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Summary

Federated learning is an improved version of distributed machine learning that fur-

ther offloads operations which would usually be performed by a central server. The

server becomes more like an assistant coordinating clients to work together rather

than micromanaging the workforce as in traditional DML. One of the greatest advan-

tages of federated learning is the additional privacy and security guarantees it affords.

Federated learning architecture relies on smart devices, such as smartphones and IoT

sensors, that collect and process their own data, so sensitive information never has to

leave the client device. Rather, clients train a submodel locally and send an encrypted

update to the central server for aggregation into the global model. These strong pri-

vacy guarantees make federated learning an attractive choice in a world where data

breaches and information theft are common and serious threats. This survey out-

lines the landscape and latest developments in data privacy and security for federated

learning. We identify the different mechanisms used to provide privacy and security,

such as differential privacy, secure multiparty computation and secure aggregation.

We also survey the current attack models, identifying the areas of vulnerability and

the strategies adversaries use to penetrate federated systems. The survey concludes

with a discussion on the open challenges and potential directions of future work in this

increasingly popular learning paradigm.
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1 INTRODUCTION

Since Google1–3 first proposed the concept, federated learning has become an intriguing topic in privacy-preserving machine learning. Sometimes

called collaborative learning, federated learning mobilizes multiple clients, such as computers, processing devices, or smart sensors, coordinated

by a central server to collaboratively train a machine learning model. Google’s idea was to distribute training sets across multiple devices and have

each contribute to building the model, all while preventing data leaks.4 Clients train part of the model and upload partial updates to a central server,

which then averages those updates and applies the result to the global model. The scheme considers the size of the training data, the computing

resources required and the data privacy and security concerns. Each client is an isolated “data island” and data never leaves the island. Once used to

train the model, the only “ship” to leave is a model update to the central server. Plus, no island has all the data. Due to the limitation of a data island

on the size and the characteristic, federated learning framework ideally benefits more to clients to collaboratively train a machine learning model

using their data in security. The result is a more effective model that is insensitive to the raw data of others and, thus, federated learning has proven

to be particularly attractive to governments, hospitals and financial institutions.
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Federated learning is a specific category of distributed machine learning (DML)5 that further decentralizes operations that would usually be

performed by the server. The server becomes more like an assistant that coordinates clients to work together instead of micromanaging schedules

as in traditional DML. Figure 1 shows the classic DML framework, which includes a central server, some clients and a data manager. The central

server can act as the data manager, or the data can be managed by a third-party storage system under the server’s control. Together, the server and

the data manager use optimization strategies to partition the training data into many subsets and the model into many parts and then disseminate

learning tasks to the clients. Note that a key difference between DML and federated learning is that, in DML, one client may ask other clients to

transfer their training data if needed to meet their own learning prerequisites or conditions.

In comparison, Figure 2 illustrates a typical federated learning system. First, a central server publishes a machine learning task and selects

clients to participate in each epoch of the training process. Then it sends the model and relevant sources to the clients and waits for their training

results. Clients train the model with the data on their device and return an update of the model parameters or gradients to the server. The server then

aggregates those details and updates the “master” model for the next training epoch. There two key advantages with this type of learning scheme:

reduced computational and communications overhead and better privacy. The details of DML and federated learning will be introduced in the next

section.

In fact, federated learning can incorporate many privacy preserving and security mechanisms across the entire system—from the collab-

orative training process to aggregating updates at the server. For instance, differential privacy (DP)6 and local DP7 can guarantee that both

the training data and the updates remain private at the numeric level. Secure aggregation protocols on the server side, consisting of secure

multiparty computation, secret sharing and homomorphic encryption, can perturb the updates to guarantee model security during transfer

and aggregation.

However, although federated learning has made huge improvements to the privacy and security of machine learning models and all their asso-

ciated processes, it is not a perfect solution. As with many new computing paradigms, federated learning is attracting its share of attention from

adversaries with malicious intent. These adversaries might be internal agents participating in the training process who can influence the model

updates, or they may be external agents that can only observe the learning and update process but are still able to make inferences that comprise

a person’s privacy. Therefore, federated learning is still vulnerable to information leaks and many other types of attacks, such as backdoor attacks,

model poisoning and inference attacks. A detailed survey of these adversarial models appears in a later section. Although some comprehensive sur-

veys on federated learning have been published in the past 3 years, most focus on reviewing the systems and applications of federated learning.

Few mention privacy preserving and security,4,8–10 and none go into detail. Hence, the focus of this survey is on the privacy preserving and security

F I G U R E 1 A basic DML system

F I G U R E 2 A basic federated learning system
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aspects of federated learning, including privacy concerns, techniques for protecting privacy and securing assets, adversarial models, the challenges

the field faces today, and future directions for advancement.

In the next section, we compare DML and federated learning from the perspective of privacy preservation. Then, in Section 3, we provide an

in-depth analysis of the current mechanisms used in federated learning to provide privacy and security guarantees. Section 4 presents some of

the most common and effective attack models against federated learning. We demonstrate the ways in which federated learning is still vulnerable

to some methods of attack along with some possible defense strategies. Promising fields and applications for federated learning are outlined in

Section 5, followed by the conclusion and future directions of research in Section 6.

2 FROM DISTRIBUTED MACHINE LEARNING TO FEDERATED LEARNING

2.1 Distributed machine learning

DML is a combination of distributed computing and machine learning,. DML has a very fast learning speed, so it is widely used for tasks with

large-scale data or model parameters. The principle is to partition the training data and the model and have a parameter server devise and

co-ordinate a schedule of multiple clients which learn each partition as a subtask. All clients learn their allocated subtask in parallel and, when all

clients have completed their work, the parameter server aggregates the submodels together and generates a complete model through scheduled

aggregation algorithms. To train the model more effectively, the submodels should simultaneously match the subtasks in order to train the model

more effectively. Obviously, this process relies heavily on good communication between the server and the clients. However, it is important to strike

a balance between the learning and communication costs because, with large scale data, resource constraints on storage, bandwidth and time can

present real problems. As such, with DML frameworks, proper scheduling is vital to efficient performance.

2.1.1 The structure and data flows of distributed machine learning

Figure 3 shows the basic architecture of DML. The parameter server is central to the system. It is responsible for: scheduling; partitioning the model

and the training data; allocating subtasks to clients; and aggregating the submodels. The data manager could be the server or a third-party storage

F I G U R E 3 The architecture and data flow of distributed machine learning
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TA B L E 1 Type of adversaries and their targets against DML systems

Adversary

Type of

attack Description

Roles Spectator Adversaries can only observe genuine computations by the training

algorithm and model

Participants The Parameter Server The adversary can be the parameter server, which is central to the

entire learning process

Lowest-level computing units Lowest-level processors who only have access to local data or can

provide/receive training results from others

Higher-level computing units Higher-level processors that can access the training results of other

processors through communication

Targets Models Model attacks include convergence prevention or backdoor attacks

Data Attack on training data may target the entire data set or just a single

computing unit’s training data

device obeying the server’s partition strategy. Clients can complete subtasks independently but, if a subtasks has prerequisite or follow-on tasks,

they can also communicate with other clients to get the data they need.

