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Abstract 

Pentamode metamaterials (PMMs) are a new class of three-dimensional (3D) mechanical metamaterials, 

engineered to have unusual elastic property of vanishing shear modulus. Here ‘penta’ denotes five, referring 

to only one non-zero but five vanishing eigenvalues in the elasticity tensor of isotropic materials. PMMs gain 

their properties from their rationally designed structural architecture rather than their composition, mimicking 

the behaviour of fluids but are solid, hard to compress yet easy to deform. Compared to most up-to-date design 

methods based on rigid-body double-cone concept, this paper is to propose, for the first time, a new generative 

design method using topology optimization to find novel micro-lattice architectures, to enable pentamode 

properties through the overall elastic deformation of the micro-lattice. The design problem is then formulated 

to make the micro-lattice have a large but realistically attainable ratio of effective bulk modulus compared to 

the shear modulus, corresponding to the isotropic microstructure with the effective Poisson’s ratio close to 

0.5. The larger of the ratio, the better of the PMM solids to simulate liquids. Several numerical cases with the 

additive manufacture technique (SLM: selective laser melting) are used to demonstrate the effectiveness of 

the proposed topological design method in this paper. 

Keywords: Topology optimization; Pentamode mechanical metamaterials; Three-dimensional solid 

microstructures; Additive Manufacturing. 
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1. Introduction 

Metamaterials belong to new paradigmatic materials, artificially architected to have amazing effective 

properties of elasticity inaccessible in most conventional materials [1-4]. Here “meta” stands for materials 

with properties beyond natural ones. Metamaterials open a whole new chapter for creating new composite 

materials in association with unusual mechanical properties, and have sparked a surge of interests due to 

unlimited potential in triggering a myriad of applications, as diverse as bandgaps [5, 6], cloaking devices [7-

9], electromagnetics [10], and transformation elastodynamics [11]. The composites consist of arrays of 

multiple individual lattice fashioned from conventional base materials, such as metals or plastics, but the 

materials are usually configured in periodic rather than random patterns. Hence, the metamaterials gain their 

unusual properties from their rationally designed geometrical shapes, not from their material chemical 

composition [12-17]. The research domain of metamaterials normally includes acoustic metamaterials with 

negative bulk modulus and/or mass density [18, 19], auxetics with negative Poisson’s ratio (NPR) [20-22], 

materials with negative permeability [23, 24], materials with negative thermal expansion coefficient [25], 

cosserat and micropolar metamaterials [26], as well as the recently emerged PMMs transforming 

thermodynamics that are the major focus of this paper. 

 

After 17 years of the first appearance in design [27], PMMs were manufactured in 2012 using the direct-laser-

writing (DLW) optical lithography technique. The pentamode properties was achieved through the highly 

localized deformation by the fused point-like tinny tips of the rigid-body double-cones (Fig. 1) [28]. PMMs 

are composites of microstructures containing a sufficiently rigid isotropic phase and a sufficiently compliant 

isotropic phase, in which 5 out of 6 components (eigenvalues) of a diagonalised elasticity tensor are close to 

0 [27]. In design, PMMs use one isotropic material with extremely large elastic moduli and another with 

extremely small elastic moduli, to build composites with effective elasticity tensors, to implement 3D 

transformation elastodynamics analogous to transformation optics in electromagnetic metamaterials. A perfect 

isotropic pentamode material has zero shear modulus and therefore a Poisson’s ratio 0.5. As noted in the work 

[29-32], the liquids behaviour of pentamode materials can also be approximated by rationally designed 3D 

solid microstructures, which will not ‘flow away’ like conceptually perfect homogeneous pentamode materials. 

The microstructures can be designed to have a much larger bulk modulus (B) compared to its shear modulus 

(G). This unique property opens new possibilities. For instance, three-dimensional transformation acoustics 
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ideas [33, 34], for example, inaudibility cloaks, phononic bandgaps, acoustic prisms or new loudspeaker 

concepts, could become reality. We can tune local elastic wave propagation and control transformation 

elastodynamics architectures for acoustic ‘unfeelability’ cloaks invisible to sound. 

 

       
Fig. 1. Concept of conventional rigid-body double-cone pentamode materials [28] based on the Face-

Centered Cubic (FCC) lattice. 

