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2 53 An Integrated Machine Learning Approach
4 for Automatic Highway Extraction
5 from Airborne LiDAR Data and Orthophotos

6
7 5.1 Introduction

8 Automatic extraction of highways from airborne LiDAR
9 (light detection and ranging) has been a long-standing active

10 research topic in remote sensing. Accurate and computa-
11 tionally useful extraction of highway information from
12 remote sensing data is significant for various applications
13 such as traffic accident modeling (Bentaleb et al. 2014),
14 navigation (Kim et al. 2006), intelligent transportation sys-
15 tems (Vaa et al. 2007), and natural hazard assessments
16 (Jebur et al. 2014). Although there have been many studies
17 on extracting road networks from satellite images, the
18 information extracted from those images is limited to
19 two-dimensional information and accurate 3D geometry
20 hard to get. The recent advances in LiDAR technology
21 permit accurate scanning of earth surface and ground objects
22 (i.e., roads and buildings) in both two and three dimensions.
23 In other words, LiDAR provides accurate and high-
24 resolution horizontal and vertical spatial points (Antonar-
25 akis et al. 2008). Furthermore, LiDAR technology allows for
26 acquiring both spatial (three-dimensional locations) and
27 spectral (intensity values) information about earth surface
28 and ground objects (Antonarakis et al. 2008). The acquired
29 data represent height surfaces that include artificial and
30 natural objects. On the other hand, the intensity is defined as
31 a ratio of signal strength at transmission to signal strength at
32 detection (Alharthy and Bethel 2003). Concerning these
33 advances and high-resolution laser scanning data, the task of
34 road extraction is usually approached by two main steps:
35 road detection and vectorization (White et al. 2010). The
36 process of road detection is to separate road point clouds
37 from other objects, while vectorization process is the
38 extraction of detailed road polygons. Roads usually have
39 relatively constant height compared to building or other
40 structures in urban areas, and the elevation shows gradual
41 changes in slope for safety reasons (Choi et al. 2008). These
42 characteristics can be used to distinguish roads from other
43 features. However, for accurate road extraction, information
44 derived from LiDAR data is not enough due to the

45�complexity of separation of roads from other ground points
46�with the similar intensity value (Gong et al. 2010). In
47�addition, LiDAR intensity values are affected by several
48�factors such as surface reflectance, transmitted power,
49�atmospheric attenuation, and incidence angle and range
50�distance (Coren and Sterzai 2006). Apart from that, roads
51�have missing data due to above obstacles (e.g., trees and
52�vehicles), noise data (e.g., road markings), and different
53�types of materials (e.g., asphalt and concrete). Therefore,
54�incorporating color information from aerial photos is critical
55�for accurate road extraction (Gong et al. 2010).
56�Machine learning (ML) is a subfield of computer science
57�and artificial intelligence based on the biological learning
58�process. ML explores the study, design, and construction of
59�algorithms to learn from the past and make predictions on a
60�new set of data (Lary et al. 2015). ML covers main areas
61�such as data mining, statistics, and software applications. It
62�is a collection of a variety of algorithms (e.g., neural net-
63�works, support vector machines, self-organizing map, deci-
64�sion trees, logistic regressions, genetic programming, etc.).
65�ML is an efficient empirical method for both regression and
66�classification of nonlinear systems (Lary et al. 2015). Several
67�methods based on ML were proposed for remote sensing
68�applications and mostly for image classification (Butenuth
69�et al. 2003; Song and Civco 2004; Bazi and Melgani 2006).
70�Specifically, neural networks (NN) have been applied to
71�remote sensing image classification. Despite its success in
72�this area, a significant limitation of this model is the fact that
73�their computational complexity is quite high (Ding et al.
74�2013) and it has a drawback of overlearning (Baczyński and
75�Parol 2004). Additionally, support vector machine (SVM)-
76�based approaches have also been extensively used for image
77�classification (Bazi and Melgani 2006). The reason behind
78�SVM’s popularity in this area is its capability to produce
79�higher classification accuracy than the NN model (Bazi and
80�Melgani 2006). However, the choice of the suitable kernel
81�function, kernel specific parameters, and regularization
82�parameter is some of the major concerns in the design of an
83�SVM model (Mountrakis et al. 2011). Apart from the
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84 methods above, logistic regression and decision tree algo-
85 rithms were extensively used for remote sensing image
86 analysis as well (Friedl and Brodley 1997).