From the perspective of data flow, the parameter server must obviously have to access to the whole data set to be able to create the partitions

no matter whether the data is managed by the central server or a third party. Notably, this data flow is one way; the partitioned data does not get

sent back to the server; only the submodel update does.

2.1.2 Privacy and security problems and adversaries in DML

The biggest, but not the only, vulnerability of DML is the amount of communication needed between the parameter server and the clients. Like the

highway robberies of old, privacy protection is at its weakest when data are in transit. Therefore, the more communication, the more opportunities

there are for attack. The danger alerts in Figure 3 indicate likely points of intrusion by adversaries. They include, the parameter server as the brain

of the system, the data manager, the individual clients who may or may not be secure, as well as any time data are transmitted from one device to

another. If an attack is successful, the amount of data leaked depends on the location of the attack. Violating a client may only net one or two data

partitions but successfully penetrating the parameter or data server may yield the entire database or the entire model.

Table 1 summarizes the types of adversaries and their targets against DML schemes. Spectators can only observe the algorithms, models,

and training process. These adversaries are most likely curious about the training data and model but cannot affect the learning process. Conversely,

participant adversaries can do quite a lot more damage. For instance, a malicious parameter server could wreak havoc because of its strong and

centralized power, whereas the damage done by an adversarial clients is more contained. Hence, higher level devices in the architecture are more

attractive to adversaries.

2.2 Federated learning

Federated learning is a specific type of DML, designed to overcome some of the privacy and security issues with classic DML architecture.

2.2.1 Basic structures and data flow

The basic architecture of federated learning including its data flows is illustrated in Figure 4. As shown, there are some similarities and some dif-

ferences between DML and federated learning. Like traditional DML, there is a central server, which is responsible for the overall control and

management of training a global model and some clients who receive training subtasks from the central server. There are two key differences how-

ever: (a) Instead of each client working individually on their own piece of the model, in federated learning, all selected clients work on the same

training task in each epoch; and (b) The clients in a federated learning system are typically devices like smart phones, tablets, and sensors that are

able to capture or collect information as opposed to desktop computers or routers. Therefore, because the training data are gathered, stored, and

used at the client level, the only information that ever needs to be transmitted is the model updates.
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F I G U R E 4 Federate learning structure and data flow

The learning procedure is relatively straightforward. In each training epoch, the server allocates a training task and computing resources

to any client that is ready to learn, then it transmits the current model. The client trains the model with its own local data and sends the

updated parameters as encrypted training results back to an aggregator for compilation. As such, there is greater data privacy because there is

no need to transmit sensitive information, and encrypting the updated parameters before sending them to aggregators increases security over

the models.

The aggregators, also controlled by the central server, average the parameter updates. There are two types of aggregators: master and tempo-

rary. Master aggregators manage the number of training epochs and generate an appropriate number of “temporary” aggregators for each epoch to

consolidate the training results. These temporary aggregators do not store any permanent information, and all aggregators follow what is called a

“secure aggregation protocol” which means encrypted data can be processed and compiled without knowing the true data. The master aggregators

then fully aggregate the results from the temporary aggregators and deliver the results to the central server that updates the model. The server

then schedules the next training task and starts a new training epoch.

2.2.2 Privacy and security problems and adversaries in federated learning

Even though federated learning was designed improve privacy and security, these frameworks still have vulnerabilities and security risks. Again, the

danger signs in Figure 4 identify potential attack targets. First, the raw data on the client devices is an attractive target for adversaries. Even though

these data are never transmitted, they are still open to inference attacks without proper privacy guarantees at the device level. Second, the master

model is a very valuable prize, which could be targeted in either a master aggregrator or the central server. The different types of adversaries and

their potential attack targets are summarized in Table 2.

As well as adversaries targets, we also cover potential roles of adversaries in Table 2. In federated learning, an adversary can be either a spectator

or a participant. Malicious spectators of the model’s training process can observe, but they cannot affect model performance, so the vulnerability

here is one of an inference attack. The target might be either the model’s parameters or an attempt to glean sensitive information from the data.

Malicious participants, however, can both observe and change individual updates, while malicious aggregators can observe the global parameter

updates and control the results of averaging.
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Adversary

Type

of attack Description

Roles Spectator Adversaries can only observe genuine computations by the training

algorithm and the model

Participants Participants The attacker could be one of the federated learning participants who

uploads modified parameters

Aggregators The attacker could be the central aggregator who modifies the

aggregate parameters and sends them to one or more participants

Targets Models Attacks are directed toward the model or submodels

Data Attacks are directed toward individual training data

TA B L E 2 Type of adversaries
and their targets against
federated learning systems

2.3 From DML to federated learning

Federated learning offers some significant improvements over DML in terms of both security and efficiency. Although there is still work to be done

to make federated learning near to a completely secure system, this scheme seems the inevitable future of decentralized learning. What follows is

a summary of the major advancements from DML to federated learning to date.

1. Federated learning uses smartphones, tablets, and sensors as clients instead of computers and other nondata gathering devices. This means

that data are collected, used, and stored autonomously. Data do not need to be transferred around the system and no data manager is

required. Less communication means less risk of data leaks and greater data privacy. In fact, data privacy protection is a fundamental property

of federated learning. As a comparison between Figures 3 and 4 show, federated learning is not subject to direct privacy leaks during

communication.

2. Unlike DML, which allocates model training to clients in a piecemeal fashion, federated learning operates on the principle of collaboration

where selected clients work on the same training task in parallel. Both systems still transmit parameter updates between the client and various

servers. However, the collaborative nature of this approach means there is no need for a chain or hierarchy of clients and no reason for any

client-to-client transfers. This further reduces the risk of data leaks.

3. Third, federated learning involves less communication than DML which reduces the opportunity for attack risks. As mentioned, the central

server in DML allocates both data and model partitions to clients by communication. There may also be communication between lower-level

clients and higher level clients, to complete follow-on tasks. Hence, guaranteeing a smooth learning process depends heavily on much internal

scheduling and task allocation, all of which requires communication. Because of this, the overall risk of information leaks is much higher with

DML preventing information leaks over both the training data and the model parameters usually mean an expensive encryption mechanism

need to be integrated into the system. By contrast, communication in federated learning is typically very low and highly efficient. The only

communication allowed between the server and clients is for the global model transfers and learning updates aggregation, which does not

involve any clients’ sensitive data. Therefore, only local data privacy preserving mechanisms are necessary to protect training data as opposed

to multiple mechanisms to cover the device and the communications. Furthermore, it is more difficult for and adversary to perform an inference

attack on a client’s device than when data are in transit.

