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2 113 Applications of Deep Learning in Severity
4 Prediction of Traffic Accidents

5
6 11.1 Introduction

7 Future prediction is a fascinating topic for human endeavor
8 and is identified as a critical tool in transportation manage-
9 ment. Understanding an entire transportation network is

10 more difficult than transportation on a single road. The main
11 purpose of this effort is to provide a superior route with high
12 safety level and support traffic managers in efficiently
13 managing road network.
14 Recent studies have predicted that in 2030, traffic acci-
15 dents will be the fifth leading cause of death worldwide
16 (Sameen and Pradhan 2017a, b, c; Sameen et al. 2016). The
17 costs of fatalities and driver injuries due to traffic accidents
18 also greatly affect the society. These insights call for
19 investigating various aspects of traffic accident data analysis
20 and modeling in numerous geographic regions. In general,
21 two research methods, namely, statistical methods and
22 neural networks (NNs) dominate the studies on traffic crash
23 forecasting. Statistical techniques, such as k-nearest neigh-
24 bors (Lv et al. 2009), support vector machine (Li et al. 2008,
25 2012), and logistic regression (Al-Ghamdi 2002), are applied
26 to predict the frequency and injury severity of traffic acci-
27 dents. Artificial NN (ANN) is used to implement flexibility,
28 generalizability, and strong forecasting power (Delen et al.
29 2006; Moghaddam et al. 2011). A large amount of
30 high-resolution data are generated on freeway networks
31 using traffic sensors to predict traffic crashes. However, deep
32 learning theory gradually begins to exhibit superiority over
33 other techniques.
34 The advent of artificial intelligence has enabled deep
35 learning to experience much patronage, especially with the
36 aid of high-speed computing machines. The use of compu-
37 tational intelligence methods has encouraged paradigm shift
38 from conventional traffic forecasting to short-term traffic
39 forecast based on deep learning approaches. Employing deep
40 learning principle can resolve many issues related to
41 dimensionality with the aid of distributed calculation (Ma
42 et al. 2015). Success on applying deep learning has been
43 recorded, especially in computer vision, speech recognition,

44�and natural language processing (Krizhevsky et al. 2012;
45�Graves et al. 2013; Sarikaya et al. 2014). With deep learning
46�theory, several alternatives to NN, such as feedforward NN,
47�recurrent NN (RNN), and convolutional NN (CNN), have
48�been developed to ease traffic prediction.
49�Although deep learning models play a pivotal role in
50�traffic accident forecast, they have drawbacks. The primary
51�drawback of deep learning models is their low explanatory
52�power and the large datasets required for training. The basic
53�objective of deep learning is to develop the representation of
54�the actual predictor vector so that transformed data can be
55�used for classification or linear regression. Thus, this study
56�aims to analyze and discuss the difference among three basic
57�network architectures, namely feedforward NN, CNN, and
58�RNN, in predicting the injury severity of traffic accidents on
59�high-speed highways.

60
61�11.2 Deep Learning Models

62�11.2.1 Feedforward NNs

63�In machine learning, NNs are a family of biological learning
64�models. A simple NN model is an interconnection of neu-
65�rons or nodes, which comprise three layers, namely input,
66�hidden, and output layers. In this study, the model represents
67�a nonlinear mapping between the input values (accident
68�predictors) and output parameters (injury severity levels).
69�Neurons are a systematic connection of weight vectors
70�which are usually structured in layers with full connections
71�between successive layers. The output signal is a function of
72�the inputs to the node, which is modified by a simple acti-
73�vation function (Gardner and Dorling 1998; Mokhtarzade
74�and Zoej 2007).
75�The possibility of learning has attracted the research
76�fraternity in NNs. The most common learning algorithm for
77�NNs is the backpropagation developed by Paul Werbos in
78�1974 which was later rediscovered by Rumelhart and Parker.
79�The algorithm was designed to reduce the error function by
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80 using an iterative approach, as shown in Eq. (11.1). Despite
81 the success of such NNs in remote sensing applications, their
82 computational complexity is relatively high and has a
83 drawback of overlearning (Baczyński and Parol 2004; Mia
84 et al. 2015).

