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Abstract. Neuroblastoma is the most common cancer in young children
accounting for over 15 % of deaths in children due to cancer. Identifi-
cation of the class of neuroblastoma is dependent on histopathological
classification performed by pathologists which are considered the gold
standard. However, due to the heterogeneous nature of neuroblast tu-
mours, the human eye can miss critical visual features in histopathol-
ogy. Hence, the use of computer-based models can assist pathologists in
classification through mathematical analysis. There is no publicly avail-
able dataset containing neuroblastoma histopathological images. So, this
study uses dataset gathered from The Tumour Bank at Kids Research at
The Children’s Hospital at Westmead, which has been used in previous
research. Previous work on this dataset has shown maximum accuracy of
84%. One main issue that previous research fails to address is the class
imbalance problem that exists in the dataset as one class represents over
50% of the samples. This study explores a range of feature extraction
and data undersampling and over-sampling techniques to improve clas-
sification accuracy. Using these methods, this study was able to achieve
accuracy of over 90% in the dataset. Moreover, significant improvements
observed in this study were in the minority classes where previous work
failed to achieve high level of classification accuracy. In doing so, this
study shows importance of effective management of available data for
any application of machine learning.

1 Introduction

Neuroblastoma is the most common cancer diagnosed in children in the first year
of life and accounts for nearly 15% of deaths in children due to cancer[1, 2]. Neu-
roblast tumours evolve from immature neuroblasts in the sympathetic nervous
system during the embryonic, fetal or postnatal stage in children. The disease
spreads typically through bone, bone marrow and the liver, and the tumour can
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be spotted as mass lesions in areas like neck, chest, abdomen and pelvis[1, 2].
Cellular heterogeneity is one of the distinctive features of neuroblastoma[3]. As a
result of this feature, neuroblastic tumours show unexpected clinical behaviour,
which includes spontaneous regression and aggressive progression. As such, it is
common to see genetic materials achieve gains and loss rapidly when neuroblas-
toma is evolving.

Pathologists use the Shimada system to classify whether a tumour is favourable
or unfavourable, which is considered the gold standard in neuroblastoma clas-
sification[3]. The Shimada system considers three key factors, which are: age of
the patient, the category of the Neuroblast tumour and the Mitosis-Karyorrhexis
index (MKI)[3]. To categorise neuroblast tumours, pathologists examine thin tis-
sues using optical microscopes in different magnifications. While identifying the
category of tumours, pathologists use several morphological features such as the
presence of neuropil, cellularity, nuclear size and shape[3]. However, due to the
complex and heterogeneous nature of neuroblastoma, pathologists can get mis-
leading results. The use of machine learning techniques for feature extraction can
reveal information and relationships not visible to the human eye. Moreover, the
use of Computer-Aided Design (CAD) systems in the health sector offer benefits
such as improvement of the overall speed and quality of the diagnosis process by
eliminating human fatigue, acting as a tool for the second opinion and assisting
with the shortage of medical experts[3]. These benefits are especially significant
for neuroblastoma as the age of a patient at the time of diagnosis is vital for the
prognosis outcome.

There is a lack of significant exploration of the use of machine learning tech-
niques in for classification of Nuroblastoma types. One of the recent work was
done by S. Gheisari et al. [5–7] who classified neuroblastoma histopathological
images into five categories which were: undifferentiated neuroblastoma, gan-
glioneuroblastoma, ganglioneuroma, poorly-differentiated neuroblastoma, and
differentiating neuroblastoma. A range of low level and high-level feature ex-
traction techniques were used in previous research to achieve accuracy of around
84%. From a medical perspective, more accurate results would be desirable to
increase confidence and improve the chances of computer-based systems being
used to assist experts. Furthermore, [5–7] also identified that there was a high
degree of misclassification between poorly-differentiated and differentiating neu-
roblastoma classes. From a biological perspective, these misclassifications are sig-
nificant as they can result in patients being overtreated or undertreated. Hence
there is keen interest in improving existing methods.

This paper aims to improve the previous work performed by S. Gheisari et
al. [5–7], where neuroblastoma images were successfully classified into five cat-
egories. The dataset used for this work is the same as used in [5–7] which was
gathered from The Tumour Bank at Kids Research at The Children’s Hospi-
tal at Westmead. Through the exploration of previously used feature extraction
methods and existing data optimisation techniques, this study aims to improve
the overall accuracy metrics achieved in previous neuroblastoma research. The
contributions made by this study is summarised below:
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1. Explored the impact of different feature extraction and machine learning
techniques on the performance for classification of neuroblastoma histopatho-
logical images.

