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Reviewer #1:  

The main objective of this paper is to use the genetic-algorithm-based ground structure method to design the 

pentamode metamaterials with at least orthotropic symmetry. The main works include the derivation of the 

necessary and sufficient condition required for elasticity matrices of pentamode metamaterials with at least 

orthotropic symmetry, and the definition of the optimization model. And then, some examples were given. 

However, the persuasive and comparative conclusions weren't drawn from the optimal results. There are 

some questions and comments as follows. 

(1) Authors proposed the topology optimization method to discover novel pentamode metamaterial lattices 

with at least orthotropic symmetry. Could it be applied for the anisotropic pentamode metamaterials? 

Sincere authors mentioned the anisotropic pentamode metamaterials in the introduction, it could be 

necessary to further discuss the application problem of the authors' method. 

 

Reply: 

Thanks. At this stage, the proposed methodology has not applied to design fully anisotropic pentamode 

metamaterials, but it is not a limitation of the proposed topology optimization approach itself. The method is 

general and appliable to many different designs. It is the complexity of deriving the necessary and sufficient 

condition in theory that restrains the application of the proposed method to the fully anisotropic 

metamaterials. Once such a condition is derived, the topological optimization method developed in this 

paper can be used to find fully anisotropic pentamode unit cells. We are currently working on it. However, at 

least, we consider the current work as an important advance compared with the recent references that only 

focused on isotropic pentamode unit cells (e.g. [21] and [22] in 2019), since it can find a range of transverse 

isotropic and orthotropic pentamode unit cells and significantly broaden the family of pentamode lattices. 

We have added this discussion in the Conclusions of the revised paper. 

 

(2) To find the necessary and sufficient condition for this characteristic polynomial Eq. (2) to have only one 

non-zero root, authors chose the second case that at least one of 11, 22 and 33 is positive and mentioned 

that it is more complicated and physically meaningful. After the derivation, authors should clarify this point 

and detailedly explain that the non-zero eigenvalue = 11 + 22 + 33 is not always proportional to the bulk 

modulus, and the eigenvector in Eq (16) does not always correspond to hydrostatic pressure either. 

Therefore, ones can naturally accept the conclusion that a relatively very large ratio of the bulk modulus to 

the shear modulus is no more a sufficient condition for non-isotropic pentamode metamaterials. 

 

Reply: 

Thanks for the suggestion. We have given more details in explaining this issue after Eq. (16). 

 

(3) Genetic algorithm has been used to solve topology optimization problems. Its merits and drawbacks were 

pointed out in section 3.2. It is not essential. Generally, we introduce the used algorithm principle in the 
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separate section. 

 

Reply: 

Thanks for the suggestion. We have added a simple introduction of the genetic algorithm principle in Section 

3.2 now. It is noted that we just use the Matlab built-in function to implement the classical genetic algorithm, 

and this paper will not effort to improve the genetic algorithm itself. The main purpose of this section is to 

emphasize that for the discrete optimization problem with relatively small-scale, the genetic algorithm can 

be used as an appropriate optimization solver, instead of using mathematical programming methods as used 

in most topology optimization problems. 

 

(4) In the generation of the ground structure, how to determine the number of bars and design variables and 

the fully connected ground structure? Could the concrete computing process be listed? 

 

Reply: 

We have provided Matlab scripts online for free download and use for research. The Web link and 

introduction are given in Section 3.3. The scripts can generate the proposed ground structures and determine 

which bars are active according to the given design variables. The numbers of Cartesian mesh nodes are 

chosen as user-input values to generate simple or complex ground structures. We think the scripts may help 

readers have a clearer understanding for the paragraph above the Fig.3. 

 

(5) In section 4, authors just gave the numerical results, not involved the designs of pentamode acoustic 

cloaks and unfeelable cloaks. This sentence has been mentioned in the sections of the introduction and the 

conclusions. 

 

Reply: 

Thanks. We acknowledge that this sentence may trigger confusion for the major focus of this paper. It is a 

potential application domain of the optimized orthotropic lattices but not a major focus of this paper. The 

main purpose of this paper is to introduce the optimization design method we have developed and then show 

a range of new pentamode unit cells we have not realized or discovered. We have modified the relevant 

statements in the revised statements. 

 

(6) In the numerical results, the isotropic, transverse isotropic, and orthotropic pentamode unit cells were 

shown. Did they use the same mathematical optimization model Eq. (17)? What are the physical meanings of 

the maximum eigenvalue max _1 and the second maximum eigenvalue max _2? 

 

Reply: 

Yes, they use the same model originally given in Eq (17), since isotropic, transverse isotropic and 

orthotropic pentamode unit cells are all special cases of pentamode unit cells with at least orthotropic 

symmetry. For perfect pentamode metamaterials, 𝜆max⁡_2 should approach zero. It is noted that 𝜆max⁡_2 

does not always correspond to the shear modulus, and its physical meaning is inconstant. For perfect 

pentamode metamaterials, 𝜆max⁡_1 should be relatively large, and have the following relationship: 



𝑪𝒙 = 𝜆max⁡_1 ⋅ 𝒙 

where 𝑪 is the elasticity matrix, and 𝒙 is the eigenvector corresponding to 𝜆max⁡_1. It is noted that only for 

isotropic pentamode unit cells, then 𝜆max⁡_1 is three times the bulk modulus. 

 

(7) The paper lacks the analysis and discussion for the optimal results. The pentamode unit cells with 

different relative densities are listed and prototyped. What's the purpose of authors? 

Overall speaking, the paper needs a deep revision before publication. 

 

Reply: 

Thanks for the suggestion. The analysis and discussion for the optimization results have been added in 

Section 4.2 and Section 4.3. Our purpose of Section 4.4 is to prove that, based on the optimized skeleton, 

pentamode unit cells with different relative densities can be easily obtained by just changing the geometric 

dimensions and shapes of the bars. This feature can be specially used in acoustic cloaking design. Finally, 

we show the figures of the prototyped specimens to demonstrate that the micro-lattices can be manufactured 

by using existing additive manufacturing techniques. 

  



Reviewer #2: 

This paper analyzes the necessary and sufficient boundary conditions of orthotropic pentamode materials. 

Two cases are considered, corresponding to zero and nonzero shear modulus. The nonzero shear modulus is 

set at a higher value, and the geometry design optimization is conducted to find structures of this type. The 

genetic-algorithm-based ground structure method is adapted to find eight isotropic pentamode structures, 

eight transversely isotropic pentamode structures, eight orthotropic pentamode unit cells. 

1. The literature review on page 2 is not vital, just monotonous. There is no critical discussion - e.g., the 

advantages and disadvantages of the previous work with reasons. For example. "Huang et al. [9] student 

pentamode behavior and acoustic bandgaps of diamond type pentamode lattices with various 

cross=sectional shape, and found that the triangle case performs best." Why? 

 

Reply: 

Thanks for the suggestion. We have tried our best to revise the literature review. For the reference [9], the 

paper quantitatively compared numerical analysis results of different cross-section shapes and found that the 

triangle case performs best with lower frequency and broader bandwidth. 

 

2. Pentamode structures are minimal applications - mechanical cloaking. The chance of application for 

structural application is meager due to the fragile part. Even though it boasts a high bulk modulus, local 

micro buckling can quickly fail the structure. 

 

Reply: 

The concept of pentamode metamaterials indeed paves a new pathway for discovering new architected 

composite materials and new applications. Yes, the conventional rigid-body double-cone designs with tiny 

and brittle tip-to-tip connections are easily subject to fracture and breakage in engineering practice. However, 

we would highlight that our research is exactly motivated to overcome the current bottleneck through the 

whole strain energy and deformation of the entire lattice architecture by topologically optimized 

microstructures, rather than via the highly localized tip-to-tip rigid-body deformation. At the first look, it 

seems that the geometrical shapes of our designs are similar to the conventional rigid-body double-cone 

designs. However, our designs are based on the whole elastic deformation of the entire microstructure, not 

the point-wide rigid-body connections. Structural strain energy-driven elastic deformation is essentially 

different from the ideally tip-to-tip rigid body deformation. 

This is the key benefit of the topologically optimized elastic lattices, compared to conventional doble-cone 

rigid-body lattices. The topological designs in this paper do not have to be connected through tiny-tip 

connections to enable the deformation, because the uniform truss bar structures are used in our designs. 

However, we have involved double cone shapes into the topological designs in that the double cone shapes 

will conveniently benefit the change of the effective mass of the micro lattice, and therefore the application 

of cloaks. 

 

3. The conventional isotropic pentamode structures have a high bulk to shear moduli ratio. What is the 

mechanical feature of your orthotropic pentamode structures? 