4. Last but not least, federated learning requires dramatically less storage space than DML. DML frameworks involve a data manager that stores

the entire training set, ready to be partitioned for parallel clients. The central server may act as this data manager, which substantially adds to

the server’s storage load. Alternatively, the data could be managed by a third-party storage server. This option increases the risk of data leaks

because it adds another entity into the system that could be malicious, plus there is an extra financial cost for data storage and maintenance.

But, depending on the situation, relieving pressure on the central server may outweigh these downsides. Federated learning bypasses all these

problems because the raw data is collected and processed by the client’s device, which reduces much of the storage load on the server. Further-

more, the clients generate the training data from the data they collect as opposed to generating data specifically for model training. Hence, the

impact of the learning process on the server is also drastically reduced.

Overall, federated learning is considered to be an improved version of DML that provides substantially better privacy preservation and com-

munications security. The vulnerabilities to adversaries are largely reduced to inference attacks as the learning results are sent to the aggregator

for averaging or when learning updates are sent to the central server. Also, because the global model is publicly accessible to each participant in fed-

erated learning, adversaries can relatively easily reconstruct accurate model parameters from a client’s updates. Furthermore, federated learning’s

performance is strongly related to the update aggregation process, where each client’s contribution to the global model is the same. Consequently,
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just one malicious client can have a huge effect on the system. The lesson is that it is not possible to guarantee privacy and security with a framework

alone. Additional privacy-preserving and security mechanisms must be filled into the framework to guarantee these protections.

3 PRIVACY PRESERVATION AND SECURITY IN FEDERATED LEARNING

As mentioned above, privacy is one of the paramount properties in the federated learning framework. As such, many different privacy-preserving

methods and security models are available to provide a meaningful privacy guarantee. In this section, we survey these methods and models and

explore how each protects the various attack points in a federated learning system.

3.1 Privacy in federated learning

3.1.1 Differential privacy

DP is a provable privacy concept conceived by Dwork et al..6 Its premise that the outputs of the queries on neighboring data sets should be statis-

tically similar is one of the strongest standards for a privacy guarantee. Traditional DP is centralized. The formal definition of DP is presented as

follows:

Definition 1 (𝜀-differential privacy). A randomized algorithm  gives 𝜀-differential privacy for any pair of neighboring data sets D and D′, and for

every set of outcomes Ω,  satisfies:

Pr[(D) ∈ Ω] ≤ exp(𝜀) ⋅ Pr[(D′) ∈ Ω] . (1)

𝜀 is the privacy parameter, also known as the privacy budget.11 It controls the level of privacy preservation. A smaller 𝜀 means greater privacy.

Laplace and Gaussian mechanisms are widely used for numeric outputs of queries. The methods of DP involve adding noise to the data to obscure

certain sensitive attributes until others cannot distinguish the exact true answers of quarries.

Ostensibly, DP involves adding noise to the data to obscure certain sensitive attributes until others cannot exactly determine the true answer

to any query. However, the privacy guarantee DP offers is based on the assumption of a trustworthy data curator; DP cannot protect sensitive

information from malicious data collectors or curators. Hence, to address situations where an individual needs to disclose their personal information

to an untrusted curator, global DP was extended into local DP. Local DP is an improved DP model with the added restriction that an adversary is

unable to learn too much sensitive information of any individual data contributor in the database. In local DP, only the owner of the data can obtain

the original information, which provides strong privacy protection for individuals. A formal definition of local DP follows.

Definition 2 (𝜀-local differential privacy). A randomized algorithm  satisfies 𝜀-differential privacy where 𝜀 is a privacy parameter and 𝜀 ≥ 0, if

and only if for two inputs d and d′, and any possible output Ω of , we have

Pr[(x) = Ω] ≤ e𝜀 ⋅ Pr[(x′) = Ω]. (2)

The main difference between local and global (traditional) DP is that, in global DP, the randomized noise is from the outputs of an algorithm over

all users’ data, whereas with local DP, the randomized noise is over a single user’s data. Furthermore, the data collector can only receive perturbed

data x′ not the original data x, and cannot distinguish the real data x and x′ with much confidence, regardless of the background knowledge. Thus,

the user is given a privacy guarantee without the need for a trustworthy third party. If multiple DP algorithms are applied to the same data set, the

total privacy level equals the sum of the privacy budget of each algorithm.

3.1.2 Differential privacy in federated learning

Global differential privacy

DP is a rigorous and easily implemented privacy model that can guarantee privacy even if an adversary has auxiliary information.12 DP has some

properties that make it particularly useful for protecting privacy in deep learning: simplicity, composition ability, and correlated data guarantee.13

Deep learning is often computationally inefficient and, because adding noise does not increase computational complexity, DP is often incorporated

into deep learning frameworks as a simple privacy preserving method. Deep learning networks typically have many layers, and the composition abil-

ity protects the information in each layer of the network, which ensures that the output from deep learning is private. However, the data used to train
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the deep learning network may be correlated, which can increase the chances of a privacy leak. Hence, some methods consider these correlations

so as to provide a better privacy guarantee.

Global DP protects client privacy by adding noise during the aggregation process on the server-side. Clients’ updates are uploaded and stored in

the aggregator temporarily. These updates can be treated like a data set where the aggregation result is the “query” and every update is one record.

The goal with global DP is, therefore, to hide every client update in the aggregation result. McMahan et al.3 were the first to consider protecting user

data in the training set with DP in federated learning. They argued that DP could provide a rigorous worst-case privacy guarantee, even when the

adversary had arbitrary side-information, by adding random noise to the model’s training process. However, that guarantee would come with a utility

cost. In their later work,1 they modified a federated learning system’s central algorithm to produce a differentially private model, that is, a releasable

model that protects the privacy of all individuals contributing updates to the trained global model. The one shortcoming of global DP in federated

learning is that the sensitivity is hard to be set. Sensitivity has an enormous impact on both the privacy guarantee and the model’s performance.

Yet setting the sensitivity during the aggregation process is challenging because aggregators should not be able to distinguish a particular client’s

update, which may negatively impact the trade-off between privacy and the model’s utility.

Local differential privacy

In a federated learning setting, local DP is a better solution for protecting privacy from the client’s perspective. Each client protects their own

data and unadulterated learning results (i.e., model updates) with a specific randomized algorithm. Noisy updates are then uploaded to the aggre-

gator. Abadi et al.13 of Google were the first to proposed deep learning with DP in 2016, which was later followed by local DP to protect the

individual training process of each participant in Google’s federated learning framework. These developers created a differentially private stochas-

tic gradient descent algorithm (SGD), a moments accountant and a hyperparameter tuning process, which, at the time, were are new algorithmic

techniques for learning. They also refined the analysis of privacy costs within DP frameworks. More specifically, the algorithm assumes a train-

ing model with the parameters 𝜃. The procedure is then to minimize its loss function (𝜃), compute the gradient gt(xi) ← ∇𝜃(𝜃, xi) for a random

subset of examples at the each step of the SGD and then clip the 𝓁2 norm of each gradient g t(xi)← gt(xi)/ max(1, ||gt(xi)||2

C
) where C is the clipping

threshold. Noise is added while computing the average g̃t ←
1

L
(
∑

igt(xi) + (0, 𝜎2C2I)) before taking a step in the opposite direction of this average

noisy gradient. The approach offers protection against a strong adversary, even with full knowledge of the training mechanism and access to the

model’s parameters.

