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Abstract

Condition-based Maintenance (CBM) will significantly achieve the cost-saving
while monitoring the related infrastructure through the most accurate main-
tenance scheduling. It also increases the reliability of monitored equipment.
For example, in the field of rail transport, it helps ensure trains run on time
and plays a critical role in the safety of railway operation. A key prereq-
uisite for CBM is accurate fault prediction, which can be achieved through
predictive machine learning models. Although artificial intelligence and ma-
chine learning have become successes in many applications, their potentials
in CBM have not been fully recognised. The growing scale and modality of
railway data bring opportunities as well as challenges to machine learning
models. In this thesis, three key challenges were abstracted with regard to
data analytics using machine learning technics for fault prediction, resulting
from the sparse high-dimensional data, the incomplete data, and the multi-
source data. Then the three challenges were studied from an algorithmic
point of view.

The sparse high-dimensional data commonly exist in maintenance logs,
in a format of categorical variables. Normally, a sophisticated feature en-
gineering process is required to extract the complex feature-interactions,
while the high dimensionality, sparseness, and the lack of reliable domain
knowledge make this process quite ad-hoc and subject to strong personal
opinion/experience of each individual engineer. This thesis proposed field-
regularised factorisation machines to learn the complex feature-interactions

automatically from such data and evaluated the proposed method with main-

xii



ABSTRACT

tenance logs of railway points in a railway network. Another challenge comes
with the fact that real-world data are usually incomplete due to various rea-
sons, e.g., faults in the database, operational errors or transmission faults.
To address these issues, this thesis proposed a missingness-pattern-adaptive
model, which adaptively adjusts the predictive function for incomplete data.
Some theoretical evidence was provided to support the correctness of our
model. This model was tested with several public datasets with internal
missing values. Generally, the predictive task for CBM can involve data from
multiple sources, such as weather conditions, sensors, and maintenance logs.
For the multi-source data, this thesis proposed a sample-adaptive multiple-
kernel learning algorithm to facilitate the fusion of data for the predictive
task. To verify the effectiveness of this method, experiments were conducted

on real-life data generated by a large-scale railway network.
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