2. Evaluated the effects of combining outcomes from different feature extraction
techniques on performance metrics.

3. Explored the effects of data engineering techniques such as resampling the
given dataset on the overall performance.

4. Improved overall accuracy metrics through the use of these techniques

The rest of the paper is as follows: Section 2 discusses the methodology used.
Section 3 shows the results. Section 4 presents the discussion and Section 5
provides a conclusion

2 Methodology

To effectively conduct the intended research, this work follows a structure com-
monly used for the application of machine learning in the medical informatics
domain. The first step involves relevant data needs to be collected, or exist-
ing dataset needs to be selected to conduct the experiments. Collecting medical
image is a complex process which involves taking tissue samples from high resolu-
tion microscopes. It would also require expert medical professionals to categorize
the data so that models can be trained. So, the collection of raw data was con-
sidered out of scope, and an existing neuroblastoma dataset was used to conduct
the experiments. The next step involves feature engineering, where the aim is to
extract relevant features from available image data. Multiple feature and data
engineering techniques are explored in work conducted. Then machine learning
classification algorithms are implemented for classification. In this study, SVM
classification is used for uniform comparison as a greater focus on the feature ex-
traction and data engineering methods. Finally, the designed models are tested
and evaluated using 5-fold cross-validation, accuracy, precision, recall and F-1
score.

2.1 Dataset

The dataset used for this study is the same as used by S. Gheisari et al. in [5–7].
The dataset was gathered from The Tumour Bank at Kids Research at The Chil-
dren’s Hospital at Westmead and is the most comprehensive available dataset
for research in neuroblastoma. There is no publicly available dataset for neu-
roblastoma research, so the authors granted access to this dataset. The dataset
contains 1043 images gathered from stained tissue biopsy slides of 125 patients.
The tissue slides were scanned by using a software called Imagescope under 40x
magnification. Each image was cropped to include 300 by 300 pixels to provide
a balance between achieving a reasonable computational time and preserving
critical information in each image. It was also ensured that each cropped image
contained areas that best represent each category of neuroblastoma. This is a
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slight limitation of the dataset because it does not directly mimic a real-world
scenario where data can have noise points. Expert pathologists classified images
in the dataset according to the Shimada System where the categories included:
poorly differentiated neuroblastoma, differentiating neuroblastoma, undifferen-
tiating neuroblastoma, ganglioneuroma and ganglioneuroblastoma.

As discussed previously, neuroblastoma has a high degree of intra-class vari-
ance. The extent of intra-class variance in the available dataset can be seen in
Fig.1. Both (a) and (b) in the figure belong to the same class of neuroblastoma
(differentiating neuroblastoma). However, as the blue circled section in the image
indicates, they have neuroblast cells of differing sizes. This is a prominent feature
of neuroblast tumours and has been extensively captured in the dataset. The

Fig. 1. Example of intra-class variance in neuroblastoma

overall dataset used for the experimental setup can be summarised in Table 1.
The table shows data distribution for each class and the number of patients from
whom the images were gathered. It can be seen that overall, there are 1043 data
samples from 125 patients. It can also be seen that there is a high degree of
imbalance in the used dataset. The most common class is poorly-differentiated
neuroblastoma as it represents over 50% of the data with 571 samples. For the
least common class (ganglioneuroblastoma), there are only 46 samples available
which represents less than 5% of the dataset and is gathered from 8 out of 125
patients.

2.2 Experimental Setup

The study explored a range of experimental approaches around feature extrac-
tion and data undersampling and oversampling to determine the effects they
have in the given dataset. These experimental setups are explained below. To
evaluate the setups, k-fold stratified k-fold cross validation was used. A stratified
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Table 1. Dataset used in the study

Neuroblastoma Tumour Class No. Cropped Images No. Patients

Poorly Differentiated 571 77
Differentiating 187 12
Undifferentiated 155 10
Ganglioneuroma 84 28
Ganglioneuroblastoma 46 8
Total 1043 125

k-fold cross validation ensures that for each split in k, the original distribution
of dataset is maintained. Accuracy, precision, recall and F1-score were used as
metrics used for comparison of the different approaches and are presented in the
results section.

Setup 1 – Scale Invariant Feature Transform(SIFT) + Bag of Visual
Words (BOVW) + SVM

SIFT: SIFT feature extractor was introduced by[8] and is used to extract
distinctive features that are invariant to scale rotation and illumination. The
SIFT method finds the keypoints in an image by executing four key steps: de-
tect scale-space extrema, localise keypoints, assignment orientation and descrip-
tor representation. For any given image, the SIFT algorithm returns two key
components. A set of keypoints and a descriptor for each keypoint. SIFT has
three key parameters which are the width of the gaussian for scale-space extrema
detection, contrast threshold for the elimination of low contrast keypoints and
edge threshold for the elimination of edges. These parameters have been tuned
according to the recommendations from[7]. The width of the gaussian was set to
1.7; the contrast threshold was set to 0.04 and edge threshold was set to 11.

