989; Menard 2001). 423 

  424 

3.3.4. Factors importance 425 

In the recent daysyears, research on the stability of factor impact measurements based on machine 426 

learning algorithm (random forest) has received a great deal of high attention (Wang et al. 2016). 427 

Factor impact measurement in a random forest can be calculated based on two representative 428 

methods. These methods are divided into two categories: Mean Decrease Impurity (MDI) and 429 

Mean Decrease Accuracy (MDA), which proposed by Breiman (2001). The Mean Decrease 430 

Impurity (MDI) index measures the classification impact of variables by totaling the amount of 431 

decrease in impurity as the classification is performed. The sum of the impurity reductions in all 432 

the trees is calculated as the importance of the variable. For impurity reduction, classification trees 433 

use Gini coefficient index or information gain, and regression trees use the mean value of variables. 434 

The variable importance (VI) for MDI method is calculated using equations (10) (Strobl et al. 435 

2008), it adds up the decrease of Gini index of each of the variables from 1 to 𝑛𝑡𝑟𝑒𝑒, which means 436 

the number of trees, and gets the average of all. The advantage of MDI method is being easy to 437 

compute, but it has the disadvantage that it can be biased only for categorical variables that contain 438 

multidimensional attributes. 439 

 440 

𝑉𝐼(𝑥𝑗) =
1

𝑛𝑡𝑟𝑒𝑒
[1 − ∑ 𝐺𝑖𝑛𝑖(𝑗)𝑘𝑛𝑡𝑟𝑒𝑒

𝑘=1 ]                         (10) 441 

 442 
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The Mean Decrease Accuracy measures the classification impact of variables by the sum of the 443 

amount of decrease in accuracy depending on the presence or absence of specific variables. MDA 444 

method calculates variable importance by permutation. The method uses OOB (Out-Of-Bag) to 445 

divide its sample data. The OOB is one of the subsampling techniques to calculate prediction error 446 

of each of the training samples using bootstrap aggregation. MDA calculates variable importance 447 

using equation (11) (Strobl et al. 2008). OOB estimates more accurate prediction value by 448 

computing OOB accuracy before and after the permutation of variable 𝑥𝑗  and compute the 449 

difference. Since 𝑡 ∈ {1,2,3,...,𝑛tree}, the variable importance of 𝑥𝑗  in tree 𝑡 is the averaged value 450 

of the difference between predicted class before permuting 𝑥𝑗  , which is 𝑦𝑖 = 𝑓(𝑥𝑖), and after 451 

permuting variable 𝑥𝑗, which is 𝑦𝑖 = 𝑓(𝑥𝑖
𝑗
), in certain observation i. 452 

 453 

𝑉𝐼(𝑥𝑗) =
1

𝑛𝑡𝑟𝑒𝑒
∑

∑ 𝐼(𝑦𝑖=𝑓(𝑥𝑖))− 𝑖𝜖𝑂𝑂𝐵 ∑ 𝐼(𝑦𝑖=𝑓(𝑥𝑖
𝑗

)) 𝑖𝜖𝑂𝑂𝐵

|𝑂𝑂𝐵|

𝑛𝑡𝑟𝑒𝑒
𝑡=1                          (11) 454 

 455 

3.3.3.3.3.5. Model validation 456 

Remondo et al. (2003) mentioned that validation approach could be used as a guidance in data 457 

collection and field practice for susceptibility mapping, Chung and Fabbri (2003) used sensitivity 458 

analysis for individual factors and combinations of factors to test the validation of various map-459 

producing methods, Tien Bui et al. (2012) indicated that the accuracy and success rate used to 460 

validate the flood susceptibility models. The receiver operating curve (ROC) is the most crucial 461 

method applied for verification of the susceptibility models (e.g. landslides and flood), in which 462 

the prediction accuracy and quality of the constructed models are examined using the area under 463 

the curve (AUC) (e.g., Lee and Pradhan 2007; Chauhan et al. 2010; Akgun et al. 2012; 464 

Mohammady et al. 2012; Tien Bui et al. 2012; Pourghasemi et al. 2012; Ozdemir and Altural 2013; 465 

Jaafari et al. 2014; Youssef et al. 2016; Youssef and Hegab 2019). A suitable flood model should 466 

haves an AUC value ranges from 0.5 to 1, and the quality of the model is increased by increasing 467 

the AUC value. The model considered to bebeing random, if the AUC value below 0.5. The 468 

susceptibility models might produce the highest accuracy and reliability when the AUC value is 469 

equal or close to 1.0 which showing the capability of the model to predict disaster occurrence 470 

without any bias (Pradhan et al. 2010; Tien Bui et al. 2012). 471 
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 472 

4.1. Multi- multicollinearity test 473 

The results of the multicollinearity analysis among nine flood-influencing factors used in this study 474 

are presented in Table 3. This analysis indicated that the tolerance and VIF of all flood-influencing 475 

factors used in this study were > 0.1 (0.539) and < 10 (1.857), respectively. As a result, there is no 476 

multicollinearity among the independent flood-influencing factors, which enables them to 477 

participate in model establishing.  As a result, there is no multicollinearity among the independent 478 

flood-influencing factors used in the current study. 479 

 480 

Flood-influencing  

Factors 

 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

T Sig. 