 

Reply: 

Thanks for this insightful question. For a theoretically perfect pentamode metamaterial, it can only bear one 



stress state, proportional to the eigenvector corresponding to the non-zero eigenvalue of its elasticity matrix 

[1]. This is an essential characteristic of pentamode metamaterials [1]. As a special case, isotropic 

pentamode can only bear a stress proportional to [1 1 1 0 0 0]T (i.e. hydrostatic pressure). The 

high ratio of the bulk modulus to the shear modulus is an equivalent description only limited to the isotropic 

case. For transverse isotropic and orthotropic pentamode unit cells obtained in this paper, their mechanical 

feature is the same as their essential characteristic mentioned above. We have more detailedly explained 

about it right after the Eq (16). 

 

4. One of the biggest concerns is that there is no verification of the model - experiments and simulations 

should be added to the current version. Otherwise, it is hard to convince your model to work. 

 

Reply: 

Thanks for the suggestion. Yes, it is indeed important to conduct experimental testing and characterization of 

the optimized design. However, the major focus of this paper is to the analysis and design of pentamode 

metamaterials with at least orthotropic symmetry. We also showcase that the optimized designs can be 

manufactured by using the state-of-the-art additive manufacturing techniques. A through experimental 

investigation is therefore beyond the major scope of this paper. However, following the reviewer’s 

suggestion, we have added two detailed numerical simulation results of pentamode lattices using 

commercial software (Abaqus) in Section 4.2 and Section 4.3. 

 

5. It may be easier to image geometries if you add a small assembly of unit cells, e.g., two by two. 

 

Reply: 

Thanks for your suggestion. We have added a 2 × 2 × 2 assembly for each unit cell in Section 4.1. 

 

6. Please add a short description for every subfigure. 

 

Reply: 

Thanks for the suggestion. We have added sub-titles for every subfigure now. 

  



Reviewer #3:  

The stiffness deduction of pentamode lattices structure and the optimization design of genetic algorithm are 

investigated in this paper. The research field is belong to the forefront of the discipline, and has a strong 

theoretical significance and engineering background. 

1. The stiffness deduction is the basic analysis method of pentamode lattices structure, which can not be an 

innovation point. 

 

Reply: 

Thanks. For previous studies on the isotropic pentamode unit cell, a relatively large ratio of the bulk 

modulus to the shear modulus (i.e. B/G) is usually used to judge whether a unit cell is pentamode or not. 

However, it is not the essential and original definition of pentamode metamaterials, such as Mejica and 

Lantada [21] considered some non-isotropic unit cells with large B/G ratios as pentamode. Therefore, as the 

foundation of establishing the mathematical optimization model, we must firstly derive the necessary and 

sufficient condition required for elasticity constants of pentamode unit cells, instead of still using the 

conventional B/G ratio as the objective function. 

However, we acknowledge that the purpose of the derivation is mainly for establishing the mathematical 

optimization model, and the derivation is important, but it cannot be considered as an independent 

innovation point. We have revised several statements to avoid misleading in the abstract. 

 

2. Genetic method was used to obtain the structure type, but the paper does not describe the establishment of 

the optimization model in detail. The theory in the first part can't directly deduce the objective function and 

constraint conditions of the optimization model, so it is suggested that the author should increase the 

establishment description of the optimization model. 

 

Reply: 

Thanks. We have added a detailed description in Section 3.1. 

 

3. The author did not introduce the genetic algorithm in detail, how to calculate the number of operations? 

 

Reply: 

Thanks for the suggestion. We have added a simple introduction of the genetic algorithm in Section 3.2. It is 

noted that we use the Matlab built-in function to implement the classical genetic algorithm, and how to 

develop or improve the genetic algorithm is not our major effort in this paper. This section is to emphasize 

that the discrete optimization problem in this paper is relatively small-scale and cheap in computation, and 

therefore the genetic algorithm can be used as an optimization solver, instead of mathematical programming 

methods that are frequently used in topology optimization. 

 

4. In the optimization design, the finite element model is used in the single calculation. Which responses of 

the structure are output to calibrate the stiffness of the structure? The article doesn't explain. 

 

Reply: 



Thanks. We calculated the effective elasticity matrices of unit cells by using the typical numerical 

homogenization method [32], which is simply mentioned right after Eq (24). We have added a more detailed 

description at the beginning of Section 3.1. 

 

5. In this paper, several new pentamode lattices structures are presented, but the structural stiffness and 

structural types of new structures are not discussed. There is little discussion on the optimization model and 

no comparative analysis with the existing model. 

 

Reply: 

We have added two sections to address the analysis and discussion of the optimization results (Section 4.2 

and Section 4.3). 

 

6. In this paper, a typical pentamode lattices structure is established. The overall modulus is 113.8Gpa, 

which is equivalent to the modulus of titanium alloy, and the relative density is about 1%. What kind of 

material is used to print this structure? Moreover, according to the topology optimization, the shear stiffness 

is 0.091 and 0.42, which is far from 0 required in the model establishment. How to explain it? 

 

Reply: 

Thanks for these detailed and good questions. 

(1) In the finite element analyses, Ti6Al4V is chosen as the base material of unit cells. We have noted that at 

the end of the second paragraph in Section 4.2. The relative density 1.143% means that when the bounding 

box of the unit cell is 1⁡mm × 1⁡mm × 1⁡mm, the total volume of base material in the unit cell is 0.01143 

mm3. For the additively manufactured specimen, TangoGray FLX950 is used to print the micro-lattice, as 

mentioned right before Fig.18. It is noted that the material used for printing is not related to finite element 

analysis results from Table 1 to Table 6 at all. 

(2) It is noted that perfect pentamode unit cells with zero shear moduli only exist in theory, and ideally the 

fluidics. In this paper, we have attempted to design solid micro lattices to approximately mimic the behavior 

of the fluidics. In this setting, it is not possible for the topologically optimized solid micro lattices to have 

the ideal properties of perfect pentamode materials. Therefore, the previous studies on numerical analyses 

and experiments of diamond-type isotropic pentamode unit cells all only require a relatively large ratio of 

the bulk modulus to the shear modulus (B/G), but not vanishing shear moduli in theory. In the Eq (24), the 

objective function only requires the shear moduli to be as small as possible but not to be strictly zero. 

 

7. The abstract cannot directly propose the purpose and conclusion of the author's research, which needs 

revised. 

 

Reply: 

Thanks。 We have revised the abstract. 
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Abstract 

Pentamode metamaterials are a new class of artificially engineering three-dimensional lattice composites. 

There exist a few types of pentamode metamaterials that are dominated by ad hoc design motifs, while a 

systematic design approach is still missing. This paper will present an efficient topological optimization 

methodology to discover a series of novel pentamode lattice microarchitectures over a range of effective 

material properties. Firstly, the necessary and sufficient condition that is required for elasticity constants of 

pentamode micro lattices with at least elastically orthotropic symmetry is derived. Secondly, a general 

mathematical formulation for design optimization of such pentamode micro lattices is developed. Thirdly, a 

truss-based three-dimensional ground structure with geometrically orthotropic symmetry is generated, with 

geometric constraints to avoid intersection and overlap of truss bars within the ground structure. The genetic 

algorithm is then used to solve the topology optimization problem described by the ground structure. Finally, 

twenty-four pentamode lattices are designed to demonstrate the effectiveness of the proposed method. 
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1. Introduction 

Pentamode metamaterials belong to a kind of three-dimensional solid mechanical metamaterials that are 

artificially architected to only bear single mode of stress [1]. A pentamode metamaterial only has one 

non-zero eigenvalue from its sixth-order elasticity matrix, and therefore it can deform easily in five 

independent modes corresponding to five zero eigenvalues from its elasticity matrix [1, 2]. Take an isotropic 

pentamode metamaterial as an example, it has a finite bulk modulus but a vanishing shear modulus and can 

only bear hydrostatic stress. In other words, they are three-dimensional lattice microstructures engineered to 

mimic the behavior of fluids. The unusual mechanical properties of pentamode metamaterials are gained 

from the geometries of their rationally designed microarchitectures, rather than the chemical compositions of 

their base materials (e.g., metals and polymers). 