E ¼ 1
2

XL

i¼1

dj � oMj

� �2
; ð11:1Þ

8686
87 where dj and oMj denote the output and the current response
88 of the node ‘j’ in the output layer, respectively, and ‘L’
89 represents the number of nodes in the output layer. In this
90 approach, weight parameters are corrected and added to the
91 preceding values, as shown in Eq. (11.2).

Dwi;j ¼ �l @E
@wi;j

Dwi;j tþ 1ð Þ ¼ Dwi;j þ aDwi;j tð Þ
;

�
ð11:2Þ

939394 wi;j denotes the parameter between nodes i and j, D is the
95 learning rate that controls the amount of adjustment, a is a
96 momentum factor between 0 and 1 and ‘t’ represents the
97 number of iterations. The parameter a refers to the
98 smoothing factor resulting from its ability to take care of the
99 rapid changes between weights (Yang 1995).

100 11.2.2 CNNs

101 Another effective NN in areas of computer vision and clas-
102 sification is CNN (Krizhevsky et al. 2012). The first CNN
103 was developed by Yann LeCun (Fig. 11.1), and it has con-
104 tributed immensely to many works in computer vision and
105 deep learning environment. This method is also referred to
106 as LeNet and was used in the early years mainly for char-
107 acter recognition works, such as zip digits, codes, and

108�handwriting. CNN can also process data in multiple array
109�formats (color images, signals, sequences, audio, and video)
110�depending on the dimensions of the convolution operations
111�(1D, 2D or 3D) (LeCun et al. 2015).
112�Four processes, namely convolution, pooling or sub-
113�sampling, nonlinearity (rectified linear unit or ReLU), and
114�classification (fully connected layer), are typically involved
115�in CNN operations (LeCun et al. 2015). These operations
116�comprise the building blocks of CNN. Features, such as
117�image and time series, can be extracted from input data using
118�convolution operation. This process preserves the spatial
119�interactions between the samples of entry data by learning
120�small subsets of the input files. ReLU is an additional non-
121�linear operation used after every convolution operation in
122�networks. ReLU yields output in an element-wise manner,
123�which substitutes negative values in the feature map with
124�zero and resolves real-world problems by utilizing nonlin-
125�earity in the network. Subsampling or downsampling is a
126�spatial pooling used to reduce the dimensionality of each
127�feature map but retains the most crucial information. Max,
128�average, or sum is among the different types of spatial
129�pooling available. Max pooling uses the biggest element
130�within the rectified feature map in any defined spatial
131�neighborhood. Average pooling can be considered instead of
132�the greatest element or the sum of all elements in that win-
133�dow. However, according to Schindler and Van Gool
134�(2008), max pooling is proven to be better than average
135�pooling.
136�In a traditional multilayer perceptron, connected layer
137�uses a softmax activation function in the output layer. The
138�output from the convolutional and pooling layers represents
139�the high-level features of the input data. The main reason
140�behind implementing fully connected layer is its capability
141�to classify features in the input data into different classes
142�based on the training dataset.

Fig. 11.1 Typical CNN model architecture
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143 11.2.3 RNNs

144 RNNs are NNs with feedback connections specifically
145 designed to model sequences. These NNs are computation-
146 ally more powerful and biologically more reasonable than
147 feedforward NNs (no internal states). The feedback con-
148 nections provide a memory of past activations to the RNN,
149 which enables learning of the temporal dynamics of
150 sequential data. RNN uses contextual information, making it
151 powerful for mapping between input and output sequences.
152 However, traditional RNNs have a problem called vanishing
153 or exploding gradient. Hochreiter and Schmidhuber (1997)
154 proposed long short-term memory (LSTM) to resolve such
155 problems.
156 Memory blocks substitute hidden units in LSTM that
157 contain self-connected memory cells and three multiplicative
158 units (input, output, and forget gates). The gates enable
159 reading, writing, and resetting operations in the memory block
160 and control the behavior of the memory block. Figure 11.2
161 shows a diagram representing a single LSTM unit.
162 Let ct be the sum of inputs at time step t and its previous
163 time step activations, the LSTM updates for time step i given
164 inputs xt, ht�1 and ct�1 are (Donahue et al. 2015) as follows:

it ¼ r Wxi:xt þWhi:ht�1 þWci:ct�1 þ bið Þ ð11:3Þ
166166

167

ft ¼ r Wxf :xt þWhf :ht�1 þWcf :ct�1 þ bf
� � ð11:4Þ

169�169�

170

ct ¼ it: tanh Wxc:xt þWhc:ht�1 þ bcð Þþ ft:ct�1 ð11:5Þ
172�172�

173

ot ¼ r Wxo:xt þWho:ht�1 þWco:ct þ boð Þ ð11:6Þ
175�175�

176

ht ¼ ot: tanh ctð Þ ð11:7Þ
178�178�179�where r is an element-wise nonlinearity, such as a sigmoid
180�function; W is the weight matrix; xt is the input at time step
181�t; ht�1 is the hidden state vector of the previous time step and
182�bi denotes the input bias vector.

183
184�11.3 Proposed Models

185�This study proposes three different network architectures
186�based on simple NN, CNN, and RNN models. Figure 11.3
187�shows the architecture of the NN model with two hidden
188�layers of 50 hidden units. The model takes a vector with
189�eight variables as inputs and predicts the severity of traffic
190�accidents as only property damage, possible/evident injury,
191�or disabling injury/fatality. The total parameters of this
192�network are 3225 distributed as 72, 450, 2550, and 153 for
193�the network layers. The backpropagation algorithm trains the
194�model using the Nadam optimizer and a batch size of four.
195�The network parameters are selected via grid search and
196�tenfold cross-validation assessments.
197�The second proposed model is based on a CNN, as shown
198�in Fig. 11.4. In this model, the input data are transformed

Fig. 11.2 Structure of a memory
cell in LSTM-RNN

11.2 Deep Learning Models 129

Layout: T3_Grey Book ID: 454584_1_En Book ISBN: 978-3-030-10373-6

Chapter No.: 11 Date: 4-3-2019 Time: 2:32 pm Page: 129/137



UN
CO

RR
EC

TE
D
PR

O
O
F

199 into a new feature representation by using convolution and
200 pooling operations. A 1D convolution operation is applied to
201 handle the sequence accident data. Maximum pooling
202 operations are applied to abstract the rectified features. Then,
203 the features are flattened to be used for classification.
204 A dropout layer is added to avoid overfitting. Finally, the
205 injury severity of traffic accidents is predicted by the softmax
206 layer. The total number of parameters of the CNN model is
207 4739.
208 The third model is based on a RNN, which is designed for
209 sequence problems. A RNN can be considered the addition
210 of loops to the architecture. For example, in a given layer,
211 each neuron may pass its signal later to forward to the next
212 layer. The output of the network may feedback as an input to
213 the network with the next input vector. Figure 11.5 shows
214 the proposed network architecture based on the RNN model.
215 Similarly, the network considers a vector of eight variables
216 as inputs and produces probabilities for three severity classes
217 of traffic accidents, namely only property damage,
218 possible/evident injury, or disabling injury/fatality. The

219�network consists of a LSTM layer with 100 hidden units,
220�two fully connected layers, a dropout layer, and a softmax
221�layer. The total number of parameters of the RNN model is
222�82,755.
223�A dropout layer is applied to avoid overfitting of the CNN
224�and RNN models. NNs do not perform well when they are
225�overfitted and when they are given new examples because
226�they learn their weights from the training dataset. The
227�dropout layer set randomly selected activations to zero. By
228�doing so, the overfitting problem can be alleviated. This
229�method is only used during training time and not during
230�testing time. The number of dropout activations is controlled
231�by the parameter known as keep probability.