87
88 5.2 Previous Related Works

89 Several methods have been proposed in the literature for road
90 detection from high-resolution satellite images and aerial
91 photographs. The common used approaches include region
92 growing (Amo et al. 2006; Mena and Malpica 2005), seg-
93 mentation and clustering (Wan et al. 2007), machine learning
94 (Butenuth et al. 2003; Song and Civco 2004), and snake
95 models (Song and Civco 2004; Peng et al. 2010). However,
96 due to the complexity of the recent highway designs, road
97 detection from aerial images is a challenge. Besides, aerial
98 images are easily influenced by occlusion, shadow, spectrum
99 similarity of different objects, and heterogeneous spectra

100 (Rottensteiner 2009; Zhao and You 2012). In addition,
101 information extracted from satellite images is limited to 2D,
102 and complete road geometry is difficult to be extracted.
103 Therefore, a fusion of LiDAR data with aerial images has
104 become an essential phenomenon, which overcomes the
105 shortcomings above of aerial images (Zhu et al. 2009; Clode
106 et al. 2004; Hu et al. 2004). By using LiDAR data, the known
107 elevations can be used to efficiently discriminate between
108 roads and other aboveground objects with same spectra such
109 as buildings (Poullis and You 2010; Rottensteiner 2010). On
110 the other hand, LiDAR intensity and aerial images allow
111 distinguishing roads from other bare land and grasslands,
112 which have similar elevation (Gong et al. 2010).
113 In addition to the methods proposed above for extracting
114 roads from aerial images, several approaches have been
115 developed to extract roads from LiDAR data. In a recent
116 paper, (Zhu et al. 2004) presented an automatic road
117 extraction technique that combines information from aerial
118 photographs and laser scanning data. The method utilized
119 road edges shadowed by surrounding high objects, such as
120 tall buildings and trees. This method is difficult to implement
121 in conventional GIS software. In addition, the method is
122 limited to the roads where the tall objects are present, which
123 is not the case always. An automatic method based on
124 morphological filtering of intensity image was proposed by
125 Clode et al. (2004). Object-based image analysis approach
126 was used for road extraction from LiDAR data by several
127 authors (Brennan and Webster 2006; Hodgson et al. 2008;
128 Zhou 2013). Although object-based approach is proven an
129 efficient way for feature extraction, however, it is very
130 challenging to develop transferable rulesets in this approach.
131 Furthermore, a parallel algorithm for the extraction of road
132 point clouds was proposed for LiDAR data by Li et al.
133 (2008) using intensity and height information. There are still
134 noisy points over the road, and in some cases, points were

135�missing in narrow places such as parking lots and residential
136�sub-district. The roads of these areas are wider than normal
137�road; however, they may use the same material as a road. In
138�order to handle these kinds of problems, the more compli-
139�cated algorithms are required. Reference (Samadzadegan
140�and Bigdeli 2009) used multiple classifier system to extract
141�roads from LiDAR point clouds. A k-means clustering
142�method based on intensity data was used to extract roads
143�from LiDAR data by Gong et al. (2010), and the result was
144�refined by using the spectrum information of aerial images.
145�Moreover, (Zhao et al. 2011) described an unsupervised
146�approach for efficient extraction of grid-structured urban
147�roads from airborne LiDAR data. A mean shift algorithm
148�was used by Wang et al. (2011) for road extraction from
149�LiDAR data. In this method, both LiDAR and aerial pho-
150�tographs were fused and the color space of aerial photograph
151�was transformed into L-a-b color space system. Compared
152�with other traditional classification methods, the mean shift
153�algorithm is more suitable in multidimensional data classi-
154�fication. However, when there are two or more features
155�spectrally similar, the algorithm produces low-quality
156�results. Reference (Zhao and You 2012) proposed an origi-
157�nal procedure for road extraction from aerial LiDAR data.
158�The procedure combines a robust local detector with a global
159�context-incorporating graph to reach both high correctness
160�and completeness. More recently, (Hu et al. 2014) proposed
161�to use multiple features to detect road centerlines from the
162�remaining ground points after filtering. The main idea of the
163�method was to detect smooth geometric primitives of
164�potential road centerlines and to separate the connected
165�non-road features (parking lots and bare grounds) from the
166�roads. One problem with this approach is the heavy com-
167�putational cost in the tensor-voting step. Another problem is
168�the recognition of the contextual objects of roads, such as
169�lane markings, road junction patterns, vehicles, and road
170�edges.
171�Although previous researchers have made many efforts,
172�the problem of automatic road detection is still far from
173�being solved (Zhu et al. 2009; Clode et al. 2004; Boyko and
174�Funkhouser 2011). Therefore, this study aims to evaluate
175�several ML algorithms (i.e., multilayer perceptron, support
176�vector machine, logistic regression, and decision trees) for
177�extracting roads from airborne LiDAR integrated with aerial
178�orthophotos. To build an integrated model for automatic
179�road extraction from LiDAR data, this study proposed an
180�efficient integrated GIS workflow. The main contribution of
181�this study is analyzing several machine learning algorithms
182�and testing their transferability for road extraction from
183�LiDAR data. In addition, the study developed an integrated
184�GIS model based on the best machine learning algorithm
185�identified. The integrated model proposed here differs to
186�those presented above is that it is transferable and straight-
187�forward which means the model could be applied to different
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188 LiDAR datasets. This paper presents first a brief literature
189 review about automatic road extraction from LiDAR data
190 and then gives a theoretical background on the used machine
191 learning algorithms (multilayer perceptron neural networks,
192 support vector machine, logistic regression, and decision
193 trees). After that, a systematic methodology was presented.
194 Finally, the results obtained from the proposed GIS work-
195 flow were presented and discussed.