 

The pentamode metamaterial was first designed by Milton and Cherkaev in 1995 [1]. They are dominantly 

featured with a diamond-type lattice, consisting of four double-cone rigid-body bars that are jointed only at 

their point-like tips [1]. However, lattice microarchitectures with such point-like tips cannot stably exist in 

real-world applications. The infinitely small joints were therefore given finite cross-sections to facilitate 

manufacturing of the pentamode lattices in practice [3]. This conventional diamond-type pentamode lattice 

[3] is illustrated in Fig.1a, having a smaller diameter 𝑑 at the joints, a relatively large diameter 𝐷 at the 

midspan and a total length 𝑙 of a double-cone bar as shown in Fig.1b. For the double-cone lattice, the work 

[4] showed that using asymmetric double-cone bars can increase the ratio of the bulk modulus to the shear 

modulus. Huang et al. [5] quantitatively compared the pentamode behavior and acoustic bandgaps of the 

diamond-type pentamode lattices with five different cross-sectional shapes, and found that the triangle case 

performs best with lower frequency and broader bandwidth than other four shapes. 

  

(a) Diamond-type lattice (b) Double-cone bar 

Fig.1. Diamond-type pentamode lattice with double-cone bars 

 

Isotropic pentamode metamaterials can uncouple the compression wave and shear wave, as ideally the bulk 

moduli can be infinitely large compared to the shear moduli [3]. In other words, they are difficult to 

compress while easily flow away, for which they are also named as metafluids [6]. Kadic et al. [3] should be 

the first group implemented the diamond-type pentamode lattice using dip-in direct-laser-writing optical 

lithography. The testing results of the manufactured diamond-type metal pentamode lattices revealed that the 

shear and Young’s moduli are in good agreement with their theoretical calculations [7], and the elastic 

modulus and yield stress were decoupled from the relative density [8]. 
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Pentamode metamaterials are promising for transforming elastostatics and particularly elastodynamics to 

enable acoustic cloaks [9-15], based on the concept of transformation optics but beyond that. In 2008, Norris 

[9] investigated the transformation acoustic cloaks and noted that ideal acoustic cloaks can be achieved 

through pentamode metamaterials. Compared with conventional inertial cloaks, pentamode acoustic cloaks 

can avoid mass singularity and be engineered with pure solid materials and are theoretically broadband since 

they invoke only quasi-static stiffness of pentamode metamaterials [12]. Potential applications of pentamode 

metamaterials in other fields have also been studied recently. For instance, Buckmann et al. [16] designed an 

elasto-mechanical unfeelability cloak using the conventional diamond-type pentamode metamaterials to hide 

hard objects and make them unfeelable. Hai et al. [17] used bimodal structures to design two-dimensional 

unfeelable mechanical cloaks to reduce the influence of a hole in the structure on stress concentrations and 

redistribute the strain. Fabbrocino et al. [18] proposed a tunable seismic base-isolation device by the 

combination of pentamode lattices and tensegrity structures. 

 

It is noted that several ‘pentamode metamaterials’ given in literatures [11-14] are actually two-dimensional 

bimode metamaterials. Strictly speaking, they should have not been classified as pentamode metamaterials 

because three-dimension with sixth-order elasticity matrices is a necessity to define the term of penta 

referring to five. Of cause, a pentamode metamaterial can be considered as a three-dimensional extension of 

a two-dimensional bimode honeycomb metamaterial that has three linkages meet at a point. Therefore, 

Morse and Cherkaev [1] noted that a natural candidate might have four linkages meet at a point, which 

helped to discover the diamond-type pentamode lattices. Inspired by the concept of the Bravais lattices, 

Mejica and Lantada [19] presented a library of lattices claimed to be pentamode in 2013, but Xu [20] stated 

that although these lattices are not pentamode although have large ratios of the bulk modulus to the shear 

modulus. This phenomenon will be explained in Section 2 of this paper. In 2015, Xu [20] presented five 

pentamode lattices that all have only one non-zero eigenvalue from the effective elasticity matrix. In 2019, 

Li and Vipperman [21], and Huang et al. [22] further proposed two isotropic pentamode lattices. From the 

above, we can find that seven new pentamode lattices have been found but through ad hoc and empirical 

design methods since 1995. A generative design optimization approach that can systematically discover a 

range of novel pentamode lattices over a wide scope of effective properties is still missing. 

 

Milton and Cherkaev [1] noted that pentamode metamaterials can be anisotropic. However, this possibility 

was not addressed and come into reality until 2013, when Kadic et al. [23] introduced intentional anisotropy 

into the conventional diamond-type lattices by moving just one connection point along the space diagonal. 

As mentioned by Milton et al. [24], pentamode metamaterials should be able to bear any chosen stress, not 

only isotropic. Anisotropic pentamode metamaterials are the prerequisite for realizing many applications 

including acoustic clocks based on transformation elastodynamics [23]. Hence, this work will focus on 

topology optimization of more general pentamode metamaterials not limited to isotropic. An evolutionary 

ground structure method using the genetic algorithm is proposed to discover novel pentamode lattice 

microstructures with at least orthotropic symmetry. 

 

2. Necessary and sufficient condition 

This section will rigorously derive the necessary and sufficient condition required for elasticity matrices of 

pentamode metamaterials with at least orthotropic symmetry. It is noted that the derivation here is valid for 

linear elasticity. For three-dimensional elasticity problem, Hooke’s law is here considered in the form 𝝈 =

𝑪𝜺, where 𝝈 is the vector of stress, and 𝜺 is the vector of strain. For any elastic material with orthotropic 



4 
 

symmetry, the elasticity matrix 𝑪 is defined in Eq (1). It is noted that an elasticity matrix is always positive 

semidefinite, i.e., 𝐶𝑖𝑖 ≥ 0 (𝑖 = 1,2,3,4,5,6). 

𝑪 =

[
 
 
 
 
 
 
𝐶11 𝐶12 𝐶13 0 0 0

𝐶22 𝐶23 0 0 0

𝐶33 0 0 0

𝐶44 0 0

𝐶55 0

𝐶66]
 
 
 
 
 
 

 (1) 

 

The essential definition of a pentamode metamaterial is that it has only one non-zero eigenvalue from its 

sixth-order elasticity matrix [1, 9]. The characteristic polynomial of the elasticity matrix in Eq (1) can be 

defined as: 

|𝑪 − 𝜆𝑰| = (𝐶44 − 𝜆)(𝐶55 − 𝜆)(𝐶66 − 𝜆)(𝐴1 + (𝐴2 + (𝐴3 − 𝜆)𝜆)𝜆) = 0 (2) 

where 

{

 𝐴1 = 𝐶11𝐶22𝐶33 + 2𝐶12𝐶13𝐶23 − 𝐶11𝐶23
2 − 𝐶22𝐶13

2 − 𝐶33𝐶12
2

 𝐴2 = 𝐶12
2 − 𝐶11𝐶22 + 𝐶13

2 − 𝐶11𝐶33 + 𝐶23
2 − 𝐶22𝐶33

 𝐴3 = 𝐶11 + 𝐶22 + 𝐶33

 (3) 

To find the necessary and sufficient condition for this characteristic polynomial to have only one non-zero 

root, we should consider through two different cases. 

 

The first case is that at least one of 𝐶44, 𝐶55 and 𝐶66 is positive, e.g., 𝐶44 > 0. If so, the only non-zero 

eigenvalue should be 𝜆 = 𝐶44, and then the following conditions must be satisfied: 

{
 𝐶55 = 𝐶66 = 0
 𝐴1 = 𝐴2 = 𝐴3 = 0

 (4) 

Since the elasticity matrix is positive semidefinite, the second equation in Eq (4) equals to the following 

condition: 

𝐶11 = 𝐶22 = 𝐶33 = 𝐶12 = 𝐶13 = 𝐶23 = 0 (5) 

The derivation for 𝐶55 > 0 or 𝐶66 > 0 is the same. Therefore, the general necessary and sufficient 

condition for this first case is that only one of 𝐶44, 𝐶55 and 𝐶66 is positive while all other elastic constants 

are zero, which corresponds to a lattice that can only bear one shear stress mode, which is well in line with 

the definition of pentamode materials in [1]. 