232
233�11.4 Experimental Results

234�The models were implemented in Python using the
235�open-source TensorFlow deep learning framework recently
236�developed by Google (Abadi et al. 2016). TensorFlow

Fig. 11.3 Proposed NN model
for predicting the injury severity
of traffic accidents

Fig. 11.4 Proposed CNN model
for predicting the injury severity
of traffic accidents
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237 features automatic differentiation and parameter sharing
238 capabilities, which allow a broad range of architectures to be
239 easily defined and executed (Abadi et al. 2016).

240 11.4.1 Dataset

241 The 2009–2015 traffic accident data for the North–South
242 Expressway (NSE), Malaysia were used in this study. NSE
243 is the longest expressway (772 km) operated by Projek
244 Lebuhraya Usaha Sama (PLUS) Berhad (i.e., the largest
245 expressway operator in Malaysia) and links many major
246 cities and towns in Peninsular Malaysia. The data were
247 obtained from the databases of PLUS accident. The files
248 used in this study were accident frequency and accident
249 severity files in the form of Excel spreadsheet. The accident
250 frequency file contains the positional and descriptive acci-
251 dent location and the number of accidents in each road
252 segment of 100 m. The accident records were separated
253 according to the road-bound (south and north). By contrast,
254 the accident severity file contains the general accident
255 characteristics, such as accident time, road surface and
256 lighting conditions, collision type, and reported accident
257 cause. Unique identity field (accident number) was used to
258 link the two files.
259 The section of NSE employed in this study has a length of
260 15 km running from Ayer Keroh (210 km) to Pedas Linggi
261 (225 km) (Fig. 11.6). The accident severity data show that
262 the last section (220–225 km) of the NSE experienced the
263 highest number of accidents that resulted in serious injury
264 (82) compared with the other sections (Table 11.1). Most
265 accidents occurred on the main route and southbound of the
266 expressway. Actual accident causes were documented dur-
267 ing accidents. The data show that lost control, brake failure,

268�and obstacles are the main accident causes on NSE.
269�Regarding lighting and surface conditions, most accidents
270�occurred in daylight condition and dry road surface. The
271�main collision types in the accident records are out of control
272�and rear collision. In addition, the accident time factor shows
273�that 91.68% of the accidents occurred during daytime. The
274�data demonstrate that two-car accidents, single heavy car
275�with an object and motorcycle with objects are mostly
276�involved in the recorded crashes on NSE.

277�11.4.2 Model Performance

278�The proposed models were tested by a tenfold
279�cross-validation method on the testing dataset. Table 11.2
280�and Fig. 11.7 show the accuracy of NN, CNN, and RNN
281�models. The RNN model achieved the best accuracy
282�(73.76%) compared with the CNN (70.30%) and NN
283�(68.79%) models. However, the CNN model slightly out-
284�performed the RNN model in terms of accuracy stability
285�across different folds of the testing dataset. The standard
286�deviation of the accuracies achieved by the CNN and RNN
287�models are 0.53 and 1.24%, respectively. This result indi-
288�cates the high stability of the CNN and the RNN models in
289�predicting the injury severity of traffic accidents. The NN
290�model exhibits low accuracy stability with a standard devi-
291�ation of 2.21%.

292�11.4.3 Optimization and Sensitivity Analysis

293�Rather than simply using standard parameters, the network
294�architecture should be optimized because deep learning
295�models largely depend on data type and processing task. The

Fig. 11.5 Proposed RNN model
for predicting the injury severity
of traffic accidents
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296 data can vary in size, complexity, and the type of relation-
297 ships between the predictors and dependent variable.
298 Therefore, in this study, the architecture of the NN, CNN,
299 and RNN was optimized via a grid search implemented in
300 SciPy. This technique explores and finds the correct com-
301 binations of hyperparameters that can best predict injury
302 severity of traffic accidents from the eight predictors given to
303 the networks as inputs.
304 Nadam is found to be the best algorithm for the optimizer
305 for all three models. The Nadam optimizer with its default
306 parameters achieved the accuracy of 0.66, 0.70, and 0.73, for
307 the NN, CNN, and RNN models, respectively (Fig. 11.8).
308 Adam and Rmsprop optimizers also performed well for all
309 the models. Although Adamax and Adadelta methods
310 achieved relatively good accuracy in the CNN model, their
311 performance was poor in the NN and RNN models. Overall,
312 the Nadam algorithm is suggested to be used for analyzing
313 traffic accident data.
314 Batch size refers to the number of training examples over
315 which optimization update is computed. It has remarkable