Collinearity  

Statistics 

B Std. Error Beta Tol VIF 

 Slope Length 5.924E-6 .000 .008 .221 .825 .971 1.029 

Slope-angle -.013 .004 -.137 -3.190 .002 .639 1.564 

Distance from main Wadi -8.075E-5 .000 -.292 -7.439 .000 .764 1.308 

LULC .125 .022 .254 5.741 .000 .599 1.669 

Lithology .087 .019 .211 4.528 .000 .539 1.857 

Altitude -5.819E-5 .000 -.021 -.456 .649 .547 1.827 

Curvature .075 .045 .065 1.662 .097 .779 1.284 

Slope-aAspect -.006 .008 -.027 -.764 .445 .958 1.044 

TWI 6.157E-6 .000 .008 .229 .819 .972 1.029 

 481 

4.2. Variables importance 482 

In the current study, an attempt was carried out to evaluate the importance of effective flood-483 

influencing factors using a random forest data-mining technique. The results, is shown in Fig. 6, 484 

depicted that the river distance, LULC, and lithology factors are the most important, followed by 485 

slope, TWI, altitude, and LS which are moderately important flood-influencing factors, and then 486 

curvature and aspect are less important. However, according to the mean decrease gini, it was 487 

found that river distance factor is the most important, followed by altitude, lithology, LULC, slope, 488 
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TWI, and LS which are moderately important flood-influencing factors, and then curvature and 489 

aspect are less important. The results indicated that river distance is extremely important in the 490 

occurrence of floods. 491 

 492 

Figure 6. The importance of flood-influencing factors using a random forest model 493 

4.3. Flood susceptibility maps 494 

Using the training dataset, the MDA, GLM, FDA, and BRT models were established to obtain the 495 

flood susceptibility index (FSI) for the study area (Fig. 7 (a-d)).  Subsequently, the LSI pixels of 496 

the study area were classified applied  into different zones of susceptibility to produce the flood 497 

susceptibility maps using the ArcGIS 10.5 software. The most common methods used in natural 498 

hazard susceptibility index classification are natural break, equal interval, and quantile (Ayalew 499 

and Yamagishi 2005). In the current work, the flood susceptibility maps were finally divided into 500 

five classes based on the natural break method scheme (Nicu, 2018) (Fig. 7 8 (a–d)).. Finally, 501 
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results revealed that very low, low, moderate, high, and very high flood susceptibility map (FSM) 502 

classes derived using the MDA model cover 19.5, 21.5, 20.0, 19.6, and 19.4% of the total area, 503 

respectively (Fig. 7a8a); 19.5, 21.9, 19.9, 19.4, and 19.3% of the total area covered by very low, 504 

low, moderate, high, and very high respectively on the FSM map obtained from the GLM method 505 

(Fig. 7b8b); 19.4, 20.9, 20.3, 19.7, and 19.7 % of the total area are related to very low, low, 506 

moderate, high, and very high FSM zones, respectively, using the FDA model (Fig. 7c8c). 507 

According to the BRT model, 16.2, 23.9, 20.2, 20.5, and 19.2% of the study areas were classified 508 

as very- low, low, moderate, high, and very- high susceptibility respectively (Fig. 7d8d). The real 509 

inundating flood zones were extracted from the sentinel images (10 m resolution) after the flood 510 

event in 2016 in order to test the performance of the used models (Fig. 5). The comparison shows 511 

good matches between the areas were inundated in 2016, along wadi Qena basin, and the results 512 

of the susceptibility models. Finally, it can be noticed that the high flood susceptible zones in all 513 

produced models are mainly located along the main course of wadi Qena and its tributaries. In 514 

addition, these models indicated that a large portion of the study area were classified as very low, 515 

low, and moderate susceptible zones (61%, 61.3%, 61.5%, and 60.3% for MDA, GLM, FDA, and 516 

BRT models respectively). 517 

 518 

 519 

 520 

 521 

 522 

 523 

 524 

 525 
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 526 

Fig. 7 Flood susceptibility index maps derived from: (a) MDA, (b) GLM, (c) FDA, and (d) BRT. 527 