 

Since common naturally occurring elastic solids have the Poisson’s ratios around 0.3, and B/G≈2 that indicates 

B and G are comparable in magnitudes. However, pentamodes are indeed solids but special in making B much 

large compared to G. When B is ideally finite while G=0, the Poisson’s ratio of an isotropic pentamode 

material v=(3B-2G)/(6B+2G)≈0.5. Hence, the PMMs are also called ‘meta-fluids’. In practice, however, when 

solid microstructures are used to approximate the pentamode behaviour of fluids, it is difficult to make the 3D 

solid microstructures have an infinitely large bulk modulus while a nearly zero shear modulus. Instead, a 

relatively large ratio of B/G (e.g. 100-1000) for solid microstructures is realistically attainable. In this case, 

the transformation elastodynamics is not exactly but still approximately applicable. Conventionally, PMMs 

were empirically designed by repeatedly testing different dependences of B/G upon different sets of 

parameters (h, D, d) of the rigid-body double-cone lattice (Fig. 1). A smaller d  will gain a larger ratio, but 

d   cannot be infinitely small, as such a tiny rigid-body connection will make manufacturing process 

extremely challenging and easily fall apart upon a slightest mechanical deformation. Hence, most of current 

designs for PMMs may be meaningful only in concept not in practice. In this paper, the elastic deformation of 

the whole microstructures, rather than the highly concentrated deformation from double-cone tips connections 

within a diamond structures (FCC lattice) (Fig. 2), are utilized to achieve a large ratio of B/G. The PMMs in 

this research will be designed by the numerical topology optimization method and prototyped by additive 

manufacturing, as appropriate. The design and manufacturing are critical for the novelty of PMMs. 
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Fig. 2. Concept of diamond-type of lattice (FCC) for pentamode materials 

 

Topology optimization has expanded rapidly as a powerful computational design tool, providing unlimited 

opportunities for creating novel materials and structures that are stronger and lighter [35, 36]. It is essentially 

a numerical process to redistribute materials inside a fixed reference domain, until the best material 

distribution and the corresponding topology are achieved, upon the optimization of a given objective function 

subject to design constraint(s). It has been a widely recognised computational approach for finding new 

geometries to enable design innovation of structures, materials, and mechanisms. Over the past three decades, 

a number of methods have been developed for topology optimization, including the solid isotropic material 

with penalization (SIMP) [37-40], evolutionary structural optimization (ESO) [41-43], and level set method 

(LSM) [44-48]. In particular, the SIMP model has been one popular topology optimization method for a range 

of structural and material designs. Recently, with the rapid development of Additive Manufacturing (AM) 

techniques, the implementation of structural and mechanical parts with complex geometry is possible [49]. 

AM removes the limitations of traditional manufacturing processes to remove materials and significantly 

expands the freedom in topological designs, to allow more intricated shapes and complicated geometries, 

which often drives the finding of new artificially engineered materials and composites with novel properties. 

 

Topology Optimization has been used to design microstructures of bi-mode metamaterials [50] (2D), and 2D 

and 3D elastic metamaterial microarchitectures with crystal symmetries [51, 52]. This article is motivated to 

design three-dimensional solid elastic microstructures with the pentamode properties, to get a realistically 

achievable large number of the effective bulk modulus over shear modulus. The microstructure is obtained by 

SIMP-based topology optimization with a single piece of isotropic material, through the overall elastic 

deformation of the microstructure, and the equivalent property of the microstructure is evaluated by the 
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numerical homogenization method. The topologically optimized design will be numerically verified, and 

further optimized (size optimization) within the commercial software ANSYS, and then additive 

manufacturing technique is used to prototype the optimized pentamode microstructures. 

2. Topology Optimization Method 

2.1 SIMP material interpolation model 

 

 
Fig. 3. Topological design for a Messerschmitt-Bölkow-Blohm (MBB) beam 

 

Topology optimization is to seek the optimum distribution of materials by determining the solid (“1”) and void 

(“0”) material patterns in the design domain under supports and applied loads [40], as indicated in Fig. 3. 

However, the optimization deployed in this way in mathematics is a large-scale integer programming problem, 

to which many gradient-based optimization algorithms cannot be directly applied. As a result, the original 0 

and 1 problem is usually relaxed by allowing the material to have intermediate densities in the optimization 

process. This can usually be achieved by defining an appropriate material interpolation scheme with 

continuous design variables ranging from 0 to 1, to which many well-founded optimization algorithms such 

as optimality criterion methods and mathematical programming approaches can be applied. To recover the 

original binary ‘1’ and ‘0’ material distribution, some simple conditions need to be satisfied [53] to push the 

intermediate element densities towards its prescribed 1 and 0 bounds. A meaningful solution can be further 

guaranteed by eliminating numerical instabilities such as mesh-dependency and checkerboards [54]. The 

SIMP based methods have got popularity due to its conceptual and practical simplicity. 