196
197 5.3 Machine Learning Models

198 In this study, several machine learning algorithms were
199 evaluated for road detection from airborne LiDAR data and
200 aerial photographs. The algorithms used in this study are
201 multilayer perceptron neural networks, support vector
202 machine, logistic regression, and decision tree. These
203 methods have been commonly used for remote sensing data
204 analysis and information extraction. However, there were
205 not many studies investigated these methods for automatic
206 road extraction, and comprehensive comparison study was
207 not done among them. The following sections present the
208 concept and background information on these algorithms.

209 5.3.1 Multilayer Perceptron Neural Networks
210 (MLP)

211 In machine learning, neural networks are a family of sta-
212 tistical, biological learning models. Multilayer perceptron
213 consists of a system of simple interconnected neurons or
214 nodes, as illustrated in Fig. 5.1. It is a model representing a
215 nonlinear mapping between some inputs and outputs. Neu-
216 rons are usually organized into layers with full or random
217 connections between successive layers (Mokhtarzade and
218 Zoej 2007). Conceptually, there are three types of layers:
219 input, hidden, and output layers that receive process and
220 present the results, respectively (Mokhtarzade and Zoej
221 2007). The nodes are connected by numeric weights and
222 output signals, which are a function of the sum of the inputs
223 to the node modified by a simple activation function
224 (Gardner and Dorling 1998).
225 What has attracted the research fraternity the most in
226 neural networks is the possibility of learning. The most
227 common learning algorithm for neural networks is the
228 backpropagation, which was developed by Paul Werbos in
229 1974 and rediscovered independently by Rumelhart and
230 Parker (Priddy and Keller 2005). It is an iterative gradient
231 algorithm designed to minimize the error function (Eq. 5.1).
232 Despite the success of such neural networks in remote
233 sensing applications, a significant limitation of this model is
234 the fact that their computational complexity is quite high and

235�it has a drawback of overlearning (Baczyński and Parol
236�2004; Mia et al. 2015).

E ¼ 1
2

XL

i¼1

dj � oMj

� �2
ð5:1Þ

238�238�239�
where dj and oMj represent the desired output and current

240�response of the node ‘j’ in the output layer, respectively, and
241�‘L’ is the number of nodes in the output layer. In an iterative
242�method, corrections to weight parameters are computed and
243�added to the previous values as illustrated in Eq. (5.2):

Dwi;j ¼ �l
@E

@wi;j

Dwi;j tþ 1ð Þ ¼ Dwi;j þ aDwi;j tð Þ

8
><
>:

ð5:2Þ

245�245�246�where wi;j is weight parameter between node i and j, D a
247�positive constant that controls the amount of adjustment and
248�is called learning rate, a a momentum factor that can take on
249�values between 0 and 1 and ‘t’ denotes the iteration number.
250�The parameter a can be called smoothing or stabilizing
251�factor as it smoothest the rapid changes between the weights
252�(Yang 1995).

253�5.3.2 Support Vector Machine (SVM)

254�Support vector machine (SVM) is a statistical classification
255�method proposed by Vapnik (2013). Given m labeled

256�training samples, ðf xi
*
; yi

* jxi* 2 Rn; yi 2 �1; 1f g; i ¼ 1. . .m;
257�SVM is able to generate a separation hypersurface that has
258�maximum generalization ability. Mathematically, the deci-
259�sion function can be formulated as represented in Eq. (5.3).

d xð Þ* ¼
Xm

i¼1

aiyiKðxi*; x*Þþ b ð5:3Þ

261�261�262�where ai and b are the parameters determined by SVM

263�
learning algorithm, and K xi

*
; x
*

� �
is the kernel function (refer

Fig. 5.1 A simple structure of multilayer perceptron neural network
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264 to Table 5.1 for common kernel functions used with SVM)
265 which implicitly maps the samples to a higher dimensional

266 space. Those samples xi
* with nonzero parameters ai are

267 called ‘support vectors’ (SVs). The accuracy with which an
268 SVM can classify a dataset depends on the magnitude of the
269 parameter C (Matkan et al. 2014), where C is a penalty term
270 that controls the magnitude of penalty associated with the
271 training samples classified on the wrong side of the hyper-
272 plane (Oommen et al. 2008). Details of SVM can be found
273 in Matkan et al. (2014); Melgani and Bruzzone (2004); Zhan
274 and Shen (2005).
275 As with any machine learning technique, SVM needs to
276 learning algorithm to get experience from training data and
277 make predictions on data. The common learning technique
278 used with SVM is quadratic programming (QP) (Platt 1999).
279 However, this algorithm is expensive in computational costs
280 (Platt 1999). Sequential minimal optimization (SMO) is a
281 simple algorithm that quickly solves the SVM quadratic
282 programming (QP) problem without an iterative numerical
283 routine for each sub-problem (Platt 1999). SMO decomposes
284 the overall QP problem into QP sub-problems similar to
285 Osuna’s method (Melgani and Bruzzone 2004). SMO
286 chooses to solve the smallest possible optimization problem
287 at every step. For the standard SVM QP problem, the
288 smallest possible optimization problem involves two
289 Lagrange multipliers because the Lagrange multipliers must
290 obey a linear equality constraint. At every step, SMO
291 chooses two Lagrange multipliers to optimize, finds the
292 optimal values for these multipliers, and updates the SVM to
293 reflect the new optimal values.