 528 
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 529 

Fig. 7 8 Generated fFlood susceptibility maps using a) MDA, b) GLM, c) FDA, and d) BRT 530 

 531 

 532 

To evaluate the reliability of the obtained susceptibility maps, an accuracy assessment was 533 

performed using the AUC method. Many authors emphasize the importance of validation method 534 

for susceptibility maps. In the current study, the (ROC) curve was used to identify true- and false-535 

positive rates (plot the sensitivity of the model (the percentage of existing flood pixels correctly 536 

predicted by the model) against 1-specificity (the percentage of predicted flood pixels over the 537 

total study area). The derived flood susceptibility index maps (Fig. 7) have been validated through 538 

both success rate method (using the training flood locations that were used in establishing the flood 539 

models) and prediction rate method (using validating flood locations which examine how well the 540 

model predicts the flood). The success and prediction rate curves were used to understand the 541 

effectiveness of each model and their validation as shown in Fig. 8 9 (a, b). In the success rate 542 

curves, the AUC values for the MDA, GLM, FDA, and BRT models are 0.919, 0.918, 0.917, and 543 

0.921, respectively (Fig. 8a9a). In addition, the prediction rate curve showed that the AUC values 544 

for the MDA, GLM, FDA, and BRT models are 0.968, 0.967, 0.966, and 0.974, respectively (Fig. 545 

8b9b). It can be concluded that all these models give the success and prediction rate curve values 546 

above 0.9, showing that models for flood susceptibility mapping in the study area are reasonable. 547 

These represent reasonable models for flood susceptibility mapping in the study area. In addition, 548 

the results show that these models show an excellent accuracy in flood susceptibility analysis with 549 

so tiny differences. 550 
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  551 

Fig. 8 9 Success rate (a) and prediction rate (b) curves for models derived from the MDA, GLM, 552 

FDA, and BRT. 553 

 554 

Flood hazard, vulnerability and risk should be analysed effectively, specifically for major events 555 

that come more frequently as a part of the climate change impact. According to (Tehrany et al., 556 

2014b), categorization of the outputs from several methods into maps of flood susceptibility 557 

analysis is a crucial step. The models that were employed such as MDA, GLM, FDA and the BRT 558 

in this research for flood-susceptibility mapping out of which all outputs provide unique results 559 

based on natural break classification technique with different significance. Results are close to 560 

each other and a little difference can be found in map based on BRT than other three methods. The 561 

finding of BRT in the current study confirm previous results, which indicated that BRT is one of 562 

the most accurate model for identifying flood-vulnerable areas (Rahmati and Pourghasemi 2017). 563 

Selection of 9 variables that contribute to flooding as contributing factors helped in calculating 564 

susceptible areas according to four models, which demonstrate the relationships between inventory 565 

data of flooded-area with the applied flood-influencing factors. These nine thematic maps were 566 

extracted from different sources, such as remote sensing images (30m resolution), digital elevation 567 

models (30m resolution), and geologic map. Wadi map was verified using field investigation and 568 

topographic map 1: 50000 resolution. In addition to that inventory map was prepared based on 569 

field visits, historical records, and high- resolution image analysis (slicing technique). Therefore, 570 

set up of spatial datasets that justify the relevant factors help to execute and map the areas of flood 571 
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occurrences and the indicated correlation between four methods. Validation was successfully 572 

conducted with accuracy more than 90 % using the flooding data that was employed for training. 573 

Wadi Qena basin is suffering a great loss because of unforeseen weather conditions and floods. In 574 

this work, our resulting map was based on four different methods which were analysed, compared, 575 

and helped to understand the usefulness of several models and applications. The very high and 576 

high areas in all those maps were distributed adjacent to the border areas of the Wadi Qena basin 577 

(built-up area in Fig. 78). However, flood frequency and intensity have been increased in the 578 

twenty-first century in this basin. Accordingly, future planning and development of this wadi area 579 

will be under the flood hazard. This wadi area during the last decade was impacted by different 580 

flood events. This wadi is characterised by low drainage density, which is the primary reason for 581 

the high susceptibility in the basin. The eastern part of the basin is less susceptible to flooding 582 

because of its high elevation; however, the neighbouring regions from the northern to southern 583 

along the basin showed a high susceptibility. The area continuously experiencing damages 584 

inflicted by floods undergoes a series of changes over time. It imposes a limitation on a spatial 585 

flood analysis. If the location information is incorrect, this could lead to substantial spatial analysis 586 

problems. However, the drainage facilities, water-supply system can create an effect on flood 587 

susceptibility assessment.  588 

Our findings are innovative and provide good mapping results as expected. According to the study 589 

by Al-Abadi (2018), AdaBoost model with significant results outperformed Random Forest and 590 

other models as per the validation dataset. According to the results, the RF and AdaBoost models 591 

achieved 94% accuracy and outperformed the RTF model, which is 92%. However, Lee et al. 592 