 

Numerically, SIMP is described by a nonlinear density-stiffness interpolation, which denotes the dependency 

of elemental pseudo densities upon material properties [53, 55]. For each element, its practical modulus during 

the numerical implementation is variable, which can be expressed as 



Submitted to Computer Methods in Applied Mechanics and Engineering, 09 January 2021 

6 
 

 0( ) p
jE x x E=    (1) 

where 0E  represents modulus of solid material. The design variable jx  are relaxed to allow intermediate 

values within its two bounds ( min 1jx x≤ ≤  ) during the optimization. In this way, the original design 

optimization problem, with discrete ‘1’ and ‘0’ design variables, is transformed into an optimization problem 

with continuous design variables ranging from 0 to 1. The final design optimization problem can then be 

solved by mathematical programming algorithms, based on the sensitivities of the objective and constraint 

functions. To make the continuous design after the relaxation approximate the original ‘0’ and ‘1’ material 

distribution, the penalty exponent of the SIMP model is usually advised to be p=3, in order to push 

intermediate element densities towards its prescribed lower and upper bounds. 

 

2.2 Numerical homogenization method 

The numerical homogenization method [1, 56] has been widely used to evaluate the effective properties of 

microstructures, subject to the satisfaction of two assumptions: (1) The geometrical dimensions of the unit cell 

(e.g. microstructure) are sufficiently small compared to the bulk material; and (2) the microstructures are 

periodically rather than randomly distributed within the macrostructure. 

 

For a 3D microstructure with linear elastic material, the macroscopic effective elasticity tensor of the 

microstructure can be calculated by: 

( )( ) ( )( ) ( )0( ) 0( )1 , , , 1, 2, ,
m

H ij ij kl kl
ijkl pq pq pqrs rs rs m

m

C C d i j k l dε ε χ ε ε χ
Ω

= − − Ω =
Ω ∫     (2) 

where |Ωm| refers to the volume of the 3D microstructure, and C is the elasticity tensor of the solid material. 

ε0 is the applied strain field with six linearly independent unit strains, and ε indicates the locally varying 

strain field within the microstructure. Hence, the corresponding unknown displacement field χkl induced by 

the applied initial strain field can be obtained by solving the following linear elasticity equilibrium equation 

using the finite element method: 
( ) ( ) ( ) ( )0( ) , U

m m

kl kl kl kl kl
ij ijpq pq m ij ijpq pq m mv C d v C d vε ε χ ε ε

Ω Ω
Ω = Ω ∀ ∈ Ω∫ ∫     (3) 

where v is the virtual displacement in the microstructure, belonging to the space that includes all the 

kinematically admissible displacements in Ωm. 
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Under the assumption of periodicity, the displacement field of the base cell subjected to a given strain ε0 can 

be expressed as the sum of macro displacement field and periodic fluctuation displacement field: 
0 *

i ij j iu y uε= +           (4)
 

Where *
iu  is the periodic fluctuation displacement field in macroscopic materials, which is unknown and 

difficult to solve. Therefore, the above formula can not be applied to the microstructure directly. It is necessary 

to transform the implicit boundary conditions into explicit ones. Based on the Eq. (4), the displacement field 

of the boundary in all normal directions of the microstructure can be solved as follows: 

0 *

0 *

k k
i ij j i

k k
i ij j i

u y u

u y u

ε

ε

+ +

− −

= +

= +         (5) 

Where k +  and k −  represents the normal direction of two opposite boundaries in the structure, the sign ‘+’ 

indicates the same direction with the coordinate axis, and the sign ‘-’ indicates the opposite direction to the 

coordinate axis. Based on the Eq. (5), the unknown periodic fluctuation displacement field in microstructure 

can be eliminated by subtraction: 

0 0( )k k k k k
i i ij j j ij ju u y y yε ε+ − + −− = − = ∆        (6) 

Where 0 k
ij jyε ∆  represents the periodic boundary conditions in the microstructure, and k

jy∆  can be used to 

represent the scale value in the normal direction of the microstructure. It can be seen that the explicit periodic 

boundary conditions in the Eq. (6) can be directly applied to the boundary area, boundary line and vertex of 

the material microstructure. 

3. Topology Optimization Formulation 

Pentamodes are special in that they can uncouple compression and shear waves by making the bulk modulus 

(B) extremely large when compared to the shear modulus (G). When B is ideally infinitely large, and G is 

close to zero, the Poisson’s ratio v=(3-2(G/B))/(2(G/B)+6)=0.5. In this case, a diagonalized elasticity tensor 

for a 3D isotropic pentamode material will have 5 diagonal elements out of 6 are zero. The pentamode 

materials under this situation are a kind perfect homogeneous pentamode materials, like the isotropic fluids 

that will flow away. However, as noted in the work by Milton and Cherkaev [27], pentamode materials can be 

approximated by specially designed three-dimensional (3D) solid microstructures. The artificially engineered 

3D pentamode metamaterials, the counterpart of bimode metamaterials in two dimensions, will have effective 
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shear modulus with the magnitudes smaller than their effective bulk modulus in orders, which indicates their 

effective Poisson’s ratio will be close to 0.5 but smaller than the upper limit. 