BOVW: SIFT extracts thousands of feature points from each image, each of
which is described by 128 element vectors. BOVW is a commonly used technique
to encode features in image processing that is adapted from the Bag of Words al-
gorithm used in Natural Language Processing (NLP)[9]. The BOVW algorithm
takes the SIFT features extracted in the previous step and performs clustering
over the data. Each cluster identified in this process acts as a visual vocabulary
which describes the image. Once the visual vocabulary is established, for each
image, a frequency histogram is created to count the occurrence of each feature.
Clustering for BOVW is implemented using the k-means clustering algorithm.
The number of clusters defines the size of the codebook, and according to the pa-
rameter tuning of[7], the cluster size has been set to 500. A visual representation
of BOWV can been seen in Figure 2

Classification: For classification, Support Vector Machines(SVM) was used.
Other common classifiers such as K-Nearest Kenghbours and Naive Bayes were
not considered because[7] had already established that SVM was the optimal
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Fig. 2. Illustration of BOVW

classifier for the given dataset. As the study focused on feature extraction and
data resampling techniques, exploration of classification algorithms was consid-
ered out of scope for this research. So, for all the experimental setups discussed
in this study, the SVM model was used. The SVM model used in the study, was
setup with a RBF kernel with the kernel parameter set to 0.004. The SVM kernel
and parameters were kept consistent for all other experimental setups used in
the study

Setup 2: SURF + Bag of Visual Words (BOVW) + SVM

The second experimental setup is similar to the first with the only alteration
made to the feature extraction technique used. SURF is used as a feature extrac-
tor rather than SIFT in this setup. SIFT is quite effective but is generally more
computationally expensive. SURF was developed to improve the speed of SIFT
and can be up to three times faster while still providing features invariant to
scale, illumination, blur and rotation. H. Bay et al.[10] has also shown that the
SURF feature extraction method can outperform SIFT on multiple occasions.
SURF has one key parameter – hessian threshold, which is used for keypoint
detection. For this study, this parameter was set to 600 as used in[10]. However,
citer10,r11 indicate that SURF can outperform SIFT in multiple scenarios. Also,
each feature in SURF is described by a 64-dimensional vector as opposed to 128
vector descriptors of SIFT. This means that the BOVW will need parameter
tuning. So, the cluster size of 100, 200 and 300 was considered for construction
of codebook in BOVW. For classification, SVM classifier with RBF kernel was
used.



Classifying Neuroblastoma Images 7

Setup 3: Combining SIFT and SURF Features

The third experimental setup involves combining SURF and SITF feature ex-
tractors. A similar approach was previously implemented by L. Lenc and P.
Král[12] for facial recognition, where results showed that combining SIFT and
SURF can outperform state of the art in facial recognition. However, this ap-
proach has not been explored in the feature extraction of neuroblastoma tu-
mours. It is expected using this approach of combining keypoint locations and
descriptors from two algorithms will provide features that are more robust as
compared to using them individually. The process of combining features from
SIFT and SURF is as follows: (1) Extract interest points using SIFT extractor;
(2)Extract interest points using SURF extractor; (3) Gather descriptors from
SIFT extractor; (4) Gather descriptors from SURF extractor (5) Concatenate
both descriptors to create a combined descriptor.

Setup 4: Subsampled Features

The experimental setups explored in the previous sections only consider differ-
ent feature extraction approaches. However, the class imbalance issue remained
unanswered. This issue was also not addressed in previous work on neuroblas-
toma classification by S. Gheisari et al. in[5–7].

Standard techniques used to manage the class imbalance problem are data
sampling methods such as oversampling and undersampling[13, 14]. Oversam-
pling through image augmentation is a common approach used in research but
is not suitable for this work because SIFT and SURF are robust to scale, blur,
rotation and illumination. Hence this setups looked at undersampling to the rep-
resentation numbers of the majority classes. While this method might appear
suitable for the given problem, it has one severe limitation. As discussed in[15]
merely removing data samples from the majority class can result in loss of vital
information. Thus, the approach of removing image samples from the available
dataset would not be a suitable approach for the given problem. Instead, an ap-
proach similar to that suggested in [13, 15] appeared more feasible. So, features
extracted from the images will be undersampled. This method will ensure that
the most relevant features from each class is preserved.