Geyer et al.14 subsequently proposed an algorithm for client-side DP but still using federated optimization with the aim of hiding the par-

ticipation and contributions of clients during the training process. Balancing the trade-off between privacy loss and model performance occurs

during decentralized training. Instead of protecting a single data point’s contribution from an individual client in the learning model, the algorithm

is designed to protect a client’s entire data set. Altering and approximating the federated averaging process is done with a randomized mechanism

consisting of two steps: random subsampling and distorting. Random subsampling means to randomly sample a subset of clients from the total pool

of participating clients to update their optimized training results on in the further calculation in each communication round. The difference between

the optimized local model and the global model in this round is referred to as client k’s update Δwk = wk − wt . Distorting is the step where Gaus-

sian noise is added to each client’s update. Each client’s update is scaled as Δwk∕ max(1, ||Δwk ||2

S
) to ensure that the second norm is limited to ∀k,

||Δwk||2 < S. Originally, the developers set the clipping bound sensitivity to S=median{Δwk}k∈Zt
without using a randomized mechanism to compute

the median. This caused a privacy violation.

Discussion

The problem with local DP is that the total volume of noise added is much greater than with global DP, which can negatively impact the model’s util-

ity and performance. A future research direction for DP in federated learning is to find a better trade-off between privacy and utility to provide a

strong privacy guarantee while maintaining acceptable model performance. Furthermore, DP can only provide privacy at the data level but, in fed-

erated learning, communication, and aggregation are crucial to updating the global model. Therefore, to guarantee secure communication, security

mechanisms need to be incorporated into the framework.

3.2 Security in federated learning

Security mechanisms normally concern the security of data transmission with cryptographic algorithms and protocols. In federated learning, most of

the communications surround model aggregation because all devices must upload their training updates to the aggregator for averaging. To prevent

leaks of any individual’s training results, a specific protocol called “secure aggregation” encrypts the client updates at the device level before they

are uploaded for aggregation. The protocol guarantees that all updates are aggregated in a secure way and that any other party can only access the

cipher-text of a client’s updates—even the server. These protocols involve secret sharing schemes, secure multiparty computation and homomorphic

encryption.
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3.2.1 Preliminaries of security mechanisms

Secret sharing schemes

Secret sharing schemes are widely used in many cryptographic protocols. They involve a client with a secret, a set of n parties, and a collection

of subsets of those parties called the access structure.15 The secret sharing scheme for the collection distributes shares of the secret to these

parties by a dealer according to two requirements: (1) any subset in the collection can reconstruct the secret from its shares of the secret, and

any subset not in the collection cannot reveal any partial information about the secret, separately. Secret sharing is motivated by the problem of

secure information storage. They have since been developed for numerous other applications in cryptography and distributed computing, such as

secure multiparty computation16–18 and threshold cryptography.19 Secret sharing schemes are firstly proposed by Blakley20 and Shamir.21 They are a

t-out-of-m scheme based on a threshold, where a threshold t and the number of the secret shares m that any t shares from these m shares can recon-

struct the whole secret. Ito et al.22 construct a secret sharing schemes for general access structures. However, a major problem with this approach is

that the share size required to provide general access is exponential to the number of parties. That said, secret sharing schemes are a good way to pro-

tect client updates in federated learning because they can be partitioned into many shares, which helps with the costs and vulnerability associated

with communication. Overall, the performance and efficiency of secret sharing schemes depend on a good optimization strategy.

Secure multiparty computation

Secure multiparty computation is first proposed by Yao23 in 1982. This technique addresses the problem of having a set of parties calculate an

agreed-on function over their private inputs such that all parties can reveal the intended output without obtaining other parties’ inputs.24 The idea

is that all parties’ private inputs are protected by an encryption scheme that guarantees the utility of the data for accurately answering a query func-

tion. In this sense, multiparty computation is more like a general notion of secure computation comprising a set of techniques as opposed to being a

single method. Over the last decade, multiparty computation has seen impressive developments in lower level primitives, such as oblivious transfer

protocols and encryption schemes with homomorphic properties..25,26 In federated learning, aggregators average the updates of multiple clients,

which contain sensitive information, so multiparty computation schemes are a highly suitable approach to protecting both the clients’ updates and

the aggregation process.

Homomorphic encryption

Homomorphic encryption is first suggested by Rivest et al.27 in 1978. It is an encryption scheme that allows complex mathematical operations to be

performed on cipher-text without changing the nature of the encryption. The two different types of homomorphic encryption are fully homomor-

phic encryption and partially homomorphic encryption. Fully homomorphic encryption supports both additive and multiplicative operations, while

partially homomorphic encryption only supports one or the other.28 Fully homomorphic encryption is strongly recommended in federated learning,

even though the cost of computation is much greater because the aggregation process involves both addition and multiplication. Also, because the

central server should not be able to decrypt the client updates, a trusted third party must be involved to hold a key,25 and the central server must be

able to sum the client updates using only cipher-text. Homomorphic encryption exactly meets all these requirements.

3.2.2 Secure aggregation in federated learning

Secure aggregation is a subclass of multiparty computation algorithms where a group of parties that do not trust each other each hold sensitive

information and must collaborate to calculate an aggregated value. The aggregated value should not reveal any party’s information (except what it

can learn from its own information). Like homomorphic encryption and secret sharing schemes, each client’s outputs are encrypted before they are

shared, which guarantees a secure transit process.

Federated secure aggregation protocol

In late 2016, Bonawitz et al.29 propose the first secure aggregation suggested secure aggregation protocol for federated learning to protect the

privacy of clients’ model gradients and to guarantee that the server only learns the sum of the clients’ inputs while the users learn nothing. Later,

in early 2017, Bonawitz et al.30 further developed a full version of the protocol for practical applications. A random number masks each client’s

raw input to prevent direct disclosure to the central server, and each client generates a private–public key pair for each epoch of the aggregation

process. Each client is allowed to combine its private key and every other client’s public key, to generate a private shared key with a hash func-

tion. The hash function involves Pseudo Random Generator and Decisional Diffie–Hellman assumption to guarantee each pair of clients’ private

shared keys are additive inverse. Because the sum of a pair of private shared keys is zero, all clients’ masks are offset during the aggregation pro-

cess, and the server can offset the effect of the masks to calculate an accurate aggregation result without needing to know any of the clients’

true inputs.



10 SHEN ET AL.

The shortcoming of this method is that if any client disconnects after obtaining the mask, but before submitting the masked inputs to the

server, the dropped mask cannot be offset in the server’s sum. Consequently, the protocol includes a secret sharing scheme to partition each

client’s private key as a secret. The secret requires at least a minimum threshold number of clients to contribute shares to recover the secret.