 

As indicated by Fig. 4, on one hand, for a three-dimensional isotropic pentamode material, when the shear 

modulus G becomes very small compared to the bulk modulus B, and B/G is a large number and the Poisson’s 

ratio approaches 0.5. On the other hand, for a three-dimensional isotropic auxetic material [57], the ratio of 

B/G gets very small, and the Poisson’s ratio approaches −1.0. Therefore, a pentamode material can be regarded 

as an ‘anti-auxetic’ [30]. In this study, the design of solid pentamode materials will be transformed into the 

design of its effective Poisson’s ratio close to o.5 under appropriate constraints. 

 

 

Fig. 4. Schema to indicate relationship of Poisson’s ratio, Bulk and Shear modulus 

In most up-to-date designs, as denoted in Fig. 4, the 3D solid pentamode microstructures are given by a 

diamond lattice corresponding to face centred-cubic (FCC) lattice constant ‘a’, as shown in Fig. 1. The lattice 

consists of rigid-body double-cone elements connected to each other only by their point-like tips. In this 

section, inspired by the rigid-body diamond lattice, topology optimization technique with SIMP model is 

applied to generate 3D pentamode microstructures with isotropic materials. The optimization is formulated to 

make the effective Poisson’s ratio of the microstructure close to 0.5, so that the ratio B/G of the microstructure 

is sufficiently large. The elasticity tensor for such micro-structured materials has five smaller eigenvalues and 

only one eigenvalue that is comparably very large. Hence, the design problem is formulated to let the effective 

Poisson’s ratio of the pentamode microstructure close to the given property (0.5), under appropriate constraints. 
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For three-dimensional isotropic elastic materials, the elasticity tensor can be given by 

 

11 12 13

21 22 23

31 32 33

44

55

66

0 0 0
0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

C C C
C C C
C C C

C
C

C
C

 
 
 
 

=  
 
 
 
  

       (7) 

The symmetric conditions are given by 

 11 22 33C C C= =      (8) 

 44 55 66C C C= =      (9) 

 12 21 13 31 23 32C C C C C C= = = = =      (10) 

The isotropy conditions are  

 11 12 442C C C− =      (11) 

 

Considering the above conditions, the elasticity tensor then changes to the following form: 

 
( )

( )
( )

11 12 12

12 11 12

12 12 11

11 12

11 12

11 12

0 0 0
0 0 0
0 0 0

0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2

C C C
C C C
C C C

C
C C

C C
C C

 
 
 
 

=  − 
 −
 

−  

    (12) 

According to the elasticity theory we have 

 11
(1 )

(1 )(1 2 )
EC υ
υ υ

−
=

+ −
 and 12

(1 )
(1 )(1 2 ) 1

EC υ υ
υ υ υ

−
=

+ − −
   (13) 

Substitute them into Eq. (12), the elasticity tensor has the following form 

 
( )( ) ( )

( )
( )

1 0 0 0
1 0 0 0

1 0 0 0
0 0 0 1 2 2 0 01 1 2
0 0 0 0 1 2 2 0
0 0 0 0 0 1 2 2

EC

υ υ υ
υ υ υ
υ υ υ

υυ υ
υ

υ

− 
 − 
 −

=  −+ −  
 −
 

− 

    (14) 

When the Poisson’s ratio is close to 0.5, we can find C11=C12→+∞. At the same time, in terms of Eq. (9), we 

have C44=C55=C66→0. If we regard E/((1+υ )(1-2υ )) as a large constant compared to C44, C55 and C66, such 
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as 1, the elasticity tensor can be re-written as follows: 

 

1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

C

 
 
 
 

=  
 
 
 
 

  (15) 

 

In the above Equation, we can find its eigenvector is [3 0 0 0 0 0]T, in which 5 eigenvalues are zero and only 

one is non-zero. At the same time, we can find that the bulk modulus B=1 while a vanishing shear modulus 

G=0, so that their ratio B/G→+∞. The above elasticity theory shows that when the Poisson’s ratio of isotropic 

elastic materials is close to 0.5, the solid materials can be approximately regarded as pentamode materials. 