 

It is noted that in this paper we will only consider the second case described below for design optimization 

since it is more complicated and physically meaningful. The second case is that at least one of 𝐶11, 𝐶22 and 

𝐶33 is positive. If so, the only non-zero eigenvalue should be 𝜆 = 𝐴3 = 𝐶11 + 𝐶22 + 𝐶33, and then the 

following conditions must be satisfied: 

{
 𝐶44 = 𝐶55 = 𝐶66 = 0
 𝐴1 = 𝐴2 = 0

 (6) 

For the equation 𝐴1 = 0 in Eq (6) to have three real roots as 𝐶12, 𝐶13 and 𝐶23, from mathematical 
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knowledge we can know that the following conditions must be satisfied: 

{

4𝐶13
2𝐶23

2 − 4𝐶33(𝐶11𝐶23
2 + 𝐶22𝐶13

2 − 𝐶11𝐶22𝐶33) ≥ 0

4𝐶12
2𝐶23

2 − 4𝐶22(𝐶11𝐶23
2 + 𝐶33𝐶12

2 − 𝐶11𝐶22𝐶33) ≥ 0

4𝐶12
2𝐶13

2 − 4𝐶11(𝐶22𝐶13
2 + 𝐶33𝐶12

2 − 𝐶11𝐶22𝐶33) ≥ 0

 (7) 

which can be simplified as: 

{

(𝐶13
2 − 𝐶11𝐶33)(𝐶23

2 − 𝐶22𝐶33) ≥ 0

(𝐶12
2 − 𝐶11𝐶22)(𝐶23

2 − 𝐶22𝐶33) ≥ 0

(𝐶12
2 − 𝐶11𝐶22)(𝐶13

2 − 𝐶11𝐶33) ≥ 0

 (8) 

These inequality equations require the values of 𝐶12
2 − 𝐶11𝐶22 , 𝐶13

2 − 𝐶11𝐶33  and 𝐶23
2 − 𝐶22𝐶33  to 

have no opposite signs. Combined with the equation 𝐴2 = 0 in Eq (6), we can know that the following 

condition must be satisfied: 

𝐶12
2 − 𝐶11𝐶22 = 𝐶13

2 − 𝐶11𝐶33 = 𝐶23
2 − 𝐶22𝐶33 = 0 (9) 

which can be simplified to be: 

{

𝐶12 = 𝑎√𝐶11𝐶22

𝐶13 = 𝑏√𝐶11𝐶33

𝐶23 = 𝑐√𝐶22𝐶33

 (10) 

where 

𝑎 = ±1, 𝑏 = ±1, 𝑐 = ±1 (11) 

Moreover, from the equation 𝐴1 = 0 in Eq (6), we can know that: 

𝐶11𝐶22𝐶33 + 2𝐶12𝐶13𝐶23 = (1 + 2𝑎𝑏𝑐)𝐶11𝐶22𝐶33 = 𝐶11𝐶23
2 + 𝐶22𝐶13

2 + 𝐶33𝐶12
2 ≥ 0 (12) 

This inequality equation additionally requires that: 

𝑎𝑏𝑐 ≠ −1 (13) 

Eq (11) and Eq (13) can be combined to meet the following four cases: 

{

𝑎 = 𝑏 = 𝑐 = 1          or
𝑎 = 1, 𝑏 = 𝑐 = −1   or
𝑏 = 1, 𝑎 = 𝑐 = −1   or
𝑐 = 1, 𝑎 = 𝑏 = −1

 (14) 

It is noted that the condition above also contain the case that only one or two of 𝐶11, 𝐶22 and 𝐶33 is 

positive while all other elastic constants are zero. Therefore, the necessary and sufficient condition required 

for elastic materials with at least orthotropic symmetry to be pentamode for the second case is the 

combination of Eq (10), Eq (14) and the equation 𝐶44 = 𝐶55 = 𝐶66 = 0 in Eq (6). When satisfying this 

necessary and sufficient condition, the elasticity matrix can be simplified as: 
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𝑪 =

[
 
 
 
 
 
 𝐶11 𝑎√𝐶11𝐶22 𝑏√𝐶11𝐶33 0 0 0

𝐶22 𝑐√𝐶22𝐶33 0 0 0

𝐶33 0 0 0

0 0 0
0 0

0]
 
 
 
 
 
 

 (15) 

The corresponding eigenvector of the only one non-zero eigenvalue 𝜆 = 𝐶11 + 𝐶22 + 𝐶33 is: 

𝒙 = [𝑎𝑏√𝐶11 𝑎𝑐√𝐶22 𝑏𝑐√𝐶33 0 0 0]
T
 (16) 

 

As mentioned above, a pentamode metamaterial has only one non-zero eigenvalue from its sixth-order 

elasticity matrix [1, 9]. It indicates that there are five independent strain cases that each strain case or their 

linear combinations will produce zero stress and zero strain energy [6]. It also indicates that this kind of 

materials can only bear single mode of stress, corresponding to the non-zero eigenvalue [1]. As a special 

case, isotropic pentamode metamaterials must have the following type of elasticity matrix: 

𝑪 =

[
 
 
 
 
 
𝐶11 𝐶11 𝐶11 0 0 0

𝐶11 𝐶11 0 0 0

𝐶11 0 0 0

0 0 0
0 0

0]
 
 
 
 
 

 (17) 

For the above elasticity matrix, there is only one non-zero eigenvalue 𝜆 = 3𝐶11, and its corresponding 

eigenvector is [1 1 1 0 0 0]T. We can find that this non-zero eigenvalue is exactly three times the 

bulk modulus 𝐵 = 𝐶11, and the eigenvector indicates that the material can only bear the hydrostatic stress. 

Therefore, isotropic pentamode metamaterials are equivalently identified by a finite bulk modulus and a 

vanishing shear modulus [3, 7]. However, it is not applicable to non-isotropic pentamode metamaterials. For 

pentamode metamaterials with at least orthotropic symmetry, we can find that the non-zero eigenvalue 𝜆 =

𝐶11 + 𝐶22 + 𝐶33 is not always proportional to its bulk modulus in Eq (18), and the eigenvector in Eq (16) 

does not always correspond to hydrostatic stress either.  

𝐵 =
𝐶11𝐶23

2 + 𝐶22𝐶13
2 + 𝐶33𝐶12

2 − 2𝐶12𝐶13𝐶23 − 𝐶11𝐶22𝐶33

𝐶12
2 + 𝐶13

2 + 𝐶23
2 + 2(𝐶11𝐶23 + 𝐶22𝐶13 + 𝐶33𝐶12 − 𝐶12𝐶13 − 𝐶12𝐶23 − 𝐶13𝐶23) − (𝐶11𝐶22 + 𝐶11𝐶33 + 𝐶22𝐶33)

 (18) 

 

Therefore, a relatively very large ratio of the bulk modulus to the shear modulus is no more a sufficient 

condition for non-isotropic pentamode metamaterials. In other words, such a ratio cannot be used to identify 

whether an orthotropic or transverse isotropic lattice is a pentamode or not. In Mejica and Lantada [19], for 

example, although the lattices have large ratios of the bulk modulus to the shear modulus, they are not 

isotropic and their elasticity matrices have more than one non-zero eigenvalues [20]. 

 

3. Genetic-algorithm-based ground structure method 

In this section, we propose a topology optimization method to discover novel pentamode lattices with at 

least orthotropic symmetry. Topology optimization is a powerful design tool able to find novel structures and 
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materials. It is essentially a numerical process to iteratively re-distribute materials within a design domain to 

find the best distribution with optimized objective performance subject to a set of prescribed constraints. 

Topology optimization methods of continuum structures, e.g. density-based method, level set method and 

evolutionary structural optimization method, have been applied to design metamaterials [25-28]. For discrete 

structures, the most popular topology optimization method should be the ground structure method, which 

has also been applied in design optimization of mechanical metamaterials [29-31]. 

 

Since potential pentamode lattices to be designed in this paper have nearly zero effective shear moduli, it is 

expected that these lattices should behave like mechanisms and consist of hinge-type joints. However, it is 

difficult to obtain an optimized design with hinge joints when topology optimization methods of continuum 

structures with the solid finite elements are used. Hence, we will propose a ground structure method for 

design of pentamode metamaterials, using truss elements in the numerical homogenization of lattices. 

 

3.1. Optimization formulation 

We assume that there is a truss structure with a fixed number of bars, termed as the ground structure. The 

active bars in the ground structure are chosen as design variables. The finally designed lattice is then formed 

by active bars. Using the finite element method and the numerical homogenization method, the effective 

elasticity matrix 𝑪𝐻 of the lattice can be calculated by: 

𝑪𝐻 =
1

𝑉
𝑼𝑇𝑲𝑼 (19) 

where 𝑉 is the volume of the lattice, 𝑲 is the global stiffness matrix of the structure. The displacement 

fields 𝑼 in six load cases are calculated with the following periodic boundary condition. For every two 

points 𝑝 and 𝑞 that are periodically coincident on the lattice’s boundaries, their nodal displacements 𝒖 

must satisfy the following equation: 

𝒖(𝒙𝑝) − 𝒖(𝒙𝑞) =  𝜺𝑖
0(𝒙𝑝 − 𝒙𝑞) (20) 

where 𝒙 is the point coordinate, and 𝜺𝑖
0 is the prescribed macroscopic strain of the i-th load case. For each 

load case, only one strain component is set to unit whereas the rest five as zero. In other words, the 

prescribed macroscopic strains for the six load cases are 𝜺0 = 𝑰 . To prevent rigid body motions, 

displacements of one arbitrary point should be fixed. For theoretical and numerical implantation details of 

the typical numerical homogenization method, readers may refer to [32]. 