If no clients disconnect before the aggregation process, the scheme is not triggered but, if a client does disconnect, the server sends a request

to the other clients to contribute their shares so as to recover the client’s private key. The server then computes and removes the mask using

the private key coupled with the public keys from the contributors. However, this solution is not perfect and raises a new problem in that, if

a dropped client reconnects and sends its inputs to the server after its private key has been recovered, the server can reveal the true inputs

simply by removing the mask. To address this new problem, an additional random number for each client creates a second mask over the first.

This second mask is also partitioned as a secret through the secret sharing scheme. For connected clients, the server only needs to recover

and remove the sum of all the second masks, while the first mask still protects the inputs without any negative effect on the aggregation pro-

cess. And, because the inputs of disconnected clients will not contribute to the aggregation, the second mask remains in place to protect the

true inputs once the first mask has been recovered and removed. This protocol provides a strong and comprehensive guarantee of security

over the aggregation process, but it is not particularly efficient as the key exchanges and secret sharing scheme each add significantly to the

communication cost.

NIKE-based secure aggregation protocol

To address these two communications burdens, Mandal et al.31 propose the noninteractive key establishment protocol (NIKE) and a secure

aggregation protocol based on NIKE. NIKE addresses the cost of key sharing. It comprises two noncolluding cryptographic secret ser-

vice providers who independently calculate pairwise polynomial functions for each client. To generate a shared private key, each client

generates a private polynomial function as a private key by multiplying the two polynomial functions. Furthermore, each client has a

unique order number assigned by the server, which is public information, and any client is allowed to generate a shared private key

by placing the targeted client’s order number into their private polynomial function. Thus, there is no communication cost for gener-

ating a shared key, and the protocol guarantees that each pair of client calculations with its own private polynomial function will have

the same results.

The NIKE-based secure aggregation protocol reduces the communication costs associated with the secret sharing scheme. The method involves

an 𝓁-regular network where the server randomly divides every 𝓁 clients into neighbor groups. Each client can only calculate private shared keys

with their neighbors via the NIKE protocol. These keys are then summed and added as a mask over the true inputs. A 2-out-of-3 secret sharing

scheme is applied such that each client’s private shared key combined with the targeted client’s order number is divided into 3 shares. One share is

held by the client, and the other two are held by the targeted client and the server, respectively. If a client disconnects, the server only needs to ask

its neighbors for the shares to reconstruct and offset the mask. Consequently, the communications costs for reconstructing a disconnected client’s

mask is reduced to 𝓁 times the client’s private key instead of t times for every shared private key. Again, each client generates a double mask to

protect its inputs for the same reasons as outlined above.

PrivFL

Mandal and Gong32 further the work of Mandel et al. with a protocol called PrivFL that involves linear and logistic regression models and

oblivious prediction for federated learning settings. The two regression protocols make the model more robust to user disconnections. The

protocol consists of multiple two-party shared local gradient computation mechanisms followed by a global gradient share-reconstruction pro-

tocol. Here, the two parties are the server, which holds the global model and the clients who hold the shares. The server and a single client

first jointly run a shared local gradient computation protocol to securely compute two shares of the local gradients. The server then con-

structs one share of the global gradient with all alive clients via an aggregation protocol and a second share of the global gradient from its

own local gradient shares. An additive homomorphic encryption scheme and a secure aggregation protocol with practical cryptoprimitives

imposed at the beginning of each learning epoch guarantee a safe environment for the training process client-side and the aggregation process

server-side.

Discussion

In general, federated learning incorporates DP to protect the training sets and model updates held by the clients, while secure aggregation protocols

consisting of secure multiparty computation, secret sharing schemes and homomorphic encryption guarantee the security of the aggregation pro-

cess. It is important to note, however, that these mechanisms only protect the data; they cannot assess or protect the validity of the training results.

In other words, the privacy and security mechanisms currently available for federated learning only protect client updates, not a malicious client’s

contribution to the global model. In the next section, we discuss the most common and effective attack models used to infiltrate federated learning

systems.
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4 ATTACKS AND FEDERATED LEARNING

One of the greatest advantages of federated learning compared with traditional distributed machine learning is the ability to prevent direct leaks of

sensitive information by a malicious data server. However, federated learning is still vulnerable to some traditional attack models. On the client-side,

adversaries can infer sensitive data in the training set from the training results. Server-side, malicious agents can negatively impact the performance

of the global model because, in federated learning, client updates are simply averaged without monitoring the training data or the learning process.

As such, an adversarial client that uploads a malicious update to the server for aggregation can have a substantial impact on the global model. In this

section, we spell out the various attack methods used to compromise federated learning and the goals and capabilities of the adversaries for each

attack.

4.1 Adversarial goals and capabilities

As mentioned above, the two broad types of attacks in federated learning are inference at the client level or performance degradation at the global

level. Inference attacks seek sensitive information. Performance attacks, called poisoning attacks, have two levels of scope: untargeted attacks and

targeted attacks. In an untargeted attack, the aim is to destroy the global model by reducing its accuracy.33 Targeted attacks aim to alter the model’s

behavior on only one or a few specific tasks while maintaining acceptable performance on all other tasks.34

Table 3 summarizes the adversaries’ capabilities for each of the different types of attacks. The strategy with poisoning attacks is to act as a

malicious client and upload invalid updates so as to train the model with a malicious or undesirable data set. In most cases, poisoning attacks are

executed by a solo adversary, although multiple adversaries can easily collude to attack each training epoch. Some adversaries only execute an attack

once per training epoch. Furthermore, recall that in federated learning, only a subset of all the participants is randomly chosen for each epoch,

so a client may only be chosen once during the entire training process. However, when there are only a limited number of clients participating in

the learning task, an adversary may be able to execute repeated attacks across multiple training epochs. The last adversarial capability is model

inspections. Some models are white-boxes where the model’s parameters are “simpublic”; others are black boxes where they are not. Most attacks

in federated learning are white-box attacks because all clients receive the parameters of the global model.