294 5.3.3 Logistic Regression (LR)

295 The logistic regression (LR) is an efficient mathematical
296 model used Logistic regression (Logit) analysis has also
297 been used to investigate the relationship between binary or
298 ordinal response probability and explanatory variables
299 (Nandi and Shakoor 2010). This model is represented by a
300 linear equation as described by Jebur et al. (2014) as
301 following:

Y ¼ b0 þ b1x1 þ b2x2 þ � � � þ bnxn ð5:4Þ
303303

304�where Y shows the dependent layer, it could be (1) or (0), b0
305�is the intercept of the model, bi ¼ i ¼ 0; 1;ð
306�2; . . .; nÞ; bi i ¼ 0; 2; . . .; nð Þ represents the LR coefficients,
307�and xi i ¼ 0; 1; 2; . . .; nð Þ denotes the causative factors.
308�To make predictions on the possibility of an event in each
309�pixel, the probability index can be measured by using
310�Eq. (5.5).

p ¼ 1
1þ e�Y

ð5:5Þ

312�312�313�where p is the target probability attained between 0 and 1 on
314�an S-shaped curve.

315�5.3.4 Decision Tree (DT)

316�A decision tree is a treelike model and supervised classifier
317�designed to classify input training data into more homoge-
318�nous subgroups using constructed rules or decisions called
319�nodes (Friedl and Brodley 1997; Quinlan 2014). DT is
320�commonly used in machine learning, statistics, and data
321�mining to create a model that predicts the value of a target
322�variable based on several input variables. During the training
323�process, DT aims to obtain maximum information and
324�minimum entropy in the generated model (Quinlan 2014).
325�The decision tree consists typically of nodes, which stand for
326�circles, and the branches stand for segments connecting the
327�leaf nodes. DT can be implemented in WEKA (Waikato
328�Environment for Knowledge Analysis) open-source software
329�under the tree function called J48. J48 is slightly modified
330�C4.5 (Gokgoz and Subasi 2015) in which generates a clas-
331�sification–decision tree for the given dataset by recursive
332�partitioning of data (Zhao and Zhang 2008). The algorithm
333�takes into account of all the possible tests that can split the
334�dataset and selects a test that gives the best information gain.
335�It passes through the decision tree, visits each node, and
336�selects optimal subset (Mašetic and Subasi 2013). It is
337�achieved by using the gain ratio, represented by Eqs. (5.6)
338�and (5.7):

Gain Ratio S;Að Þ ¼ InformationGain S;Að Þ
Entropy S;Að Þ ð5:6Þ

340�340�

341

Entropy Sð Þ ¼ �pp log2 pp � pn log2 pn ð5:7Þ

Table 5.1 Kernel functions used
with SVM classification. Source
Yao and Han (2011); Soliman
and Mahmoud (2012)

Function type Equation

Linear kernel function K xi; xj
� � ¼ xTi xj

Polynomial kernel function K xi; xj
� � ¼ cxTi xj þ r

� �d
; c[ 0

Radial basis function K xi; xj
� � ¼ e �cxi�x2jð Þ; c[ 0

Sigmoid kernel function K xi; xj
� � ¼ tanh cxTi xj þ r

� �
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343343344 where S is a training set, A is an attribute, pp is the pro-
345 portion of positive examples in S, and pn is the proportion of
346 negative examples in S (Saghebian et al. 2013).

347
348 5.4 Study Area

349 The study area is a subset corridor from the longest
350 expressway in Malaysia (North–South Expressway [NSE]),
351 running from Bukit Kayu Hitam in Kedah near the Malay-
352 sian–Thai border to Johor Bahru at the southern portion of
353 Peninsular Malaysia (Fig. 5.2). This subset was selected
354 because the highway located in this area is surrounded by
355 various bare earth types (i.e., bare soil, low vegetation,
356 construction site), which is important to take into consider-
357 ation for highway extraction.

358
359 5.5 Data and Methodology

360 The LiDAR data used in this study were collected on March
361 8, 2013, by Riegl LM Q5600 and Camera Hassleblad
362 39 Mp. The device has a spatial resolution of 13 cm, laser
363 scanning angle of 60°, and camera angle of 45°. In addition,
364 the posting density of the LiDAR data was 3–4 pts/m2.
365 In this study, it was assumed that road extraction from
366 LiDAR data is a two-class classification problem (roads and
367 non-roads classes). Using variables derived from LiDAR data
368 and aerial photographs (i.e., height, intensity, color) together
369 with machine learning techniques, various models can be
370 developed to optimize the separation of the two classes. Thus,
371 roads can be extracted by applying a simple threshold value.
372 Because there are several artificial and natural features have
373 similar characteristics with roads such as bare earth (similar

374�height) and concrete roads (similar intensity), the color
375�information extracted from aerial photographs combining
376�with variables derived from LiDAR can be useful for
377�developing generalized models for road extraction.