 

After obtaining the homogenized effective elasticity matrix, we should establish a fitness function to justify 

whether it satisfies the necessary and sufficient condition derived in Section 2 for pentamode metamaterials 

with at least orthotropic symmetry. Firstly, for metamaterials with at least orthotropic symmetry, it is 

obvious that the tension-shear coupling terms in the elasticity matrix must be zero. We exclude that these 

terms from the objective function and treat them as equality constraints in the mathematical model, because 

they can be strictly satisfied by guaranteeing that the ground structure has the geometrically orthotropic 

symmetry. Secondly, we rewrite the Eq (10) as the following form: 

𝑎√𝐶11𝐶22

𝐶12
− 1 =

𝑏√𝐶11𝐶33

𝐶13
− 1 =

𝑐√𝐶22𝐶33

𝐶23
− 1 = 0 (21) 
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which can be further simplified as: 

(
𝑎√𝐶11𝐶22

𝐶12
− 1)

2

+ (
𝑏√𝐶11𝐶33

𝐶13
− 1)

2

+ (
𝑐√𝐶22𝐶33

𝐶23
− 1)

2

= 0 (22) 

Finally, since 𝐶𝑖𝑖 ≥ 0 (𝑖 = 1,2,3,4,5,6), we can rewrite the equation 𝐶44 = 𝐶55 = 𝐶66 = 0 in the Eq (6) as 

the following form: 

𝐶44 + 𝐶55 + 𝐶66

𝐶11 + 𝐶22 + 𝐶33
= 0 (23) 

Therefore, the sum of left-side terms in Eq (22) and Eq (23) must also be zero. Then a general mathematical 

optimization model can be defined as follows: 

Find: 𝝆 = [𝜌1 𝜌2 … 𝜌𝑛𝑏𝑎𝑟−1 𝜌𝑛𝑏𝑎𝑟] 

(24) 

Min: 𝑓(𝝆) =

(

 
𝑎√𝐶11

𝐻(𝝆)𝐶22
𝐻(𝝆)

𝐶12
𝐻(𝝆)

− 1

)

 

2

+

(

 
𝑏√𝐶11

𝐻(𝝆)𝐶33
𝐻(𝝆)

𝐶13
𝐻(𝝆)

− 1

)

 

2

+

(

 
𝑐√𝐶22

𝐻(𝝆)𝐶33
𝐻(𝝆)

𝐶23
𝐻(𝝆)

− 1

)

 

2

                       +
𝐶44

𝐻(𝝆) + 𝐶55
𝐻(𝝆) + 𝐶66

𝐻(𝝆)

𝐶11
𝐻(𝝆) + 𝐶22

𝐻(𝝆) + 𝐶33
𝐻(𝝆)

 

S. t.  {
𝐶𝑖𝑗

𝐻(𝝆) =  0,        𝑖 = 1,2,3    𝑗 = 4,5,6

𝐶45
𝐻(𝝆) =  𝐶46

𝐻(𝝆) =  𝐶56
𝐻(𝝆) = 0

 

where 𝑪𝐻  is the effective elasticity matrix of the ground structure estimated by the numerical 

homogenization method considering the periodic boundary condition [32], 𝝆 is a vector of binary variables 

representing whether each bar in the ground structure is active or not, 𝑛𝑏𝑎𝑟 is the number of bars in the 

ground structure. It is noted that a choice of 𝑎, 𝑏 and 𝑐 that belongs to the four cases in Eq (14) should be 

determined in advance. We would emphasize that the dominator 𝐶11
𝐻(𝝆) + 𝐶22

𝐻(𝝆) + 𝐶33
𝐻(𝝆) is not necessary in 

the objective function but it is used to normalize the last term to enhance the optimization performance. 

 

The constraints in Eq (24) are to ensure that the optimized lattices have at least orthotropic symmetry. When 

the objective function value approaches to zero (globally minimum value), the necessary and sufficient 

condition required for elasticity matrix of pentamode metamaterials with at least orthotropic symmetry will 

be satisfied. It is noted that for such an inverse design problem, multiple solutions may exist. 

 

As mentioned above, the design variables are 0 and 1 logical variables representing which bars are active. 

However, it does not mean that inactive bars are not included in finite element analyses of the numerical 

homogenization. That is because the total stiffness matrix of a mechanism-type pentamode lattice that only 

consists of active bars is singular in numerical. Therefore, inactive bars are assigned with relatively small 

axial stiffness and then included in the numerical homogenization. This can prevent the total stiffness matrix 

from being singular but the effect to the value of the effective elasticity matrix is small and acceptable. 

 

3.2. Optimization solver 

Recently, Wang et al. [31] has studied the design of materials with prescribed nonlinear properties using the 
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ground structure method, which uses artificial densities of each bar as continuous design variables and the 

mathematical programming method to solve the problem. In this paper, we will also use the ground structure 

method to design pentamode metamaterials, but the genetic algorithm [33] is adopted to solve this discrete 

optimization problem with binary variables. The genetic algorithm is in general known as a global 

optimization method based on natural selection. It randomly generates an initial population. During the 

iteration, individuals with better fitness values in the current population will be selected as parents. Then 

three types of children are produced from parents to form the next generation. Elite children are individuals 

with best fitness values, crossover children are generated by combining pairs of parents, and mutation 

children are generated by making random changes to individual parents [33]. In the numerical 

implementation, we use the built-in Matlab function for the genetic algorithm. 

 

The genetic algorithm is not often used to solve topology optimization problems for no matter continuum or 

discrete structures, although it is a heuristic optimization method with global searching capbility. The first 

main reason is that there are usually thousands or even millions of continuous design variables in topology 

optimization problems. It is difficult for genetic algorithms to find a solution for large-scale optimization 

problems with continuous variables. The second reason is that the calculation of the objective and constraint 

functions with large-scale finite elements is computationally expensive. Unfortunately, thousands of times of 

evaluation of candidate solutions is common for the genetic algorithm, while mathematical programming 

methods using sensitivity information usually need up to hundreds of times of finite element analyses. 

However, the ground structure used in this paper is a very small-scale truss model with only hundreds of 

binary design variables. It is also cheap in computation to run finite element analyses in parallel. Therefore, 

instead of using mathematical programming methods, the genetic algorithm is used in this paper as the 

optimization solver to find the global optimal solution, since the discrete optimization problem here is 

relatively small scale and cheap in computation. 

 

In this work, the max number of optimization iterations is set to 200, and the population size is 1000. 

Calculation of the objective function runs in parallel using a 6-core Intel i7-8750H CPU. For the maximum 

0.2 million times of finite element analyses and numerical homogenization evaluations, it only costs around 

25 minutes when using the ground structure described in Section 3.3. 

 

3.3. Generation of the ground structure 

For a given set of mesh nodes, the easiest way to generate a ground structure is just linking every two nodes. 

The number of bars for such a fully connected ground structure is equal to (𝑛𝑛𝑜𝑑𝑒
2 − 𝑛𝑛𝑜𝑑𝑒)/2, where 

𝑛𝑛𝑜𝑑𝑒 is the number of nodes. Zegard and Paulino [34] proposed a method to generate ground structures in 

arbitrary three-dimensional domains with control in the level of redundancy or inter-connectedness of 

ground structures. However, it cannot guarantee that optimized lattices have at least orthotropic material 

symmetry. Therefore, a new ground structure with geometrically orthotropic symmetry is proposed in this 

paper to ensure that the optimized lattices always have at least elastically orthotropic symmetry. Then the 

constraints in Eq (24) can be automatically satisfied. 

 

We suppose there are 5 × 5 × 5 Cartesian mesh nodes centered at the origin and aligned with coordinate 

axes as shown in Fig.2a, and then the corresponding ground structure with geometrically orthotropic 

symmetry will be as shown in Fig.2b. Due to the geometrically orthotropic symmetry, the design variables 

are changed from 𝝆 to 𝝆̃ as defined in Eq (20), which is still a vector of binary design variables. 
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𝝆̃ = [𝜌̃1 𝜌̃2 … 𝜌̃𝑛𝑑𝑒𝑠−1 𝜌̃𝑛𝑑𝑒𝑠] (25) 

where 𝑛𝑑𝑒𝑠 is the number of design variables. For the ground structure in Fig. 2b, the numbers of bars and 

design variables are 2544 and 405 respectively, while for a fully connected ground structure both the bar 

number and design variables will be as large as 7750. 