4.2 Inference attack

4.2.1 Preliminary of membership inference attack

A membership inference attack is a common tracing attack to determine whether a specific individual is a member of a given data set or not.35 In

machine learning, deep learning or federated learning, membership inference attacks aim to determine whether a given data point is present in the

training data.36 The accuracy of the attack corresponds to the proportion of correct membership predictions made by the adversary, while precision

is calculated as the proportion of examples inferred to be members that are indeed members of the target model’s training set. These attacks take

TA B L E 3 Adversary
capabilities in various attacks
against federated learning

Capabilities Types

Attack models Data inference: Adversaries adversarially infer clients’ raw training data from their

learning results

Data poisoning: Adversaries adversarially modify the training data set to manipulate the

model

Model update poisoning: Adversaries adversarially modifies the training updates to

manipulate the model

Collusion Colluding: More than one of malicious participants collaboratively carry out the attack

Noncolluding: One adversary solo carry out the attack

Times of attack One-shot: Adversaries only participate in and carried out the attack a single training

epoch

Multiple-epochs: Adversaries continuously participant training epochs

Inspection White-box: Adversaries are able to inspect the model parameters

Black-box: Adversaries are not able to inspect the model parameters
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advantage of the fact that the behavior of a training model between the training set and the test set may be very different (i.e., the model may

be overfit). As such, an adversary can train a machine learning model to recognize the differences in its own behavior versus the target model to

determine whether or not an input record is involved in the training process.36–38

4.2.2 Membership inference attacks against federated learning

Even though black-box attacks in federated learning are rare, there have been recent studies into these types of attacks in machine and deep learning

scenarios. Here, the attackers can only observe the target model’s outputs as an external spectator.36,38,39 The findings of these studies generally

show that the distribution of the training data and the generalizability of the training model are the most significant contributors to privacy leaks.

Moreover, over-fit models are more susceptible to membership inference attacks.

Shadow models in black-box setting

Shokri et al.39 proposed a membership inference attack method based on a shadow training technique. The strategy is to build many shadow models

trained in a similar way to the target model with the same training algorithms (e.g. SVM, neural network) and model structure. However, while the

shadow training sets have the same format as the target model, they are disjoint. Importantly, the attackers know whether or not a given record is

in the training set they give to each of their shadow models. The next step is to train a neural network model using the inputs and the corresponding

outputs labeled with “in” or “out” meaning in the training set or out of the training set of the shadow models. Now the attack model can distinguish

between the output of the various shadow models based on memberships in the training sets. The accuracy of the attack model rises as the number

of shadow models increases.

A similar idea is proposed by Rahman et al.37 to attack differentially private deep learning models.13 These researchers use two performance

metrics, precision, and F1-score, as assessment metrics in a series of experiments designed to test the vulnerability of differentially private deep

learning models. F1-score is correlated to with precision and recall which is the proportion of the images belonging to the target model’s train-

ing data set that are correctly predicted to be members. The results revealed moderate vulnerability to membership inference attacks but with

acceptable utility, and decreasing utility as the strength of the privacy protection grew. In other words, a model’s utility is highly correlated to

the DP loss 𝜀.

Yeom et al.36 further simplify the shadow training method by comparing the classification loss value of the target example with a preset threshold

where small loss indicates membership. The idea is that this approach is equivalent to using the shadow models as a linear classifier of loss values. If

the model’s confidence in an input prediction is larger than or equal to the preset threshold, it is identified as a member and a nonmember otherwise.

Their experiments show this strategy to be very effective with an accuracy very close to or better than the classic shadow training method. Song

et al.40 follow this method but use a linear classifier for the threshold to yield a more robust deep learning model. With this approach, membership

leaks are directly related to the generalization ability of the training algorithm. The more training data that is leaked, the less robust the model.

Deep neural networks in white-box setting

Nasr et al.38 recently present a comprehensive framework for analyzing data leaks with deep neural networks by executing membership inference

attacks in a white-box setting. All major scenarios and adversarial capabilities in deep learning applications were considered, including model training

and fine-tuning, adversaries with prior knowledge, colluding adversaries, and the vulnerabilities of SGD algorithms. A target data set with one-hot

encoding of the true labels is used to infer whether a record was included in the target model’s training set. Attackers are then able to compute

the outputs of all the hidden layers, the loss, and the gradients of all layers of the target model for the given data set. These computation results

and true labels can then be used to construct the input features for an attack model consisting of convolutional neural network components and

fully connected network components. Nasr and colleagues considered two roles for the attacker: first as a curious server then as a participant in a

federated learning setting. A single attack model is used to process all the corresponding inputs over the observed model at once instead of running

an individual independent membership inference attack on each participant’s model. Results from their experiments show that the last layer of the

network leaks the most membership information. A summary of the different types of membership inference attacks in federated learning follows

in Table 4.

4.3 Poisoning attack

4.3.1 Basic poisoning attacks

Poisoning attacks are a kind of causative attack,33 in which adversaries inject crafted attack points into the training data, such as manipulating a

portion of the training data to adversaries’ expected labels. The effect is to change the model’s parameters associated with specific learning tasks
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TA B L E 4 Nasr el al.38 membership inference attacks in federated learning setting

Passive Inference Attacks The Passive Global Attacker Averaging in federated learning scenarios reduces the impact of

each individual party

The Passive Local Attacker The accuracy of the local attacker degrades for larger numbers of

participants

Active Inference Attacks The Gradient Ascent

Attacker

The attack accuracy is lower with global attacks because the

aggregated parameters from multiple participants are

observable

The Isolating Attacker Isolating the training of a target model significantly increases the

attack accuracy

during training. Poisoned learning models subsequently misclassify those inputs at the inference stage.41,42 This attack is based on the premise that

an adversary cannot directly access an existing training database, but may contribute new training data,33 which provides greater opportunities for

the adversary to poison the model.

Convergence prevention and backdoor attacks are two malicious objectives of poisoning attacks.8 The goal of a convergence prevention attack

is as its name implies—to use malicious workers to ensure the model fails to converge during the training phase. Backdoor attacks are where an

adversary manipulates the model during the training process so that the model produces the adversaries’ expected results on an adversarial target.

The target can be either a single sample or a class of samples. For instance, an adversary can make a model falsely classify either a specific person as

another. The key to a good backdoor attack is to ensure the global model converges and performs well on the test set and that only the accuracy of

the targeted tasks suffer.

There are two categories in data poisoning attacks: clean-label and dirty-label. In clean-label poisoning, adversaries cannot change any labels

in the training data, whereas, with dirty-label poisoning, the label of a single targeted record or class can be changed. Adversaries then introduce one

or more misclassified data samples into the training process. Dirty-label poisoning with deep learning models normally results in high-confidence

misclassifications for the targeted record or class.

Poisoning attacks in federated learning are made possible for the following reasons:43

1 There are usually plenty of participants in a federated learning system, which makes it easy to hide one or more malicious users in the crowd.

2 Since all participants locally train their part of the mode, the training process is invisible to the parameter server, and the server cannot verify

the authenticity of the updates.44

3 Local updates generated by multiple participants might be very different from each other, but the secure aggregation protocol guarantees that

local updates cannot be audited by the parameter server, and the encrypted updates are simply averaged.

4.3.2 Poisoning attacks against federated learning

Many recent works focus on backdoor attacks against federated learning. For example, Bagdasaryan et al.43 propose a backdoor attack with a

constrain-and-scale technique where the attacker compromises one or more participants and trains a model with poisoned data. This model replace

the original model as the result of federated averaging. The constrain-and-scale technique scales the model’s loss with an anomaly detection term,

controlled by a hyperparameter that the importance of evading anomaly detection. The effect is to adjust the trade-off between attack accuracy

and the risk of being detected. This type of attack can be executed as either a one-shot attack or a repeated attack. In a one-shot attack setting, the

accuracy of the global model on the backdoor task immediately rises to a high level in a single round when the attacker inject the backdoor updates.