316�effects on the accuracy of the models. Figure 11.9 shows
317�how the accuracy of NN, CNN, and RNN models changes
318�when the batch size increases from 2 to 64. The performance
319�of the NN model decreases with the increase of batch size,
320�and the best accuracy was obtained when the batch size = 4.
321�Similarly, the batch size of 4 achieved the best accuracy in
322�the RNN model. However, the CNN model performed best
323�with the batch size of 8.
324�In addition, due to a high number of parameters in the
325�CNN and RNN models, dropout plays a major role in
326�avoiding overfitting. Figure 11.10 shows the sensitivity
327�analysis of the use of dropout layer with different keep
328�probability parameters in the CNN and RNN models. The
329�analysis shows that the best dropout rates for the CNN and
330�RNN models are 0.2 and 0.5, respectively. This keep
331�probability should be selected for each dataset and pro-
332�cessing task by a grid search because selecting dropout rate
333�has an important effect on the accuracy of deep learning
334�models, and it is widely dependent on the number of
335�parameters in those models.

Fig. 11.6 Location of the NSE section analyzed in this study
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Table 11.1 Driver injury
severity distribution according to
accident-related factors

Factor Property damage
only

Evident
injury

Disabling
injury

Total

Location

210–214 185 172 58 415

215–219 234 47 56 337

220–225 238 58 82 378

Road-bound

South 453 99 139 691

North 287 73 79 439

Accident zone

Interchange 14 3 0 17

Junction

Lay-by 2 0 1 3

Main route 666 155 209 1030

Northbound entry ramp 8 2 0 10

Northbound exit ramp 4 2 0 6

Rest and service area 21 4 2 27

Southbound entry ramp 2 0 1 3

Southbound exit ramp 7 1 3 11

Toll plaza 16 5 2 23

Reported accident cause

Poor pavement condition 0 1 0 1

Brake failure 6 2 1 9

Bump–bump 37 12 27 76

Dangerous pedestrian behavior 0 0 1 1

Drunk 0 0 1 1

Loss of wheel 1 0 2 3

Lost control 75 18 22 115

Mechanical 5 1 0 6

Mechanical/Electrical Failure 11 0 1 12

Obstacle 43 12 6 61

Other poor driving 15 1 4 20

Other human
factor/overload/overheight

3 0 0 3

Overspeeding 345 61 91 497

Parked vehicle 4 4 10 18

Skidding 1 0 0 1

Sleepy driver 134 44 42 220

Stray animal 13 1 2 16

Tire burst 47 15 8 70

Lighting condition

Dark and with streetlight 47 6 8 61

Dark and without streetlight 225 74 89 388

Dawn/dusk 35 9 9 53

Daylight 433 83 112 628

(continued)
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Table 11.1 (continued)

Factor Property damage
only

Evident
injury

Disabling
injury

Total

Surface condition

Dry 460 146 190 796

Wet 280 26 28 334

Collision type

Angular collision 9 2 0 11

Broken windscreen 2 0 0 2

Cross-direction 2 0 1 3

Head-on collision 0 1 4 5

Hitting animal 12 1 2 15

Hitting object on road 44 12 7 63

Others 20 0 6 26

Out of control 457 92 107 656

Overturned 33 11 7 51

Rear collision 137 48 81 266

Right-angle side collision 11 1 1 13

Sideswipe 13 4 2 19

Accident time

Daytime 677 156 203 1036

Nighttime 63 16 15 94

Vehicle type

Car–Bus 7 3 6 16

Car–Car 499 68 60 627

Car–Heavy car 51 11 14 76

Car–Motorcycle 4 7 22 33

Heavy car 131 23 25 179

Heavy car–Bus 2 3 3 8

Heavy car–Heavy car 24 9 15 48

Heavy car–Motorcycle 0 1 6 7

Heavy car–Taxi 2 0 0 2

Motorcycle 11 42 60 113

Motorcycle–Taxi 0 1 1 2

Motorcycle–Van 0 0 2 2

Taxi 1 0 1 2

Van 8 4 3 15

Table 11.2 Average
cross-validation accuracy of the
proposed models

Model Tenfold cross-validation accuracy (%)