 
Based on the SIMP model, the optimization formulation for the pentamode materials can be defined by 

 

11 22 33

44 55 66

12 21 13 31 23 32

11 12 44

0
1

min

: 0.5
:

2

( )

0 1

e

ij ij

N

e e f
e

e

Min c
Subject to K f

C C C
C C C
C C C C C C
C C C

x v v v

x x

υ

χ

=

= −
 =
 = =


= =


= = = = =
 − =


=

 < ≤ ≤

∑

   (16) 

where Ne is used to indicate the number of elements, ve and v0 are the volume of each element and the total 

volumes of the design domain. vf is the given volume ratio of the design. The constraints Eqs. (5)-(7) are used 

to denote the symmetry of the central plane and the diagonal plane of the microstructure, while the constraint 

Eq. (11) represents the isotropy of the microstructure. 

 

In this paper, the effective Poisson’s ratio of the microstructure is not recommended as the objective function 

based on the expeience and recommendation of the literature [13, 15, 57, 58]. This study uses the following 

formulation as an alternative objective function in the optimization: 
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12

11 22 33

44 55 66

12 21 13 31 23 32

11 12 44

0
1

min

:
:

2 =0

( )

0 1

e

ij ij

N

e e f
e

e

Min c C
Subject to K f

C C C
C C C
C C C C C C
C C C

x v v v

x x

χ

∗

=

 = −


=
 = =


= =


= = = = =
 − −


=

 < ≤ ≤

∑

   (17) 

The Zener ratio parameter β [59] is used to indicate the anisotropy of the microstructure. When β is closer to 

1, the effective properties of the microstructure are closer to isotropy. 

 11 12

442
C C

C
β −
=    (18) 

4. Topological design and discussions 

In this section, the SIMP-based topology optimization approach, with the numerical homogenization method 

[15], is used to implement the computational design of pentamode materials. The Young’s modulus and 

Poisson’s ratio for the base material are assumed to be 1E =  and 0.3υ = . In order to capture fine structural 

features under a very small volume constraint such as 0.01, the initial guess of the micro-lattice structure (Fig. 

5) is meshed by 150×150×150 elements. In the SIMP model, the penalty parameter is p=3 and the filtering 

radius is 1.5 in the sensitivity method [39]. The MMA optimization algorithm is used [60]. The optimization 

results and the final topology for the microstructure are given in the following figures (Figs. 6-8). 

 

         

Fig. 5. Initial design domain of the micro-lattice structure (left-half, right-whole) 
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Fig. 6. Topological design of pentamode microstructure from different aspects 

 

Fig. 7. Plots of the objective function and Poisson’s ratio 

 

 
Fig. 8. Plots of Zener anisotropy ratio and volume fraction 
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In Fig. 6, it can be found that the topological design of the microstructure satisfies symmetrical conditions, 

with respect to the central plane and the diagonal plane. From the results of the optimized microstructure, we 

can find that the eigenvalues of the effective elasticity tensor is [0.001868 3.8e-05 3.8e-05 1.90e-05 1.90e-05 

1.90e-05]T, where only one eigenvalue is large compared to five of the values, and the largest value 0.001868 

is about 50-100 times of the small ones. It can also be seen that the ratio B/G of the bulk modulus (B) over the 

shear modulus (G) is about 33, and the corresponding Poisson’s ratio is 0.485. Hence, the results from three 

different aspects demonstrate that the optimized microstructure meets all the characteristics of the pentamode 

material. The proposed optimization formulation is reasonable to achieve the pentamode design of 

microstructures. When the effective Poisson’s ratio under isotropy and symmetry conditions is close to 0.5 

(Figs. 7-8), the solid 3D microstructure approximated shows the features of the pentamode materials. The 

elasticity tensor corresponds to the optimized design is given as follows: 

 -3

0.648 0.610 0.610 0.000 0.000 0.000
0.610 0.648 0.610 0.000 0.000 0.000
0.610 0.610 0.648 0.000 0.000 0.000

10
0.000 0.000 0.000 0.019 0.000 0.000
0.000 0.000 0.000 0.000 0.019 0.000
0.000 0.000 0.000 0.000 0.000 0.019

C∗

 
 
 


= 



 







   (19) 

 
It is noted that the lattice structure given in Fig. 1 is a conventional typical design based on multi-rigid body 

concept, which gains its pentamode behavior dominantly through the highly localized deformation from the 

tiny connections of double-cone tips. It is useful in concept, but it is easily subject to breakage in practice. 

 

The micro-lattice structure in Fig. 6 is the new design obtained through the proposed topology optimization 

method. It achieves pentamode behaviour by the overall elastic deformation of the entire microstructure, rather 

than the tiny rigid-body double-cone connections which often makes the manufacturing process extremely 

hard and will be easily broken upon deformation of the lattice structure. 

 

5. Evaluation of pentamode microstructures using ANSYS 

5.1 A new implementation of numerical homogenization method 

In [61], there is a new implementation numerical homogenization method to evaluate effective properties for 

three-dimensional periodic microstructures. This method can be applied to any three-dimensional 

microstructures with different finite elements (e.g., beam elements), to evaluate the effective properties of the 
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microstructure by fully making use of commercial software tools, such as ANSYS. 