In a repeated attack, only a very small proportion of participants can make a better performance on the backdoor task in the target model than

conventional data poisoning.

Bhagoji et al.’s34 version of a poisoning attack is based on three assumptions: (1) the malicious adversary is noncolluding; (2) the data

are i.i.d, which makes it easy to distinguish malicious and benign updates and harder to achieve a stealth attack; and (3) malicious adver-

saries have access to partial training data plus auxiliary data drawn from the same distribution as the training and test sets. The strategy is

then to execute explicit boosting and alternating minimization processes. Explicit boosting overcomes the effect of scaling at the server in a

gradient-based optimizer by scaling the initial updates up to 𝜆 times, where 𝜆 is the inverse of step rate in gradient descent. The alternating min-

imization mechanism boosts the part of the weight update that corresponds to the adversarial objective based on explicit boosting for malicious

agents only.
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Fung et al.45 evaluate the vulnerability of federated learning to Sybil-based poisoning attacks without bounding the expected number

of attackers and auxiliary information. The adversary performs poisoning attacks based on either the label-flipping strategy,33 in which the

labels of honest training examples are flipped to an adversarial target class or the backdoor strategy.43 Even with only two Sybils, the attack

is capable of reaching a 96.2% success rate. Fung and colleague’s ultimate finding is that an adversary with enough Sybils could overpower

the system regardless of the number of honest clients. Furthermore, existing defence methods could not thwart such an attack in a fed-

erated learning setting because those methods rely on observations of the training data, and only the model parameters are observable in

federated learning.

Zhang et al.46 propose a poisoning attack using generative adversarial nets (GAN).47 Here, the adversary deploys a GAN architecture to recon-

struct the private training data of other participants without invading their devices and then uses that data to train the model. First, the attacker

pretends to be a benign participant to acquire training results, say under the pretext that those results are needed for a subsequent task. Simultane-

ously, they train a GAN to mimic prototypical samples of others. The attacker then injects an expected label into the data and generates a poisoned

update. This compromises the global model’s performance on the target class but not on any of the other tasks.

Discussion

In general, federated learning is rather vulnerable to poisoning attacks. It is typically easy for a malicious participant to hide in the crowd of clients,

and enough malicious participants can overpower the honest clients to compromise the model. Moreover, existing defense methods against such

attacks are useless in federated settings because they rely on observing the training data.

Thus, there are several open questions to resolve concerning poisoning attacks. First, most existing poisoning attacks depend on repeatedly

poisoning epochs rather than finding success with a one-shot approach. However, in real-world federated learning applications, very few clients are

randomly selected to participate in the same training task in multiple epochs, which severely limits the chances of a successful attack with only one

malicious client. Second, few poisoning attacks consider the problem of unbalanced training data. They assume that each client holds a relatively

similar number of training samples, and that each client only trains one class of samples. In turn, it is assumed that both malicious clients and honest

clients must contribute equally to the global model. However, it is very likely that clients will hold different numbers of samples and train a variety

of classes. A challenge for adversaries is, therefore, to build an attack model capable of making a large impact on the global model with only a very

small number of samples despite the large number of samples contributed by honest clients. Techniques involving data enhancement and GANs may

overcome this challenge in the future.

5 APPLICATIONS OF FEDERATED LEARNING

As smartphones and Internet of Things (IoT) sensors have become ubiquitous, so too is federated learning becoming the go-to solution for scenarios

involving large-scale data collection and model training, such as IoT, blockchain, and recommendation systems. Compared with traditional machine

learning methods, federated learning directly involves client devices in the training process as opposed to relying on a central model. As mentioned

several times, offloading operations traditionally performed by the server to the end client devices gives federated learning its two key benefits: a

stronger privacy guarantee and reduced communication costs.

5.1 Federated learning in IoT environment and edge computing

5.1.1 IoT environment and edge computing

Smart homes, smart cities and smart medical systems48,49 are increasingly making IoT an important part of our daily life.50 The dominant paradigm in

IoT is edge computing,51 where computation devices at the edge of the network process data downstream on behalf of cloud services and upstream

on behalf of the IoT service. The result is reduced communication costs, improved data processing efficiency, and better decision-making because

the edge devices are both data producers and consumers. Federated learning can be thought of as an operating system for edge computing as it

provides a learning protocol for coordinating the IoT devices along with all the privacy and security mechanisms and benefits outlined in Sections 3

and 4.4

5.1.2 Anomaly detection

Anomaly detection plays a significant role in preventing and mitigating the consequences of attacks on mobile edge networks. Many approaches to

anomaly detection have been proposed for conventional machine learning and deep learning. However, the success rate of detection relies on the
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data sets and the sensitive information they contain.52 Federated learning helps to address this vulnerability by storing the data sets locally. Abebe

and Naveen’s53 anomaly detection method for federated learning in edge networks is based on a detection model that each client helps to train using

their local data. The edge nodes upload training updates to the server for aggregation, and the updated model is sent back to the device for the next

training epoch. In this way, each node can improve its detection accuracy without sharing any data. A similar idea was proposed by Nguyen et al.,54

where an IoT security service provider plays the role of a federated learning server, aggregating models trained by IoT gateways as clients. Both

frameworks, however, assume that all edge nodes and gateways are honest and positively contribute to the training process, which means malicious

participants can do significant damage.

5.1.3 Edge caching and computation offloading

Edge caching and computation offloading is another application area of federated learning, which addresses issues associated with limits to the

computational power or storage capacity of the edge devices by offloading intensive computation tasks to the cloud server.55 In these scenarios,

federated learning is applied to optimize the caching and offloading among the devices. Wang et al.56 design a near-optimal “In-Edge AI” frame-

work using deep reinforcement learning57 in a federated learning setting. The method optimizes caching and offloading decisions in a mobile edge

computing framework58 that consists of user equipment covered by base stations. Ren et al.’s48 method is based on a similar idea of using deep rein-

forcement learning to optimize offloading decisions for IoT systems consisting of IoT devices and edge nodes. However, the shortcoming of both

methods is that the intensity of computations in a deep reinforcement learning model’s training can cause delays in networks with a large number

of heterogeneous devices. Yu et al.59 skirt this issue with a proactive content caching scheme based on federated learning instead of deep rein-

forcement learning. The model optimizes the caching by making a prediction about the content’s popularity. Furthermore, user privacy is protected

by learning the parameters of the stacked autoencoder locally without revealing the user’s personal information or content request history to the

server. Similar systems of federated learning have also been applied to vehicular networks to minimize power consumption while minimizing queuing

delays60 and for predicting energy demands in electric vehicle networks.61

5.2 Federated learning in blockchain

5.2.1 Blockchain

Blockchain emerged in the last decade as a way to securely transfer Bitcoin62 without a central regulator. In blockchain, all user accounts and transac-

tion information is saved in a publicly verifiable blockchain.63 Similar to federated learning frameworks, each client is able to access the full blockchain

and locally contribute to the global blockchain by adding new blocks in chronological order.64 A reward is given to a client who successfully con-

tributes blocks to update the chain to encourage more clients to positively participate in the scheme. Client privacy is guaranteed by keeping public

keys anonymous to break the flow of information back to the contributor..62 As such, all contributors are anonymous, and the public can only see

that someone has added a transaction with an amount not who added the transaction.