(2017) described that classification accuracy can be achieved better in random forest than boosted-593 

tree model. The accuracy for regression and classification model based on RF was 78.78% and 594 

79.18%, while 77.55% and 77.26% in the case of BRT. Khosravi et al. (2018) presented in the 595 

assessment of a flash flood susceptibility mapping at the Haraz Watershed in Iran, showed that the 596 

Alternating Decision Trees (ADT) and BRT model had the highest predictive accuracy than other 597 

models.   598 

However, according to our results, BRT model achieved the highest accuracy concerning the 599 

mapping of flood susceptible areas, followed by the MDA, GLM and FDA models. Our results is 600 

in agreement with Rahmati et al. (2019) study. They indicated that the highest validation methods 601 
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in the application of support vector machine (SVM), boosted regression tree (BRT), and 602 

generalized additive model (GAM) for multi hazard mapping is the BRT which demonstrated the 603 

best performance for flood hazards (AUC = 94.2%). To produce an outcome, the major concern is 604 

the computational time, and there is a requirement of considerable time to produce an appropriate 605 

form of spatial data. The transformation of data into maps using the above three methods is a time-606 

consuming process involving the usage of several third-party software. This work provides 607 

sophisticated numerical results of flood-susceptibility-map that can be applied for vulnerability 608 

and risk assessment in the future. 609 

Although all four models successfully identified flood susceptibility areas in the Wadi Qena basin, 610 

however, susceptibility maps obtained from MDA, GLM and FDA and BRT could reflect the 611 

spatial heterogeneity of the build-up areas and describe more details of expected susceptible areas. 612 

In general, BRT model provided slightly better than the other methods. Nevertheless, to determine 613 

the best classifier in this study is difficult because all the employed models performed similarly. 614 

However, the success rate curves and the prediction rate curve showed that BRT achieved 0.921 615 

and 0.974 with the highest prediction ability based on the used statistical measures. Thus, at the 616 

end it is confirmed that BRT classifier can be consider as a base classifier which exhibit the best 617 

performance in flood susceptibility mapping in Wadi Qena basin. Therefore, the local government 618 

agencies and decision makers could adopt the produced map to implement suitable plans to 619 

mitigate future flood damages. 620 

6.5. Conclusions 621 

Regarding the current and future climate changes, floods have been represented to be the most 622 

devastating natural hazards causing loss of lives and properties damages worldwide. Accordingly, 623 

effective methods are required to delineate the most vulnerable areas for floods. Flood 624 

susceptibility models represent a crucial approach to map and delineate the flood vulnerable areas. 625 

These flood susceptibility models can be achieved using advanced statistical approaches that could 626 

be integrated in R and GIS environment. The current work aiming at investigating and applying 627 

four data mining models named MDA, GLM, FDA, and BRT, which considered to bebeing novel 628 

techniques to perform the flood susceptibility mapping in the Wadi Qena Basin, Egypt. Nine flood-629 

influencing variables (slope-angle, slope-aspect, altitude, distance from main wadis, lithology, 630 

curvature, land use, slope length, and topographic wetness index) were constructed and utilized 631 
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with the aid of a flood inventory data (training and validating data) to build the FSMs. The success 632 

rate and prediction rate curves were applied to evaluate the stability and predictability 633 

performances of the four flood susceptibility maps produced from the proposed models. The area 634 

under the curve (AUC) was calculated based on the training and the validating datasets. The AUC 635 

values of the success rates are 91.9%, 91.8%, 91.7%, and 92.1%, and of the prediction rates are 636 

96.8%, 96.7%, 96.6%, and 97.4%, respectively for the MDA, GLM, FDA, and BRT models. 637 

Findings from this current work was verified using flood inundated areas, which extracted from 638 

the sentinel images after flood event in 2016. Results indicated that the applied models are 639 

adequately representing the quantitative relationships between flood occurrences and multiple 640 

spatial data variables (flood-influencing variables). Many countries (decision-makings, planners, 641 

and private sectors) have been adapting flood susceptibility modeling as a preliminarily essential 642 

step in overall flood management program to identify the flood-vulnerable areas that could prevent 643 

excessive urbanization extension in susceptible flood-prone areas and/or minimize the potential 644 

damages and losses caused by existing and future floods. 645 
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