378�5.5.1 Data Preprocessing

379�5.5.1.1 Generation of Digital Elevation Model
380�(DEM)
381�The raw LiDAR data include three-dimensional coordinates
382�of ground points and surface points. Those two sets of data
383�can be used to generate DEM and digital surface model
384�(DSM) in grid form (Briese et al. 2002). In this study, the
385�raw LiDAR point clouds, first, were filtered based on the last
386�pulse return and then a DSM was generated using the nearest
387�neighbor interpolation technique in ArcMap 10.3 software
388�(Fig. 5.3a). Next, the multiscale curvature classification
389�(MCC) algorithm was used in the same software to remove
390�the non-ground points (Fig. 5.3b). MCC is an iterative
391�multiscale algorithm for classifying LiDAR returns as
392�ground and non-ground (Evans and Hudak 2007). The MCC
393�algorithm was developed at the Moscow Forestry Sciences
394�Laboratory of the USFS Rocky Mountain Research Station.
395�In short, the algorithm integrates curvature filtering with a
396�scale component and variable curvature tolerance. During
397�this stage, a surface was interpolated at different resolutions
398�using the thin-plate spline method (Evans and Hudak 2007)
399�and points were classified based on a progressive curvature
400�threshold parameter; the curvature tolerance parameter
401�increases as resolution coarsens to compensate for slope
402�effect as the data are generalized. Figure 5.3b shows the
403�DEM generated using MCC algorithm in ArcMap 10.3
404�software.

Fig. 5.2 Location of the study
area
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405 5.5.1.2 Color Space Transformation
406 One of the challenges in developing generalized models for
407 image classification and feature extraction is the
408 non-systematic effects on the spectral signature such as
409 illumination effects (Wang et al. 2011). There are several
410 color space models which have been developed to represent
411 the color as tuples of numbers such as RGB and L-a-b color
412 models (Wang et al. 2011). The space L-a-b was especially
413 designed to best approximate human vision. In both cases, L,
414 the lightness (relative brightness) coordinate, is defined in
415 the same way; the two spaces differ only through the chro-
416 maticity coordinates (Wang et al. 2011). The L-a-b color
417 space includes all perceivable colors, which means that its
418 gamut exceeds those of the RGB color model. Thus in this
419 study, we converted the RGB aerial photographs into the
420 L-a-b color model to reduce the illumination effects from the
421 original images.

422 5.5.2 Preparation of Input Attributes
423 and Training/Testing Samples

424 Based on the assumptions discussed above, four attributes
425 (i.e., height [nDSM], NDIR, intensity, color) were used as
426 inputs for the models. To prepare these variables for the
427 model development purposes, the related products from
428 LiDAR and digital orthophoto data were subsequently
429 generated. The height raster (nDSM) was generated by
430 subtracting the DEM from DEM layer (Fig. 5.4d). LiDAR
431 data usually come with the intensity attribute linked to the
432 point clouds. Thus, these attributes were used to generate the
433 intensity raster by interpolating the points using nearest
434 neighbor method (Fig. 5.4a). The intensity layer was
435 smoothened using a simple mean filter with (3 � 3) window
436 size. On the other hand, the color raster was generated from
437 the digital orthophoto by using band rationing for the b* and
438 a* bands extracted from the transformed orthophoto
439 (Fig. 5.4b). In addition, to these layers, one more layer was

440�used is the intensity raster and the b* band of color raster
441�where combined to produce additional attribute to investi-
442�gate its contribution to the highway extraction (Fig. 5.4c).
443�The formula used for the combination of intensity and b*
444�band raster is represented by Eq. (5.8), and the result of this
445�calculation was named normalized difference intensity and
446�red (NDIR) index.

NDIR ¼ Intensity� b�

Intensityþ b�
ð5:8Þ

448�448�449�Ground reference data for the study area were generated
450�based on random sampling procedure from the preprocessed
451�data. First, the highway features were digitized manually to
452�create the vector format of the raster data. Using the random
453�point generator tool in ArcMap 10.3 software, a total number
454�of 1700 points were generated randomly with a constraint
455�that the minimum distance between each point is not less
456�than 1 m. These generated points were distributed for both
457�classes (highway and others). As a result, each class had the
458�same number of points located within the class polygons and
459�was equal to 850 points for each. Next, the attributes (height,
460�NDIR, intensity, and color) were extracted from the corre-
461�sponding raster and linked to the point feature class. Then,
462�the attributes of the point feature class were exported to
463�Microsoft Excel software and organized in such a way that is
464�readable in Weka 3.6.0 software. The 850 sampling points
465�were then divided into two equal groups for training (50%)
466�and testing (50%), and those used for models development.