There are several similarities between federated learning frameworks and blockchain. First, the global model (or blockchain) is accessible to

every participant, and participants need to download the existing model parameters (or the chain of blocks) before participating in the update pro-

cess. In federated learning, clients receive the global model from a central server, whereas, with blockchain, miners update the entire chain of blocks

from broadcasts by other nodes. Second, all participants fairly contribute to the global model. Federated learning averages the client updates, while

each miner in a blockchain has the same opportunity to add a new block to the chain and broadcast the update to the other miners. Third, all data

processing with both systems occurs on the client device, not on a central server, and all client contributions are anonymous. In summary, these simi-

larities lead to an appropriate combination of federated learning and blockchain for enhancing privacy and security guarantees in many existing and

future applications.

5.2.2 Blockchain empowered federated learning

Lu et al.65 propose a blockchain-empowered secure data sharing architecture for distributed multiple parties in an industrial IoT environment. The

system comprises a permissioned blockchain module and a federated learning module. All voluntary parties who agree to share data, then upload

retrieval records to the blocks of the permissioned blockchain to check if a set of queries has been proceeded. All results are learned in a federated

learning setting that the multiparty data retrieval process identifies the related parties to learn the results of queries and then upload to global

model instead transferring raw data directly to the data curator. The data model contains valid information toward the requests and minimized

private data of participants.
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Zhao et al.66 use blockchain to replace the central aggregator in a reputation-based crowdsourcing system comprising federated learning,

mobile edge computing and blockchain. Clients announce their training results to a miner who checks the signature of the uploaded file. Verifi-

able random functions are then used to determine a subset of miners as leaders by weighting their gained rewards. These miners are preferentially

responsible for averaging the client updates and uploading the global model to the blockchain once the validity of the signature has been confirmed.

Only the hash of the file location is saved in the blockchain as opposed to the actual data.

5.3 Federated learning in recommendation system

Federated learning can act as a form of privacy-preserving machine learning for recommendation systems in classical cases, such as vir-

tual keyboard prediction67–69 and preference recommendations.70,71 Google’s original intention with federated learning was to improve

Google services on the Android system, which involve an enormous number of clients and very large-scale data. The data produced and

query requests of millions of clients are simply too large to feasibly collect in a central place. As an example, an important application

is Google Keyboard (Gboard), which is a virtual keyboard for mobile devices running the Android system.67 Gboard includes typing fea-

tures like next word prediction and autocorrection of spelling mistakes. It also offers expression features such as GIFs, stickers, and emo-

jis. As both a mobile application and a virtual keyboard, Gboard must guarantee its clients’ privacy because what clients type into their

device can be recorded, and what is typed may be sensitive, such as passwords. Federated learning can address this problem by allow-

ing Gboard to train a machine learning model without collecting the clients’ sensitive data.68 Long short-term memory72 is used to train a

baseline model that selects and displays a query suggestion. A model is then triggered that determines if the suggestion should be shown

to the client. Ramaswamy et al.69 consider “Diversification” while focusing on emoji prediction in Gboard. A lack of diversity can lead to

situations where only the most frequently used emoji are predicted regardless of the input. To overcome this issue, Ramaswamy and col-

leagues scaled the probability of each emoji in keeping with an empirical probability. The proposed method is also applicable to word

prediction.

Some applications keep private logs of user activities on the client’s device, such as browser histories and cookies, to help provide recommen-

dations based on user preferences. These logs typically contain a wealth of sensitive information on a user’s interests and habits. Federated learning

can protect this information from leaking given the central tenet that no data leaves the device.70 Ammad-ud-din et al.71 propose federated col-

laborative filtering for recommendation systems based on implicit feedback from clients. A collaborative filter trains a model to learn interactions

between a client and a set of items. Then, new items that should be of interest to the client are recommended based on the learned patterns. A

federated collaborative filter aggregates the gradients of each client’s filter model into the global model to make recommendations without loss of

accuracy.

6 CONCLUSION

In this article, we surveyed federated learning in the context of data privacy preserving and security. In general, we believe that federated learning

is a necessary trend in the advancement of distributed and collaborative machine learning because of its ability to offload computations from the

central server. Furthermore, federated learning accommodates the large-scale numbers of participants common to many of today’s online services

in a secure way, and the privacy and security this learning framework affords is almost unparalleled. The data used to train the global never leaves the

client’s device. Only the training results are uploaded to the central server as a partial model update. The received client updates are then aggregated

and averaged; the global model is updated; and the server prepares the next training epoch.

The privacy of the client’s data and the model updates it transmits are protected by global DP and local DP mechanisms applied during the

training process, while the global model is protected through a secure aggregation protocol consisting of secure multiparty computation protocols,

secret sharing schemes, and many other encryption mechanisms. However, each of these protections have specific strengths and weaknesses. For

instance, global DP is vulnerable to an adversarial aggregator, whereas local DP can protect the client updates before sending them to the aggre-

gator. However, local DP is sensitive to noise, and too much noise can impact the model’s utility. Secure aggregation protocols impose a numeric

“mask” to conceal the true data used to generate the model updates while in transit that is then removed during the aggregation process to maintain

accuracy. The downside here is that secure aggregation protocols are computationally expensive, and more work needs to be done to reduce their

complexity.

However, federated learning is still vulnerable to data membership inference attacks and backdoor attacks. Furthermore, adversaries

are difficult to detect because federated learning usually involves a large number of participants, and each participant equally con-

tributes to the global model. Therefore, one future direction of research is to investigate how to prevent data leaks due to inference

during the training process. Another fruitful direction would be to improve the tolerance of federated learning models to anomalous
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updates during the aggregation process while still guaranteeing an appropriate level of utility and accuracy. The result would be more

robust models.
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70. Hegedűs I, Danner G, Jelasity M. Decentralized recommendation based on matrix factorization: a comparison of gossip and federated learning. Paper

presented at: Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases; 2019:317-332; Springer,

New York, NY.

71. Din AUM, Ivannikova E, Khan SA, et al. Federated collaborative filtering for privacy-preserving personalized recommendation system; 2019. arXiv

preprint arXiv:1901.09888.

https://metzdowd.com


SHEN ET AL. 19

72. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735-1780.

73. Melis L, Song C, De Cristofaro E, Shmatikov V. Exploiting unintended feature leakage in collaborative learning. Paper presented at: Proceedings of the

2019 IEEE Symposium on Security and Privacy (SP); 2019:691-706.