 

Firstly, the six unit strain fields 0( )ijε   are applied to the microstructure to get the corresponding nodal 

displacements 0( )ijχ  . The displacement will be applied to ANSYS model for finite element analysis to 

generate the nodal forces ijf  ( klf ) of the microstructure. Then after another finite element analysis, ANSYS 

can directly output the displacement field ijχ  subject to periodic boundary conditions, due to the given unit 

strain field. Applying the ijχ  to the ANSYS microstructure for a third finite element analysis, we can get 

nodal reaction forces ( )klf ∗ . Finally, we can calculate the effective elasticity tensor as follows: 

( ) ( )( )0( ) ( )1
m

TH ij ij kl kl
ijkl m

m

C f f dχ χ ∗

Ω
= − − Ω
Ω ∫        (20) 

5.2 Size optimization of the microstructure using ANSYS 

The SIMP topology optimization method results in designs often with elements having intermediate densities. 

How to appropriately process those elements will particularly impact the performance of microstructures for 

ultra-bulk modulus and shear modulus but ultra-lightweight with low densities. Hence, this section will make 

use of the structural skeleton (Fig. 9) obtained from the above topological optimization. The skeleton is 

constructed by extracting the key points’ coordinate manually. Then, under the given topology, the commercial 

software ANSYS will be used to parameterize the topologically optimized design and develop the finite 

element model for the solid 3D pentamode material. The numerical homogenization method is still used to 

predict the effective properties of the parameterized microstructure by ANSYS. 

 

In ANSYS the skeleton of the topological design will be kept unchanged, but different geometrical sizes of 

the micro-lattice structure will be selected to demonstrate their effects on the pentamode properties. ANSYS 

will be used to conduct size optimization for pentamode microstructure through its embedded optimizer, and 

beam elements are used to mesh the skeleton structure with different equivalent cross-sectional areas. The 

objective function is to maximize the ratio of bulk modulus with respect to the shear modulus, subject to the 

constraints of Poisson’s ratio (no less than that of the microstructure before the optimization) and isotropy, 

and here the design variables are the microstructural dimensions such as the sizes A1 to A5 given in Fig. 10(b). 
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Fig. 9. Skeleton of the topologically optimized microstructure 

 

(1) The ANSYS results with geometric size 0.4mm 

Firstly, the member radius of the microstructure is assumed to be 0.4mm, and the volume ratio is 0.0161. The 

finite element mesh is given in Fig. 10(a), and its corresponding geometry is shown in Fig. 10(b). After 

optimization, The effective elasticity tensor evaluated by ANSYS is given in Eq. (21). The Zener anisotropy 

ratio of the elasticity tensor is improved from 1.09 to 1.01, the Poisson’s ratio increase from 0.478 to 0.480, 

and the ratio B/G of the bulk modulus B over the shear modulus G is improved from 24 to 25. The eigenvalue 

vector of the elasticity tensor related to the optimized micro-lattice is [0.006293 1.68e-04 1.68e-04 8.34e-05 

8.34e-05 8.34e-05]T. The optimized micro-lattice still satisfies the fundamental properties of a solid 3D 

microstructure. 

    

Fig. 10(a) Finite element model                     Fig. 10(b) Sizes of the model  
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   (21) 

(2) The ANSYS results with geometric size 0.3mm 

Secondly, when the geometrical size of the microstructure is changed to 0.3mm, and the volume ratio is 0.0091. 

The finite element mode and its corresponding geometry are shown in Fig. 11(a) and Fig. 11(b). After 

optimization, the elasticity tensor is expressed in Eq. (22). the Zener parameter relative to the elasticity tensor 

drops from 1.12 to 1.01, the effective Poisson’s ratio increase from 0.486 to 0.488, and the ratio B/G is 

improved from 40 to 43. The eigenvalue vector of the elasticity tensor related to the optimized micro-lattice 

is [0.003408 5.34e-05 5.34e-05 2.65e-05 2.65e-05 2.65e-05]T. 

    

Fig. 11(a) Finite element model                     Fig. 11(b) Sizes of the model 
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   (22) 

(3) The ANSYS results with geometric size 0.2mm 

Thirdly, when the geometrical size of the microstructural bar members is changed to 0.2mm, the volume ratio 

of the microstructure is about 0.0042, the finite element model and its geometry are displayed in Fig. 12(a) 

and Fig. 12(b). After optimization, the calculated effective elasticity tensor by ANSYS is given in the Eq. (23). 
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It can be seen that the Zener ratio of anisotropy of the optimized microstructure is still 1.01 (1.14 before 

optimization), the effective Poisson’s ratio increases from 0.491 to 0.494, and the ratio B/G of the bulk 

modulus B and the shear modulus G is improved from 81 to 84. The eigenvalue vector of the elasticity tensor 

is [0.001311 1.05e-05 1.05e-05 5.19e-06 5.19e-06 5.19e-06]T. 