Model-1 Feedforward 68.79 (± 2.21)

Model-2 Convolutional 70.30 (± 0.53)

Model-3 Recurrent 73.76 (± 1.24)

134 11 Applications of Deep Learning …
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336
337�11.5 Discussion

338�In general, CNN models learn data representations to recog-
339�nize patterns across space. That is, aCNNmodel is best used to
340�recognize the components of an image or 2D array of numbers
341�(e.g., line, curve, objects). However, when traffic accident
342�features transformed from 1D vector into a 2D array, the CNN
343�model can learn the spatial relationships among the features of
344�different observations (accident events). Thus, this model is
345�expected to perform better than the traditional NN model,
346�which does not consider this additional feature in the data.
347�RNN models learn data representations to recognize
348�patterns across time. Therefore, comparing the CNN and
349�RNN models can reveal the critical component (space or
350�time) for forecasting traffic accidents. In this study, the two
351�models are found to be better than the NN model in terms of
352�prediction accuracy; that is, the inclusion of additional spa-
353�tial and time features can improve model performance than
354�when they are not used at all. Having the accuracy of RNN
355�found higher than that achieved by the CNN model shows
356�that the temporal component of accident data is greater than
357�the spatial structure of the data because variations in traffic,
358�weather and driving conditions (traffic volume, the speed of
359�vehicles, raining status) appear at different periods.
360�Considering that RNN models have memories where
361�computations are derived from the earlier input are fed back
362�into the network, they can find relationships among the
363�accident events that are difficult to obtain when traditional
364�methods or experts are used. Thus, these models automate

Fig. 11.7 Accuracy of the models tested by a tenfold cross-validation
method

Fig. 11.8 Effects of optimization algorithm on the accuracy of the
proposed models

Fig. 11.9 Effects of batch size on the accuracy of the proposed models

Fig. 11.10 Effects of the dropout rate on the CNN and RNN models
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365 the feature identification and representation processes, which
366 provide advantages to accident-forecasting models. How-
367 ever, RNN models require more complex training algorithms
368 than those required by the CNN models, which often limit
369 their applications, especially with limited datasets or data
370 without temporal features (e.g., accident time).

371
372 11.6 Conclusion

373 Predicting injury severity of traffic accidents with high
374 accuracy can improve the ability to manage roads efficiently
375 and provide safe roads for drivers. This study explored the
376 accuracy performance of three deep learning architectures
377 (feedforward NN, CNN, and RNN). An initial network
378 architecture was selected by an empirical analysis, and then
379 the network hyperparameters were optimized through grid
380 search method. Parameter sensitivity was analyzed to
381 understand their effects on model accuracy.
382 The findings suggested that the RNN model performs
383 best with an average accuracy of 73.76% compared with the
384 CNN and NN models, which accuracies of 70.30 and
385 68.79%, respectively. The sensitivity analysis showed that
386 Nadam is the best optimization technique for all the three
387 models. The best batch sizes ranged from 4 to 8, and a
388 dropout with 0.2 and 0.5 keep probability was found nec-
389 essary for the CNN and RNN models, respectively.
390 Although this research shows that the deep learning
391 models, such as RNN and CNN, can be promising tools for
392 road safety assessment, few points need to be analyzed in
393 future works. Firstly, the universal optimization of the net-
394 works needs to be established. Secondly, assessing the net-
395 works on large datasets can help transform deep learning
396 models to the industry to be used in practice. Finally,
397 models, such as RNN and CNN, can be integrated into a
398 unified deep learning framework to help other applications
399 of road safety assessment.
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