 

(a) Cartesian mesh nodes 

 

(b) Ground structure 

Fig.2. Mesh nodes and the corresponding ground structure 

 

The bars in the ground structure are divided into five groups as shown in Fig.3. The bars of the first group 

are collinear with one coordinate axis and symmetric about one coordinate plane. Each of these bars has no 

mirrored copies in the ground structure as shown in Fig.3a. Therefore, 6 design variables of this group 

correspond to 6 bars. The second group consists of two types of bars. One type is collinear with one 

coordinate axis and on the side of one coordinate plane. The other type is coplanar with one coordinate plane, 

parallel but not collinear with one coordinate axis and then symmetric about another coordinate plane. Each 

of these bars has another mirrored copy in the ground structure as shown in Fig.3b. Therefore, 33 design 

variables of this group correspond to 66 bars. The bars of the third group are coplanar with one coordinate 

plane and on the side of other coordinate planes. Each of these bars has other three mirrored copies in the 

ground structure as shown in Fig.3c. Therefore, 90 design variables of this group correspond to 360 bars. 

The bars of the fourth group are symmetric about one coordinate plane and parallel but not coplanar with 

other coordinate planes. Each of these bars has other three mirrored copies in the ground structure as shown 

in Fig.3d. Therefore, 24 design variables of this group correspond to 96 bars. Finally, the fifth group is 

obtained by linking every two nodes in the same octant and then subtracting bars that already belong to the 

aforementioned four groups. Each of these bars has other seven mirrored copies in the ground structure as 

shown in Fig.3e. Therefore, 252 design variables of this group correspond to 2016 bars. 

 

(a) Group A 

 

(b) Group B 

 

(c) Group C 
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(d) Group D 

 

(e) Group E 

Fig.3. Different groups of bars 

 

For the educational purpose, we provide two Matlab scripts online for free download and use at 

https://github.com/appreciator/Ground-Structure. One script can be used to generate ground structures with 

geometrically orthotropic symmetry as introduced above. The other script can determine which bars are 

active according to the given design variables. The numbers of Cartesian mesh nodes are chosen as 

user-input values, and therefore the reader can obtain much more complex ground structures. It is noted that 

the lattices do not always have to be geometrically orthotropic symmetric. Therefore, other potential 

pentamode lattices without geometrically orthotropic symmetry, e.g., the conventional diamond-type 

pentamode lattice, cannot be discovered by using the ground structure proposed in this paper. 

 

3.4. Geometric constraints 

Definitions of intersection and overlap of bars are illustrated in Fig.4. 

 

 

(a) Intersection (b) Overlap 

Fig.4. Intersection and overlap of two bars 

 

Geometric constraints on intersection and overlap of bars in ground structure methods have already been 

introduced for macro-scale structures [35, 36], but not yet been introduced for lattice designs [29-31]. In 

engineering, intersectional points have no physical meaning except in the form of hinge points [36]. 

Optimization solutions with existence of intersection or overlap of bars are unrealistic designs [36]. Such 

impractical topologies should be avoided for optimized lattices. Therefore, constraints on intersection and 

overlap of bars should be imposed on optimization design of pentamode metamaterials. Cui et al. [36] 

provided a mathematical recognition method for intersection and overlap of bars in three-dimensional 

ground structures. However, it is not computationally efficient, e.g. linear equations should be solved for 

each two bars. Based on calculating the shortest line between two lines in three dimensions, we propose a 

new mathematical recognition method in this paper. 
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As shown in Fig.5, the lines AB and CD do not intersect at a point, and the line EF is the shortest line 

between them. Coordinates of the points E and F are defined as: 

{
𝒙E = 𝒙A + 𝜇E(𝒙B − 𝒙A)

𝒙F = 𝒙C + 𝜇F(𝒙D − 𝒙C)
 (26) 

The values of 𝜇E and 𝜇F range from negative to positive infinity. 𝜇E can be calculated by the following 

formula, while 𝜇F can be calculated by substituting subscripts: 

𝜇E =
𝑑ACDC𝑑DCBA − 𝑑ACBA𝑑DCDC

𝑑BABA𝑑DCDC − 𝑑DCBA𝑑DCBA
 (27) 

where 

𝑑MNOP = (𝑥M − 𝑥N)(𝑥O − 𝑥P) + (𝑦M − 𝑦N)(𝑦O − 𝑦P) + (𝑧M − 𝑧N)(𝑧O − 𝑧P) (28) 

when AB and CD intersect, E and F are coincident and the values of 𝜇E and 𝜇F are between 0 and 1. when 

AB and CD are parallel, the dominator in Eq (27) is zero. Details of mathematical derivation can be referred 

to [37]. 

 

Fig.5. Shortest line between two lines in three dimensions 

 

Under the assumption that AB and CD are parallel, if points A, B and C are collinear, lines AB and CD will 

be collinear. For three points to be collinear, the following equation should be satisfied: 

{

(𝑦B − 𝑦A)(𝑧C − 𝑧A) − (𝑦C − 𝑦A)(𝑧B − 𝑧A) = 0
(𝑥C − 𝑥A)(𝑧B − 𝑧A) − (𝑥B − 𝑥A)(𝑧C − 𝑧A) = 0
(𝑥B − 𝑥A)(𝑦C − 𝑦A) − (𝑥C − 𝑥A)(𝑦B − 𝑦A) = 0

 (29) 

For two lines to be coplanar, the following equation should be satisfied: 

AC⃗⃗⃗⃗  ⃗ ∙ (AB⃗⃗⃗⃗  ⃗ × CD⃗⃗⃗⃗  ⃗) = 0 (30) 

 

The flowchart about how to detect intersection and overlap of each two bars is given in Fig.6. 
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Fig.6. Flowchart of the detection method for intersection and overlap of bars 

 

Since genetic algorithms cannot handle nonlinear constraints like mathematical programming methods, 

geometric constraints on intersection and overlap are added as a penalty term into the original objective 

function in Eq (24). The modified objective function is defined as: 

𝑓(𝝆̃) = 𝑓(𝝆̃) + 𝑤
𝑛𝑖𝑛𝑠(𝝆̃) + 𝑛𝑜𝑣𝑙(𝝆̃)

𝑛𝑔𝑒𝑜
 (31) 

where 𝑛𝑔𝑒𝑜 is the total number of intersection and overlap of the fully active ground structure, 𝑛𝑖𝑛𝑠 is the 

number of intersection of the current design, 𝑛𝑜𝑣𝑙 is the number of overlap of the current design, and 𝑤 is 

a weighting factor. 

 

For a design without any intersection or overlap of bars, the penalty value becomes zero, and then the 

modified objective function is the same as the original one. Normalized by the dominator 𝑛𝑔𝑒𝑜, the penalty 

value will not be larger than 𝑤. Since the value of 𝑓(𝝆̃) approaches to zero during the optimization 

iteration, the value of 𝑤 can absolutely be a small number but still relatively large enough compared with 

zero. Therefore, we choose 𝑤 = 0.001 in this work. 

 

It is noted that ground structures generated by the method in [34] do not have a single bar connecting the 

same nodes with other two bars as shown in Fig.7. However, these two cases of bars may have different 

influence on pentamode behavior of lattices, and we cannot determine which case should be adopted for 

different local locations in the ground structure in advance. Therefore, these two cases of bars both initially 

exist in the ground structure described in Section 3.3. However, we emphasize that since geometric 

constraints have been imposed as a penalty term in the objective function, such an overlapping case will not 

exist in the final optimized designs. 
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Fig.7. Overlapping bars in the ground structure 

 

4. Numerical results 

Twenty-four new pentamode lattices without any intersection or overlap of bars will be provided here to 

demonstrate the effectiveness of the proposed design method, including isotropic, transverse isotropic and 

orthotropic ones. In this section, we will give results for numerical verification of non-isotropic pentamode 

lattices. We will further compare the static mechanical performance of two lattices, respectively, assembled 

by new isotropic pentamode lattices and the conventional diamond-type isotropic lattices. Moreover, we will 

study on how to obtain pentamode lattices with different relative densities from the optimization results. 

 

4.1. New pentamode lattices 

As shown in Fig.2b, the ground structure is generated by 5 × 5 × 5 mesh nodes with 2544 bars and 405 

design variables. The side length of its bounding box is 1 mm. Truss elements are used in finite element 

analyses. The Young’s modulus is 1.138e5 MPa. Constant diameters of active and inactive bars are 0.02 mm 

and 2.0e-6 mm respectively. We define 𝜆max _1 as the maximum eigenvalue of the effective elasticity matrix 

of a lattice, 𝜆max _2 as the second maximum eigenvalue, and 𝜆R as the ratio between them. For perfect 

pentamode metamaterials, 𝜆R should approach infinity. In the following, three tables are given in this 

section, and note that the unit of elastic constants is MPa. A smaller scale of 2 × 2 × 2 periodic array is 

given on the right side together with the lattice on the left side in each sub-figure. It is noted that each 

periodic array visualized here is smaller scale than the lattice. 