As performed in previous experimental setups, a feature extraction method
is first used to extract robust features from all the images in the training set.
For this setup SIFT extractor with preciously set parameters (Gaussian width
= 1.7, contrast threshold = 0.04 and edge threshold = 11) is used. After com-
puting the feature points and corresponding descriptors, these descriptors are
ordered based on the class they represent. For each class, the set of descriptors
are then sorted based on relevance. Once vectors are organised by class and
sorted, undersampling is performed to reduce the number of feature vectors in
the majority classes. To do this, the number of feature vectors in the lowest class
is taken as a limit for the number of features for each class. In the case of the
dataset used, the minimum number of features would always be gathered from
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the ganglioneuroblastoma class. After the undersampling step, as before BOVW
and SVM is used. For the BOVW, cluster sizes of 100, 200, and 300 were tested
for parameter tuning.

Setup 5: Resampling for classification

The resampling method proposed in the previous setup only addresses the
class imbalance for BOVW where clustering was used. It fails to address the
class imbalance issue for classification for SVM. Thus, this experimental setup
aims to address this imbalance by exploring oversampling and undersampling
techniques before performing classification.

To oversample the minority classes for classification, a method known Syn-
thetic Minority Oversampling Technique (SMOTE) is used in this experiment.
This method was introduced by N. V. Chawla et al.[16], where additional samples
for the minority class is generated synthetically by observing existing examples.
SMOTE generates new data for the minority class by considering the nearest
neighbours of existing samples. Another technique that can be applied for resam-
pling is known as near-miss. This method is an undersampling approach where
instances of the majority class are removed if they are too close to each other.
In this method, first distances between all samples in the majority class and the
minority class are calculated.

A combined approach of using SMOTE to oversample the minority classes
and then using near-miss to undersample on the majority class (poorly differ-
entiated neuroblastoma) is also explored in this experimental setup. First SIFT
is used for feature extraction. Then the undersampling method, as discussed in
setup 4, is used. The undersampled feature points are then fed through BOVW
for feature encoding. After this, oversampling and undersampling methods are
used for the available training data and then finally SVM classifier is used for
classification

3 Results

This section presents the results achieved with the multiple experimental se-
tups used. Table 2 summaries the key metrics of accuracy, precision, recall and
F-1 score achieved from different experimental methods discussed in the previ-
ous section. The results table include a summary of the achieved metrics using
a stratified 5-fold cross validation. For the sake of comparison, the train-test
split in dataset remained consistent throughout the different experimental se-
tups. The results presented in table shows that the final setup generated the
best outcome for accuracy, precision, recall F-1 scores. The final setup used the
selective undersampling approach for SIFT and and SMOTE for classification.
The achieved result, provides evidence that the proposed data manipulation
techniques in this paper provided significant improvements in the neuroblas-
toma dataset.The dramatic improvements in the overall metrics become even
more evident when Figure 3 is observed. This figure shows comparison between
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Table 2. Results achieved by the experimental setups

Method Accuracy Precision Recall F-1 Score

Setup 1: Sift for feature extraction 0.8304 0.8573 0.6978 0.7483
Setup 2: SURF + BOVW + SVM 0.7969 0.8081 0.6619 0.7035
Setup 3: Combining SIFT and SURF 0.8477 0.8619 0.7373 0.7801
Setup 4: Subsampled SIFT features 0.8822 0.9151 0.8192 0.8530
Setup 5: Resampling for classification 0.9003 0.9060 0.8730 0.8868

results achieved in previous study and the best results achieved in this study
(setup 5) in a class level breakdown. It can be seen that overall, the proposed
data sampling approaches provide significant improvements in classification of
minority classes such as ganglioneuroblastoma and ganglioneuroma. It also ad-
dresses some issues identified in previous work such as the tendency of human
experts and machine learning models to misclassify between differentiating and
poorly differentiated classes. Overall, the results demonstrate the improvements
achieved by this study as compared to previous work on the same dataset.

Fig. 3. Class level breakdown and comparison between results achieved with and with-
out sampling approaches

4 Discussion

The work was conducted with the overarching aim of improving classification ac-
curacy in neuroblastoma histopathological images in a given dataset. Due to the
complex texture of neuro-blast tumours, machine learning-based classification
can be considered beneficial as they can extract features based on mathematical
feature extraction techniques. Experimental setups were designed to address the
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aims of exploring different feature extraction techniques and analaysing the im-
pacts of data engineering techniques such as oversampling and undersampling.