467�5.5.3 Proposed GIS Workflow for Automatic
468�Highway Extraction

469�The method proceeded by taking the raw LiDAR data and
470�produced both DSM and DEM using the method explained
471�before. In addition, it takes the intensity attributes stored in
472�the raw point clouds and generates intensity raster by using
473�the nearest neighbor interpolation. In parallel, it takes the
474�aerial photograph in RGB format and converts it to L-a-b
475�format. Then, using the L-a-b image and LiDAR intensity, it
476�creates a new raster data (NDIR) using the band ratio pro-
477�cedure (explained in Sect. 5.2). After that, it prepares the
478�generated set of raster datasets as inputs for the proposed
479�models to detect the highway features in the image scene.
480�Using the proposed models and generated inputs, the initial
481�highway layer can be produced. Because the initial result
482�from the highway detection models has noises, the
483�post-processing is then applied. In the post-processing stage,
484�a majority filter was applied to reduce the noises and at the
485�same time fills the gaps between the points. In short, a
486�majority filter assigns every pixel to the majority category
487�within an n � n window surrounding the pixel. In this study,

Fig. 5.3 Products derived from the raw LiDAR data, a DSM, b DEM
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488 a window size of 5 � 5 was used to balance between
489 removing the noises and resolving the boundary of the fea-
490 tures. Finally, the refined product of highway raster is pro-
491 duced for various purposes.

492
493 5.6 Results and Discussion

494 For auditing the results of the proposed models and GIS
495 workflow, we assessed the developed ML models in general
496 and discussed the factors affecting the accuracy of the results

497�of the models. After that, the quality of the proposed GIS
498�workflow was evaluated by an application on a raster data
499�using an accuracy assessment strategy introduced by
500�Wiedemann et al. (1998), which is based on three indices,
501�i.e., completeness, correctness, and quality measures. The
502�ground reference highway was digitized manually based on
503�the aerial photograph using polygon feature class, producing
504�high-quality reference data with complete details of roads
505�presented in the study area. The subsequent sections discuss
506�the results obtained and the evaluation process for each
507�model and the simple integrated GIS workflow.

Fig. 5.4 Input raster produced
from LiDAR and digital
orthophoto data, a intensity raster,
b color raster, c NDIR raster,
d height (nDSM) raster
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508 5.6.1 Proposed Models for Highway Extraction

509 In this study, we applied four machine learning-based
510 models for highway extraction from airborne LiDAR data
511 integrated with aerial orthophotos. First, the four attributes
512 derived from LiDAR and aerial photograph data at each
513 sampling points were used to build a multilayer perceptron
514 neural network model. During the model development pro-
515 cess, the effect of several factors was investigated which
516 might affect the classification accuracy such as a number of
517 hidden nodes and layers as well as to the learning rate and
518 momentum parameters. These issues were discussed in the
519 next sections.
520 A new linear model was developed for highway extrac-
521 tion based on SVM approach. This model is shown in
522 Table 5.2, which is a simple model by taking into consid-
523 eration of four inputs and produces an output that could be
524 the threshold to detect the highway features in the data. The
525 overall accuracy of (90.19%) with the best C parameter used
526 polynomial kernel function was achieved. C values and other
527 kernel function types were investigated in more details,
528 which are discussed in the next sections.
529 Additionally, a logistic regression model was also
530 developed. The logistic regression model permits extracting
531 roads from LiDAR and aerial photograph data with an ele-
532 mentary mathematical model and threshold value with no
533 user-defined parameters. The logistic regression model
534 developed in this study is shown in Table 5.2. Furthermore,
535 a decision tree (DT) algorithm was also utilized to develop a
536 model for highway extraction from the same data. In the DT
537 model, collections of linear rules were developed to classify
538 the input parameters into two binary classes (roads and
539 non-roads). The complete DT algorithm is presented in a
540 graphical form in Fig. 5.5.

541 5.6.2 Accuracy Assessment

542 The overall accuracy assessment of the proposed models
543 (Fig. 5.6) was based on three measures: overall accuracy,

544�Kappa coefficient, and user accuracy of highway class. In
545�addition, during this evaluation process, the best
546�user-defined parameters were used for each model. This
547�evaluation showed that MLP model achieved the highest
548�overall accuracy and the SVM produced the lowest overall
549�accuracy for highway classification. Regarding Kappa
550�coefficient, the best accuracy was achieved by the decision
551�tree algorithm. More importantly, the evaluation showed that
552�the best algorithm for highway classification (based on user
553�accuracy) is the MLP model. These evaluations were based
554�on the sampling data. Later, these models will be evaluated
555�regarding transferability and its performance on raster data.