 

Eight isotropic pentamode lattices are shown in Fig. 8. The corresponding effective elasticity matrices and 

eigenvalue ratios are listed in Table 1. 

 

 

(a) Iso-a 

 

(b) Iso-b 
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(c) Iso-c 

 

(d) Iso-d 

 

(e) Iso-e 

 

(f) Iso-f 

 

(g) Iso-g 

 

(h) Iso-h 

Fig.8. Isotropic pentamode lattices 

 

Table 1. Effective properties of isotropic pentamode lattices 

 a b c d e f g h 

𝐶11 16.519 22.908 25.546 27.680 34.896 33.707 95.491 125.376 

𝐶22 16.519 22.908 25.546 27.680 34.896 33.707 95.491 125.376 

𝐶33 16.519 22.908 25.546 27.680 34.896 33.707 95.491 125.376 

𝐶12 16.519 22.908 25.545 27.680 34.896 33.707 95.491 125.376 

𝐶13 16.519 22.908 25.545 27.680 34.896 33.707 95.491 125.376 

𝐶23 16.519 22.908 25.545 27.680 34.896 33.707 95.491 125.376 

𝐶44 3.16e-5 3.20e-5 3.19e-5 3.03e-5 3.22e-5 3.35e-5 3.79e-5 6.10e-5 

𝐶55 3.16e-5 3.24e-5 3.19e-5 3.29e-5 3.20e-5 3.35e-5 3.89e-5 5.90e-5 
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𝐶66 3.03e-5 3.03e-5 3.22e-5 4.27e-5 3.22e-5 3.35e-5 3.77e-5 4.19e-5 

𝜆max _1 49.558 68.724 76.636 83.040 104.687 101.120 286.472 376.127 

𝜆max _2 6.90e-5 7.19e-5 6.70e-5 8.87e-5 6.69e-5 6.61e-5 6.78e-5 8.09e-5 

𝜆R 7.18e5 9.55e5 1.14e6 9.36e5 1.56e6 1.53e6 4.22e6 4.65e6 

 

Eight transverse isotropic pentamode lattices are shown in Fig.9. The corresponding effective elasticity 

matrices and eigenvalue ratios are listed in Table 2. 

 

(a) Trans-a 

 

(b) Trans-b 

 

(c) Trans-c 

 

(d) Trans-d 

 

(e) Trans-e 

 

(f) Trans-f 
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(g) Trans-g 

 

(h) Trans-h 

Fig.9. Transverse isotropic pentamode lattices 

 

Table 2. Effective properties of transverse isotropic pentamode lattices 

 a b c d e f g h 

𝐶11 25.582 34.109 40.349 7.323 51.163 20.417 13.287 51.102 

𝐶22 25.582 8.527 40.349 29.291 12.791 45.937 53.149 22.712 

𝐶33 6.395 34.109 10.087 29.291 51.163 20.417 53.149 51.102 

𝐶12 25.582 17.054 40.349 14.646 25.582 30.625 26.574 34.068 

𝐶13 12.791 34.109 20.174 14.646 51.163 20.417 26.574 51.102 

𝐶23 12.791 17.054 20.174 29.291 25.582 30.625 53.149 34.068 

𝐶44 3.29e-5 3.29e-5 3.44e-5 3.29e-5 3.37e-5 6.65e-5 3.37e-5 4.28e-5 

𝐶55 3.29e-5 3.03e-5 3.27e-5 4.66e-5 3.03e-5 3.29e-5 3.59e-5 3.64e-5 

𝐶66 3.03e-5 3.37e-5 3.44e-5 3.29e-5 3.37e-5 3.03e-5 3.37e-5 3.58e-5 

𝜆max _1 57.559 76.745 90.785 65.905 115.117 86.770 119.584 124.917 

𝜆max _2 7.69e-5 8.34e-5 7.31e-5 7.75e-5 9.45e-5 1.14e-4 7.34e-5 8.35e-5 

𝜆R 7.49e5 9.20e5 1.24e6 8.50e5 1.22e6 7.63e5 1.63e6 1.50e6 

 

Eight orthotropic pentamode lattices are given in Fig.10. The corresponding effective elasticity matrices and 

eigenvalue ratios are listed in Table 3. 

 

(a) Ortho-a 

 

(b) Ortho-b 
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(c) Ortho-c 

 

(d) Ortho-d 

 

(e) Ortho-e 

 

(f) Ortho-f 

 

(g) Ortho-g 

 

(h) Ortho-h 

Fig.10. Orthotropic pentamode lattices 

 

Table 3. Effective properties of orthotropic pentamode lattices 

 a b c d e f g h 

𝐶11 5.677 7.323 38.291 92.337 77.083 11.046 27.313 90.835 

𝐶22 22.709 29.291 86.156 10.260 34.259 99.413 109.253 10.093 

𝐶33 51.096 65.905 9.573 41.039 8.565 44.183 6.828 40.371 

𝐶12 11.355 14.646 57.437 30.779 51.389 33.138 54.626 30.278 

𝐶13 17.032 21.968 19.146 61.558 25.694 22.092 13.657 60.556 

𝐶23 34.064 43.937 28.719 20.519 17.130 66.275 27.313 20.185 

𝐶44 3.29e-5 3.29e-5 4.39e-5 3.37e-5 4.39e-5 3.48e-5 3.37e-5 3.44e-5 

𝐶55 4.28e-5 4.66e-5 3.37e-5 3.37e-5 4.66e-5 3.61e-5 3.59e-5 3.43e-5 
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𝐶66 3.03e-5 3.37e-5 3.29e-5 4.39e-5 3.64e-5 4.98e-5 3.67e-5 3.20e-5 

𝜆max _1 79.482 102.519 134.020 143.635 119.907 154.642 143.394 141.298 

𝜆max _2 8.97e-5 8.13e-5 8.63e-5 8.83e-5 8.20e-5 7.80e-5 8.84e-5 8.08e-5 

𝜆R 8.86e5 1.26e6 1.55e6 1.63e6 1.46e6 1.98e6 1.62e6 1.75e6 

 

From the above three tables, we can see that the homogenized effective elasticity matrices of these 

twenty-four lattices all satisfy the requirement of pentamode metamaterials. 

 

4.2. Stress modes of non-isotropic pentamode lattices 

As mentioned previously, pentamode metamaterials can bear only single mode of stress, which is 

proportional to the eigenvector corresponding to the non-zero eigenvalue of the elasticity matrix [1]. Here, 

we name them as stress modes. For non-isotropic pentamode lattices obtained by topology optimization in 

this paper, their feature is that they can bear load cases proportional to the Eq (16). We will give linear static 

analysis results of lattices assembled by non-isotropic pentamode lattices to verify that they are stiffer when 

subjected to the load cases. The lattices Trans-a and Ortho-a are chosen as examples. 

 

The loads and boundary conditions are given in Fig.11. The blue cube represents the bounding box of the 

lattice structure assembled by 6 × 6 × 6 periodic lattices, measuring 6 mm on one side. For each pair of the 

opposite faces, the equal magnitude but opposite pressure is uniformly applied. The magnitudes of the 

resultant forces along each axis are 𝐹𝑥, 𝐹𝑦 and 𝐹𝑧. Due to the symmetry, only one-eighth of the model (i.e., 

3 × 3 × 3 lattices) is used in finite element analyses with symmetric boundary conditions. We name the 

structure assembled by transverse isotropic lattices as the lattice Ⅰ and the structure assembled by 

orthotropic lattices as the lattice Ⅱ. For all the lattices, the diameters of uniform cylinder bars are 0.02mm. 

These solid lattices are meshed with linear tetrahedral elements, and the global element seed size is 

0.004mm. The Young’s modulus for the base material Ti6Al4V is 1.138e5 MPa, and the Poisson’s ratio is 

0.342. 

 

Fig.11. Loads and boundary conditions 
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Six typical load cases applied to each lattice structure are listed in Table 4. The fifth and sixth cases are 

proportional to the load cases of the transverse isotropic and orthotropic lattices, respectively. The load cases 

are calculated by the eigenvector of the homogenized effective elasticity matrices of the solid lattices. It is 

noted that for all these load cases, the vector sum of three forces are the same as 1.73205e-2 N. 