 

    

Fig. 12(a) Finite element model                     Fig. 12(b) Sizes of the model 
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   (23) 

 

(4) The ANSYS results with geometric size 0.1mm 

Finally, if we change the bar radius of the microstructure to 0.1mm, the volume ratio of the microstructure is 

about 0.0011, the finite element model and its geometry are displayed in Fig. 13(a) and Fig. 13(b). After 

optimization, the effective elasticity tensor calculated by ANSYS is shown in Eq. (24). The Zener anisotropy 

ratio is 1.01 (1.08 before optimization), the effective Poisson’s ratio of the microstructure increase from 0.496 

to 0.498, and the ratio B/G of the bulk modulus B and the shear modulus G related to the optimized micro-

lattice is improved from 207 to 212. The eigenvalue vector of the elasticity tensor is [2.53e-4 8.10e-07 8.10e-

07 4.00e-07 4.00e-07 4.00e-07]T. 
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Fig. 13(a) Finite element model                     Fig. 13(b) Sizes of the model 
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   (24) 

 

As discussed above, the size optimization results under 4 different cases are summarized in Table 1. From the 

table, we can find that the worst pentamode microstructure is the design with the beam diameter d=0.4mm, 

while the best pentamode microstructure is the design with the beam diameter d=0.1mm. When the beam 

diameter is changing from 0.4mm to 0.1mm, the ratio (B/G) of the effective bulk modulus over the shear 

modulus increases from 75 to 635, and the effective Poisson’s ratio is increased from 0.480 to 0.498. If the 

diameter is getting smaller and smaller, the B/G magnitude will be larger and larger (e.g. over 1000), and 

Poisson’s ratio ʋ will gradually approach to 0.5, with a better performance for mimicking liquid by the solid 

microstructures. Hence, the pentamode microstructure in this study can be applied to simulate the behaviour 

of the liquid for transformation of elastodynamics. A smaller beam diameter is beneficial to achieve a much 

larger ratio of B/G, but the manufacturing will get difficult. The latest additive manufacturing technique such 

as selective laser melting (SLM) can be used to produce components with metallic materials, but the 

topologically optimized 3D microstructures with a diameter less than 0.1mm (0.05mm) are still challenging. 

 
Table 1. Properties corresponding to different parameters and diameters (unit mm) 

Parameters ET d A1 A2 A3 A4 A5 B/G Z υ  
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Topology Optimization Solid ---- 1.33 4.20 2.33 3.93 2.53 37 1.01 0.486 

Size Optimization Beam 0.4 1.34 4.27 2.27 3.74 2.57 25 1.01 0.480 

Size Optimization Beam 0.3 1.34 4.28 2.26 3.67 2.60 43 1.01 0.488 

Size Optimization Beam 0.2 1.33 4.25 2.31 3.89 2.53 84 1.01 0.494 

Size Optimization Beam 0.1 1.35 4.20 2.33 3.95 2.56 212 1.01 0.498 

5.3 Stress analysis of the microstructure using ANSYS 

Since the stress level inside the microstructure depends on its boundary conditions in practice, it is not possible 

to test all the different cases. Here, only one case is used to indicate different stress distributions when the 

pentamode microstructure is subjected to compressive and shear deformations. The microstructural array with 

4×4×4 microstructures (Fig. 14) is loaded under compressive and shear loads, respectively. In order to ensure 

the fairness of the comparison between compression and shear loading, the loads applied on each node under 

the two conditions are both 1N. The difference is that the direction of the compressive loads is normal to the 

external surface, while the direction of the shear loads is along the plane direction of external surface. Two 

cells which have the same shapes are picked out to show the difference between the compressive (Fig. 15a) 

and shear (Fig. 15b) stresses. From the results, the maximal stress under compression is 2.73MPa while the 

maximal stress under shear loading is 24.83MPa. It is clearly to demonstrate that the pentamode microstructure 

has a high shear stress level than compression stress level and is easily damaged under shear deformation. 