Both SIFT and SURF extract features that are robust to these properties,
so their performance were evaluated. Comparing, the results achieved for SIFT
and SURF, it was evident that SURF performed poorly compared to SIFT for
all the classes. While both SIFT and SURF extract features that are robust to
features like, scale and rotation, the mathematical approach taken in these ap-
proaches are significantly different. While SIFT uses convolutions of Difference
of Gaussian to determine the scale space, SURF uses Laplacian of Gaussian ap-
proach with boxed filters to approximate the Difference of Gaussians for scale
space detection. As a result of this, features extracted by SIFT are more robust
to scale variations compared to SURF. Thus, SURF performed poorly because
there is high intra-class scale variance in neuroblast tumours which SIFT was
more accurately able to capture.

A combined SIFT and SURF feature extraction method was used to evaluate
the effects of combining different feature extraction techniques. Results showed
that this approach provided only a slight improvement in overall classification
performance. The approach only achieved an improvement of 1.5% as the ac-
curacy of 84.5% was recorded. The only class affected was the undifferentiated
neuroblastoma class which saw an improvement of around 7%.

The results achieved by SURF and a combination of SIFT and SURF pro-
vided very negligible improvements in performance. The improvements were min-
imal because these methods did not address the class imbalance issue existing in
the dataset. Thus, the class imbalance issue was addressed by using both under-
sampling and oversampling approaches in the experimental setups as described
elsewhere [17, 18]. By addressing the imbalance issue through these methods, sig-
nificant improvements in the results were observed. More specifically the overall
accuracy improved to over 90% as opposed to the 83% accuracy achieved in the
initial model.

Results achieved when the dataset was resampled showed that the applied
techniques create a more robust model which can classify all classes with higher
accuracy (recall). This improved performance compared to the previous model
can be seen in Figure 2 which provides a comparison between initially replicated
work and the resampling method developed in this work. In the figure, it can
also be seen that the two most improved classes are ganglioneuroblastoma and
ganglioneuroma classes where recall score increased by over 30%. Not surpris-
ingly, these two categories were also the two least common class in the dataset.
The use of sampling techniques did reduce the accuracy of the poorly differenti-
ated class by 3%, but this is a worthy tradeoff as it is preferable to have higher
accuracy overall classes than for just one class. Differentiating neuroblastoma
was also identified as a problematic class in previous research because expert
pathologists struggled with classification between poorly differentiated and dif-
ferentiating class. However, the current approach was able to improve the recall
of differentiating neuroblastoma class by over 12%. There is also significant med-
ical significance of these improvements in addition to the statistical significance.
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Treatment plans for patients are dependent on the category of neuroblastoma
they have. So, a more accurate model translates to lower possibilities of patients
receiving inadequate treatment.

While the study improves on previous work there are few limitations that
can be addressed for future work. This work only looked at the classification of
neuroblastoma images using low-level feature extraction combined with a range
of data sampling techniques. While results achieved show useful improvements
to existing methods, the use of high-level feature extraction techniques can pro-
vide even more significant improvements. Use of techniques such as deep neural
networks have the potential to extract even more robust and useful features
and need to be explored thoroughly in the future. Furthermore, the work only
focuses on the classification of patched 300 x 300 stained tissue images into differ-
ent categories of neuroblastoma. Additionally, the images are carefully curated
by expert pathologists and only contain areas that best represent each class. In,
a practical scenario, pathologists examine whole tissue images under different
magnifications. So, the proposed techniques need to be evaluated with whole
slide tissue images under different magnifications.

5 Conclusion

This study began with the objective of improving existing approaches in the
histopathological classification of early childhood tumour called neuroblastoma.
To improve the results, the study looked at two main approaches. The first ap-
proach was to explore alternative low-level feature extraction techniques which
could extract more relevant features and improve accuracy. However, this ap-
proach did not provide any significant improvements to existing approaches in
neuroblastoma. This was because the main problem associated with the dataset
was the class imbalance problem. To address the class imbalance in the dataset,
both undersampling and oversampling approaches were thoroughly explored.
The use of these approaches improved the accuracy of the models to over 90% in
the given dataset. More importantly, these methods improved the classification
of the minority classes by up to 35%. Such improvements have a high signif-
icance in the medical domain because the classification of the neuroblastoma
types determine the treatments that patients receive. Pathologist classification
using the Shimada system is still considered the gold standard in neuroblastoma
and this work only intends to show role computer-based approaches can have to
support decision making and act a tool for second reference. Further research is
required to classify whole tissue images under different magnifications and pre-
dict patient outcomes for practical applications of computer-based approaches
in neuroblastoma.
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