Table 4. Load cases for the lattices 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

𝐹𝑥 / N 1.73205e-2 0 0 1.0e-2 1.15473e-2 4.62887e-3 

𝐹𝑦 / N 0 1.73205e-2 0 1.0e-2 1.15474e-2 9.24945e-3 

𝐹𝑧 / N 0 0 1.73205e-2 1.0e-2 5.77213e-3 1.38932e-2 

 

The results of linear static finite element analyses using ABAQUS are given below. From Fig.12 and Table 5, 

we can find that for the lattice Ⅰ, both the displacement magnitude and the total strain energy in the fifth 

load case are the smallest. From Fig.13 and Table 5, we can also find that for the lattice Ⅱ, both the 

displacement magnitude and the total strain energy in the sixth load case are the smallest. We emphasize that 

the total strain energy ratios of the load case to other load cases are considerably small. In one word, a lattice 

assembled by non-isotropic pentamode lattices is much stiffer when bearing the load case. 

 

Fig.12. Displacement results of the lattice Ⅰ (Unit: mm) 
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Fig.13. Displacement results of the lattice Ⅱ (Unit: mm) 

 

Table 5. Total strain energy in different load cases (Unit: mJ) 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Lattice Ⅰ 1.51e-4 1.34e-4 1.14e-3 9.61e-5 8.77e-7 4.25e-4 

Lattice Ⅱ 5.82e-4 4.80e-5 1.18e-4 9.93e-5 2.25e-4 6.36e-7 

 

4.3. Comparison with conventional diamond-type pentamode lattice 

Here, we will take the new isotropic pentamode lattice Iso-f as an example to compare the static mechanical 

performance of the new lattices with the conventional diamond-type isotropic pentamode lattice. Like the 

models in Section 4.2, each lattice used in finite element analyses consists of 3 × 3 × 3 periodic lattices, 

and symmetric boundary conditions are applied. The values of 𝐹𝑥, 𝐹𝑦 and 𝐹𝑧 are all set to 0.01 N. We 

name the lattice structure assembled by new isotropic lattices as the lattice Ⅲ, and the lattice structure 

assembled by diamond-type lattices as the lattice Ⅳ. For the lattice Ⅲ, the diameters of uniform cylinder bars 

are 0.02mm. For the lattice Ⅳ, the diameters of double-cone bars are 𝑑 = 0.02 mm and 𝐷 = 0.0241 mm. 

It is noted that the two lattices have the same material volume (0.071 mm3). The mesh and base material 

properties are the same as models given in Section 4.2. 

 

The linear static analysis results are given in Fig.14 and Fig.15. For the lattice Ⅲ, over 90% of the von Mises 

stresses of Gauss integration points are between 1.2 MPa and 1.3 MPa, and the ratio of the maximum value 

to the minimum value is not over 4. The stress distribution in the lattice Ⅲ is relatively uniform. For the 

lattice Ⅳ, we can see that it suffers from the stress concentration. The maximum von Mises stress of the 

lattice Ⅳ (146.633 MPa) is much higher than that of the lattice Ⅲ (2.135 MPa). 
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(a) Lattice Ⅲ 

 
(b) Lattice Ⅳ 

Fig.14. Stress results of the lattices (Unit: MPa) 

 

 
(a) Lattice Ⅲ 

 

(b) Lattice Ⅳ 

Fig.15. Frequency distribution histograms of stress results 

 

The linear buckling analysis results are given in Fig.16. The lowest buckling load of the lattice Ⅲ 

(𝐹𝑥=𝐹𝑦=𝐹𝑧= 0.253 N) is slightly higher than that of the lattice Ⅳ (𝐹𝑥=𝐹𝑦=𝐹𝑧= 0.241 N). We can see that the 

first buckling modes of the two lattices all show overall buckling. From the concept of linear static analysis, 

we can know that when the load is close to 𝐹𝑥=𝐹𝑦=𝐹𝑧= 0.253 N, the maximum von Mises stress of the lattice 

Ⅲ is only 54 MPa. However, for the lattice Ⅳ, even when the load is two-thirds of its lowest buckling load (i.e. 

𝐹𝑥=𝐹𝑦=𝐹𝑧= 0.1607 N), the maximum von Mises stress theoretically reaches about 2356 MPa and already 

exceeds the ultimate bearing strength (1860 MPa) of the base material Ti6Al4V. Therefore, no matter the 

strength or buckling, the lattice Ⅲ can bear much higher hydrostatic stress than the lattice Ⅳ. 
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(a) Lattice Ⅲ 

 

 

(b) Lattice Ⅳ 

 

Fig.16. First buckling modes of the lattices 

 

 

4.4. Pentamode lattices with different relative densities 

The proposed design method in this work gives a topologically optimal layout of the solid bars in the space. 

Based on the optimized skeleton, pentamode lattices with different relative densities can be obtained by 

changing the geometric dimensions and shapes of the bars. For example, we can introduce the double-cone 

bars in [3] to replace the uniform cross-section bars, and then change the mid-span diameters 𝐷 to obtain 

different relative densities. We emphasize here that other types of structural members rather than 

double-cone bars can be used to form the pentamode lattices based on the topologically optimized layout. 

 

Take the optimized skeleton shown in Fig.8f as the example. For the lattice in Fig.17a, the diameter of 

uniform cylinder bars is 0.02mm. Based on the same skeleton, a pentamode lattice using double-cone bars is 

generated as shown in Fig.17b, of which the diameters are 𝑑 = 0.02 mm and 𝐷 = 0.06 mm. The mesh 

setting and base material properties are the same as models in Section 4.2. 
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(a) Lattice with lower relative density 

 

(b) Lattice with higher relative density 

Fig.17. Mesh models of pentamode lattices using tetrahedral elements 

 

The effective elasticity matrices, eigenvalue ratios and relative densities 𝜌R are listed in Table 6, as below. 

The unit of elastic constants is MPa. 

Table 6. Effective properties of pentamode lattices using solid elements 

 a b 

𝐶11 33.969 108.438 

𝐶22 33.970 108.453 

𝐶33 33.970 108.453 

𝐶12 33.795 107.649 

𝐶13 33.795 107.648 

𝐶23 33.796 107.656 

𝐶44 0.091 0.420 

𝐶55 0.091 0.420 

𝐶66 0.091 0.420 

𝜆max _1 101.561 323.750 

𝜆max _2 0.175 0.797 

𝜆R 581.864 406.004 

𝜌R (%) 0.256 1.143 

 

From Table 6, we can find that all eigenvalue ratios are relatively large enough to consider these lattices to 

be pentamode, while the lattices are based on the same skeleton but have different relative densities (0.256% 

and 1.143%). It is noted that the homogenized shear moduli of the solid structures do not approach to zero, 

but they are still relatively small enough to allow reasonable pentamode properties.  

 

A micro-lattice (Fig.18) with 2 × 2 × 2 lattices as given in Fig.17b is prototyped using the Digital Light 

Processing (DLP) technique, with Octave Light R1 machine using a rubber-like material (TangoGray 

FLX950), as shown in Fig.19. 
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(a) 10 × 10 × 10 

 

(b) 2 × 2 × 2 

Fig.18. Periodic arrays of the pentamode lattices 

 

 
(a) Additively manufactured specimen 

 
(b) Microscopic photo 

Fig.19. An additively manufactured micro-lattice with 2 × 2 × 2 lattices 

 

5. Conclusions 

This work has derived the necessary and sufficient condition required for elasticity constants of pentamode 

metamaterials with at least orthotropic symmetry. We found that a large ratio of the bulk modulus to the 

shear modulus is no more a sufficient condition for non-isotropic pentamode metamaterials. A ground 

structure method with the genetic algorithm is then proposed to conduct topology optimization of pentamode 

metamaterials with at least orthotropic symmetry. Geometric constraints on intersection and overlap of bars 

are applied to the lattice with a new efficient detection method to obtain realistic designs. Twenty-four new 

pentamode lattices without intersection or overlap of bars are discovered, including isotropic, transverse 

isotropic and orthotropic ones. The optimization results have demonstrated the effectiveness and efficiency 

of the proposed design method. The further analyses have verified that lattices assembled by non-isotropic 

pentamode lattices are much stiffer when subjected to their bearable load cases. From the comparative 

analysis results, we can see that one isotropic pentamode lattice obtained by topology optimization can form 

lattices to bear much higher hydrostatic stress than the conventional diamond-type pentamode lattice. 
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Moreover, we propose that based on the optimized skeleton, pentamode lattices with different relative 

densities can be obtained just by changing the geometric dimensions and shapes of the bars. 

 

In the future, we will further derive the necessary and sufficient condition required for elasticity constants of 

fully anisotropic pentamode lattices, and modify the mathematical optimization model based on the derived 

condition. Then the topology optimization design framework proposed in this paper can also be used to find 

new fully anisotropic pentamode lattices with minor modifications. Moreover, potential applications of the 

new pentamode lattices on cloaking devices will also be our next study. 
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