 

      

Fig 14. Microstructural array (4×4×4 microstructures) for stress analysis 
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(a) Stress distribution under compressive loading 

     
(b) Stress distribution under shear loading 

Fig. 15. Von Mises Stress distribution 
 

5.3 Prototype of metallic pentamode microstructures using SLM technique. 

      
Fig. 16. Microstructure with 0.4 mm diameter, and its 4×4×4=64 array in STL files 
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AM technologies [62] for producing metallic cellular composites with various microstructures typically 

include selective laser melting (SLM), selective electron beam melting (SEBM) and laser metal deposition 

(LMD), also called direct laser fabrication (DLF). Their common feature is to locally melt a powder layer and 

then rapidly solidified. As a tool-free, cost-efficient and computational manufacturing approach, AM offers 

many benefits that are changing conventional industrial paradigm in manufacturing for various sectors such 

as aerospace, automotive, energy, and medical engineering. 

 

Selective laser melting (SLM) [63], a particular rapid prototyping technique that employs high-power laser 

beam to melt and fuse metallic powders, can manufacture high relative density metal parts through a layer-

by-layer process. SLM, with other names like the direct selective laser sintering (DSLS), direct metal laser 

sintering (DMLS) and LaserCusing, has been proven to produce near net-shape parts. It is applicable to a wide 

range of materials including metallic materials, e.g. copper, aluminum, tungsten and their alloys, as well as 

ceramic and composite materials. Due to rapid cooling rates and directional solidification, the additively 

manufactured metallic microstructures with effective properties may be different from their conventional 

counterparts. It is important to test and characterize their topologically optimized properties in lab. However, 

this paper is more focused on computational design of 3D solid pentamode microstructures using topology 

optimization. Hence, the SLM technique is only used to demonstrate that the topologically optimized 

pentamode materials (Fig. 16) can be fabricated using up-to-date additive manufacturing technologies. The 

details for computational manufacturing by AM, as well as in-lab testing and property characterization of more 

advanced optimized pentamode cellular composites will be published soon with different focuses. 

 
Table 2. Parameters for SLM printing 

Parameters 
Laser power Scanning speed Hatch spacing Thickness Remarks 
360 W 1050 mm/s 0.09 mm 0.03 mm  

Support No Overhang 
Equipment EOS 290 
Materials AlSi10Mg 

 

The printing parameters are given in the following table (Table 2). The structure consists of periodic 

microstructures with side length a=10 mm, and each microstructure has a volume of 10 × 10 × 10 mm3. The 

whole specimen is therefore cubic and occupies a total nominal volume of 40 mm × 40 mm × 40 mm3. As 

shown in Fig. 17, we can find that there are many cantilever-style parts, also called overhang struts, in the 
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structure. If the cantilever parts are too long, the cantilever struts are prone to collapse. If the support structure 

is used, the internal support is difficult to remove and hence the whole structure is not easy to form near net 

shape. Hence, the lighter aluminum alloy rather than the heavier titanium alloy is used in the process of the 

SLM printing. The density of the aluminum alloy is low (ρ = 2.7 g/cm3), and the struts can therefore be 

supported by the powder bed in the melting state and the printed structure will not collapse. In this way, no 

additional support structure is needed. The printed structure is given in Fig 18. 

 
Fig. 17 Structural prototype and cantilever strut analysis in SLM process 

 

     
Fig 18. Microstructural arrays using SLM technique (Aluminum alloy: AlSi10Mg) 
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6. Conclusion 

This paper has implemented, for the first time, the design of three-dimensional solid pentamode metamaterials 

using topological optimization. Then the design problem is formulated to achieve an ultra-lightweight high-

performance micro-lattice subject to an ultra-low density and high-resolution in computation. The SIMP-based 

topology optimization together with the numerical homogenization method is applied to implement the 3D 

solid pentamode micro-lattices. The topologically optimized designs show the effective properties of the 

microstructure align with the fundamentals of pentamode materials, including an effective Poisson’s ratio 

close to 0.5, a realistically large (B/G) ratio of the bulk modulus over shear modulus in magnitude, and 5 out 

of 6 eigenvalues of the elasticity tensor are relatively much smaller in orders. Hence, when the effective 

Poisson’s ratio under appropriate symmetry and isotropy approaches to 0.5, the micro-lattice can mimic the 

behavior of isotropic pentamode materials. In ANSYS, we first extracted the topological skeleton of the design 

and established a parameterized model for finite element analysis, and then the subsequent size optimization 

with ANSYS solver was conducted under different beam diameters, in order to investigate the influence of the 

geometric sizes on the properties of the pentamode micro-lattices. The results from the size optimization 

demonstrated that under a given topology the geometric dimensions (e.g. the beam diameter) of the isotropic 

microstructure have an important impact on its properties. A smaller diameter indicates a better approximation 

of the effective properties. Finally, the up-to-date additive manufacturing technique (SLM) is used to prototype 

the optimized specimen. The computational design-manufacturing methodology in this paper can be easily 

extended to the design of more advanced mechanical micro-lattice metamaterials. 
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