556�5.6.3 Multilayer Perceptron

557�Neural networks are a set of neurons or nodes interconnected
558�to each other by weights and output signals. In general, a
559�neural network model consists of three layers, input, hidden,
560�and output layers. However, several structures can be
561�designed by modifying the number of hidden layers and the
562�number of nodes in each hidden layer. Thus, these param-
563�eters contribute to the overall accuracy that could be
564�achieved by the model for the classification. Here, we
565�evaluated five different structures for the neural network to
566�get the optimal model for road extraction from LiDAR data.
567�These structures are one single hidden layer with three
568�nodes, one single hidden layer with four nodes, one single
569�hidden layer with five layers, two hidden layers with three
570�nodes in each layer, and three hidden layers with three nodes
571�in each layer (Fig. 5.7). The idea here is to see the effects of
572�both some hidden layers and the number of nodes in the
573�hidden layers. The evaluation showed that the best overall
574�accuracy and regarding kappa coefficient could be achieved
575�by using one single hidden layer with four nodes. However,
576�regarding user accuracy, the best structure was found to be
577�the three hidden layers with three nodes in each layer. This
578�evaluation was based on the sampling data, and a second
579�evaluation is needed to check the models for transferability
580�issues and their applications on raster data.

Table 5.2 Proposed models for
road extraction from LiDAR and
digital orthophoto data

Algorithm Proposed model Overall accuracy (%) Running time (s)

SVM �10:7086� nDSM
�8:4659� NDIR
�2:0546� Intensity
�2:0510� Color
þ 3:5631
C = 5.0, the kernel is a polynomial function

90.19 0.02

LR 1:1204� nDSM
þ 20:1763� NDIR
þ 0:0425� Intensity
þ 0:0208� Color
þ 9:7231

90.38 0.09
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581 Regarding some nodes in each hidden layer, it was
582 noticed that the overall accuracy could improve slightly.
583 However, unexpectedly, it was found that the number of
584 nodes in each hidden layer did not improve the user

585�accuracy, but the overall accuracy was decreased. In con-
586�trast, the number of hidden layers was significant for accu-
587�rate highway classification in which the best user accuracy
588�was achieved with three hidden layers.

Fig. 5.5 Decision tree model proposed for highway extraction from LiDAR data

Fig. 5.6 Accuracy assessment of applied machine learning algorithms
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589 5.6.4 Support Vector Machine

590 It is well known that the SVM techniques are strongly
591 dependent on the SVM hyperparameters: the regularization
592 factor C and kernel function type. Thus, it was important to
593 test several C parameters and kernel types and selecting the
594 optimum parameters for highway extraction. In this study,
595 we used trial-and-error method to evaluate each C and kernel
596 function. In terms of C parameter, five values (0.5, 1.0, 1.5,
597 2.0, 3.0, and 5.0) were evaluated (Fig. 5.8). The evaluation
598 process revealed the best C parameter that can accurately
599 classify roads and non-roads is 5.0.
600 On the other hand, three kernel functions that could be
601 used in SVM were evaluated for selecting the best kernel
602 function for highway extraction from LiDAR data. These
603 kernel functions are polynomial, radial basis function (RBF),
604 and Pearson VII universal kernel (PUK). The evaluation
605 revealed that the highest overall accuracy could be achieved

606�with PUK kernel, while the RBF kernel is the best for
607�highway extraction based on user accuracy measure. The
608�details of kernel function evaluation on SVM classifier for
609�highway extraction are shown in Fig. 5.9.

610�5.6.5 Applications on Raster Data and Models
611�Transferability Issues

612�One of the difficult and challenging tasks in model devel-
613�opment is to make it general, which could be applied to
614�different datasets. Here, we aim to test the developed ML
615�models on raster data and investigate their transferability. As
616�mentioned above, the overall accuracy achieved by the
617�proposed models is 93.65, 90.19, 90.38, and 93.46% for
618�MLP, SVM, LR, and DT, respectively. By applying the
619�complete GIS workflow, we achieved the following overall
620�road extraction results (Fig. 5.10). Both visual and

Fig. 5.7 Effects of neural
network structure on the overall
accuracy of highway
classification

Fig. 5.8 Effects of C value on
SVM classifier
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621 quantitative interpretation show that the logistic regression
622 model has produced the highest quality road extraction
623 (Fig. 5.10f). In this result, one can notice that the most of the
624 road features were classified accurately and correctly. One
625 problem occurred in this model is that the elevated roads
626 were not detected as well as the height attribute is higher
627 than the normal values (around 0). The result from DT
628 model was also sophisticated in which most of the road
629 feature extracted correctly and the elevated roads to some
630 extent was detected (Fig. 5.10h). However, there were some
631 random noises and some of the road features within built-up
632 areas not detected totally as in the left down of Fig. 5.10h.
633 The MLP model detected the elevated roads correctly, while
634 there were some misclassifications features, which produced
635 random noises in the result (Fig. 5.10b). In addition, the
636 boundary of road features was not detected accurately when
637 the MLP model was used. Although SVM model could
638 classify roads and non-roads with high overall accuracy
639 (90.19%) when using sampling data, the application of SVM
640 model on raster data has produced very low-quality result
641 (Fig. 5.10d). From this result, it can be inferred that SVM
642 model suffers from transferability issues and needs for fur-
643 ther research to optimize it for road extraction from LiDAR
644 data.

645 5.6.6 Quantitative Evaluation of Road
646 Extraction

647 The accuracy assessment of road extraction is usually per-
648 formed using three evaluation measures introduced by
649 Wiedemann et al. (1998), the completeness, correctness, and
650 quality.

651�Completeness measure: The completeness is defined as
652�the ratio of the true positives from the sum of the true pos-
653�itives and false negatives given by,

Completeness ¼ TP
TPþ FN

ð5:9Þ

655�655�656�Correctness measure: The correctness is defined as the
657�ratio of the true positives from the sum of the true and false
658�positives given by,

Correctness ¼ TP
TPþ FP

ð5:10Þ

660�660�661�Quality measure: The quality is a measure of the ‘good-
662�ness’ of the final result and is given by,

Quality ¼ TP
TPþ FPþ FN

ð5:11Þ

664�664�665�where TP, TN, FP, and FN stand for true positives, true
666�negatives, false positives, and false negatives, respectively.
667�Keeping in mind that the optimal values for the three
668�measures are 1, 100% of completeness means that all roads
669�are recovered, 100% of correctness means that all roads
670�extracted are actual roads and 100% of quality means that all
671�roads are correct and complete. The evaluation strategy is
672�presented in Fig. 5.11c, which shows the true positives, false
673�positives, and false negatives parameters.
674�Table 5.3 shows the evaluation measures for the four
675�proposed models. These evaluations were done based on the
676�ground reference data (Fig. 5.11a) derived from the aerial
677�photograph by manual digitizing. As it is evident from the
678�results and the accuracy measures presented in Table 5.3, the
679�proposed simple integrated GIS model performs well when

Fig. 5.9 Effects of kernel
function types on SVM classifier
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Fig. 5.10 Results of highway
extraction models, a MLP,
b filtered MLP, c SVM, d filtered
SVM, e LR, f filtered LR, g DT,
h filtered DT
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680 using either logistic regression or decision tree model in
681 highway detection module. The success of our approach
682 depends primarily on machine learning approach, which
683 optimizes the feature extraction from a set of input variables.

684
685 5.7 Conclusion

686 In this paper, several machine learning algorithms were
687 evaluated namely multilayer perceptron, support vector
688 machine, logistic regression, and decision tree for automatic
689 and reliable highway detection from airborne LiDAR data
690 and aerial photographs. Then, a simple integrated GIS
691 workflow was proposed for automatic extraction of high-
692 ways using the optimum machine learning model deter-
693 mined from the evaluation study. The GIS workflow
694 proposed in this study is an integrated model which merges
695 the strengths of data preprocessing, highway detection based
696 on machine learning, and post-processing (majority filter-
697 ing). The proposed workflow together with the developed
698 machine learning models has addressed the challenges of

699�automatic detection and extraction of highways from air-
700�borne LiDAR data.
701�Firstly, this study investigated the effects of the RGB
702�format of the aerial photograph on the highway detection,
703�and it was found that the transformation into L-a-b color
704�space system is critical to reducing the illumination effects.
705�Four raster datasets (such as height, NDIR, intensity, and
706�color datasets) were derived from the original LiDAR data
707�and aerial photograph to be inputs for the model’s devel-
708�opment. Using randomly selected 1700 points from the
709�aerial orthophoto, four machine learning-based models were
710�developed. The developed models were then applied on a
711�raster dataset to detect the highways and separate them from
712�other objects. The result of the detected highway was refined
713�by applying a majority spatial filter producing the final
714�product that could be used for various geospatial
715�applications.
716�Second, the evaluation study revealed that logistic
717�regression is the best model to be used with an overall
718�accuracy of (90.38%) on sampling data. When the model
719�was applied to raster data, the result showed that this model

Fig. 5.11 Ground reference data
and highway extraction
evaluation strategy, a ground
reference data generated by
manual digitizing of an aerial
photograph, b extracted highway
using logistic regression model,
c evaluation strategy of highway
extraction

Table 5.3 Proposed models for
road extraction from LiDAR and
digital orthophoto data

Models Evaluation measures

Completeness (%) Correctness (%) Quality (%)

MLP 78.34 69.72 58.45

SVM 61.09 50.81 38.38

LR 85.43 76.70 67.82

DT 81.12 73.05 62.43
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720 is reliable and provided highly accurate road extraction from
721 LiDAR data. The logistic regression model achieved the
722 accuracy of 85.43, 76.70, and 62.43% for completeness,
723 correctness, and quality. However, logistic regression model
724 could not detect elevated roads well whereas neural network
725 did. For that reason, the future research direction for auto-
726 matic road extraction is to use ensemble methods. Ensemble
727 methods can combine multiclassier to get the advantages of
728 both classifiers. This will ensure high-quality road extraction
729 as well as to elevated roads problem can be solved.
730 The evaluation test has shown that the proposed GIS
731 workflow performs well for automatic highway extraction in
732 a simple GIS-based method. In addition, the developed GIS
733 model can be implemented in most commercial and
734 open-source GIS software, which makes it powerful, and
735 efficient for industrial use.
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