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Abstract

Condition-based Maintenance (CBM) will significantly achieve the cost-saving

while monitoring the related infrastructure through the most accurate main-

tenance scheduling. It also increases the reliability of monitored equipment.

For example, in the field of rail transport, it helps ensure trains run on time

and plays a critical role in the safety of railway operation. A key prereq-

uisite for CBM is accurate fault prediction, which can be achieved through

predictive machine learning models. Although artificial intelligence and ma-

chine learning have become successes in many applications, their potentials

in CBM have not been fully recognised. The growing scale and modality of

railway data bring opportunities as well as challenges to machine learning

models. In this thesis, three key challenges were abstracted with regard to

data analytics using machine learning technics for fault prediction, resulting

from the sparse high-dimensional data, the incomplete data, and the multi-

source data. Then the three challenges were studied from an algorithmic

point of view.

The sparse high-dimensional data commonly exist in maintenance logs,

in a format of categorical variables. Normally, a sophisticated feature en-

gineering process is required to extract the complex feature-interactions,

while the high dimensionality, sparseness, and the lack of reliable domain

knowledge make this process quite ad-hoc and subject to strong personal

opinion/experience of each individual engineer. This thesis proposed field-

regularised factorisation machines to learn the complex feature-interactions

automatically from such data and evaluated the proposed method with main-

xii



ABSTRACT

tenance logs of railway points in a railway network. Another challenge comes

with the fact that real-world data are usually incomplete due to various rea-

sons, e.g., faults in the database, operational errors or transmission faults.

To address these issues, this thesis proposed a missingness-pattern-adaptive

model, which adaptively adjusts the predictive function for incomplete data.

Some theoretical evidence was provided to support the correctness of our

model. This model was tested with several public datasets with internal

missing values. Generally, the predictive task for CBM can involve data from

multiple sources, such as weather conditions, sensors, and maintenance logs.

For the multi-source data, this thesis proposed a sample-adaptive multiple-

kernel learning algorithm to facilitate the fusion of data for the predictive

task. To verify the effectiveness of this method, experiments were conducted

on real-life data generated by a large-scale railway network.

xiii



Chapter 1

Introduction

1.1 Background

Condition-based maintenance (CBM) is a maintenance strategy that

through monitoring the actual condition of the asset to decide what main-

tenance needs to be done. The goal of condition-based maintenance is to

spot upcoming equipment failures, so maintenance can be pro-actively sched-

uled when it is needed 1. Traditionally, maintenance actions are based on

a fixed time interval or raised after equipment failures. Instead, it would

be of great value if we could predict failures and take action beforehand,

minimising any negative effects. As mentioned in (Núñez, Hendriks, Li,

De Schutter & Dollevoet 2014), currently, a huge amount of railway track

condition-monitoring data is being collected from different sources in differ-

ent countries. However, the data are not yet fully used because of the lack

of suitable techniques to extract relevant events and crucial historical infor-

mation. Valuable information is hidden behind a huge amount of data from

different sources.

Data analysis for CBM will mainly be based on condition-monitoring data

collected in two ways:

• On-site inspection: In this way, data are collected by field engi-

1https://www.fiixsoftware.com/condition-based-maintenance/

1



CHAPTER 1. INTRODUCTION

neers. They record the status of the equipment through on-site test

and inspection. Portable instruments can also be utilised to test the

equipment.

• Sensors reading: Some equipment or its nearby environments are

equipped with sensors. Readings of sensors provide valuable data that

can reflect the real-time status of the equipment.

Data collected through on-site inspection include maintenance logs, where

the maintenance are recorded in detail. They can be of great value in fault

prediction. Predictions are mostly provided by domain experts with hand-

craft features and thus subject to strong personal experience. Typically,

maintenance logs of equipment contain formatted maintenance records, in-

cluding maintenance type, components, finished time, etc. These data often

carry information about equipment status with timestamps. A piece of equip-

ment can consist of many components, and failures can be a result of their

interactions. Domain knowledge regarding such interactions might be limited

and vary over equipment types. These factors make it difficult to hand-craft

effective features, even for those most experienced experts. Therefore, auto-

matically extracting critical features from data, although it is significantly

challenging, is imperative and will address the lack of sufficient reliable prior

knowledge.

Sensors reading is another way to gather information from equipment.

Real-time statistics of equipment, such as voltage, current and temperature

are precious data for accurate fault prediction. However, installation of sen-

sors incurs costly labour and material expenses, as well as the possibility

of sensor malfunction. Adding sensors for in-service equipment would also

induce disruption to a related system. This is especially unacceptable for

equipment in a large and busy network. Thus, the prediction with sensors

reading can be expensive, or sometimes infeasible. We can not expect ev-

ery piece of equipment is equipped with sensors, but normally the critical

components of an infrastructure system will be installed with sensors.

2



CHAPTER 1. INTRODUCTION

Big data. With the growing scale of infrastructure systems, as well as

the development of condition monitoring technologies, the data available for

CBM have become unprecedentedly large. For example, in Sydney Trains,

the operation logs for a single type of equipment can include tens of millions

of entries. Zhai, Ong & Tsang summarised the challenges as 5Vs for big data

analytics. For the condition monitoring data analytics, they can be:

• Volume: For monitoring an infrastructure system, e.g. a railway

network, 100 terabyte data can be generated per day from only one

data source, because of the high sampling rate of sensors. (Núñez

et al. 2014).

• Velocity: For modern condition monitoring, daily or weekly data ac-

quisition is necessary, while the large volume of data requires compu-

tational intelligence for timely and effective processing of the available

data.

• Variety: The condition monitoring data can be collected from multiple

sources with different data-collecting systems, leading to a variety of

feature representations.

• Veracity: Missing attributes or incomplete data are pervasive in con-

dition monitoring data. The data can also be collected with diverse

quality for multiple sources. In many cases, the data can be noisy.

• Value: Refers to the benefits that can be gained from analysis on con-

dition monitoring data. Reducing cost and increasing system reliability

are the two most important targets of data analytics.

Given the importance of CBM and available data, in this thesis, we mainly

study the fault prediction for CBM with machine learning models. The the-

sis developed several machine learning models focusing on the characteris-

tics of condition-based monitoring data. Specifically, some case studies were

conducted on railway points, which are a kind of mechanical installations

allowing railway trains to be guided from one track to another.

3



CHAPTER 1. INTRODUCTION

Switch machines

Switch rails

Switch rails

Front of turnout

Switch panel Closure panel Crossing panel

Rear of turnout

Closure rails

Crossing nose

Check rails
main

diverging
Wing rails

1
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2 2

Figure 1.1: Illustration of a type of railway points.

Railway points are among the key components of the railway infrastruc-

ture, having a great impact on the reliability and punctuality of rail trans-

port. Figure 1.1 illustrates a type of railway points. Points failures consti-

tuted the second largest number of Incident Information Management System

entries in Sydney Trains, indicating that they caused second-most train de-

lays. Sydney Trains stores some large-scale datasets including maintenance

and operation logs. Those data are accumulating with a growing speed, be-

cause of the expanding railway network and installation of more and more

field sensors. The big data bring an opportunity to apply Artificial Intel-

ligence for safer and more economical railway operation yet have not been

adequately exploited. Thesis, therefore, chose this vulnerable equipment for

our case studies and explored the feasibility of predicting their failures with

machine learning models.

4



CHAPTER 1. INTRODUCTION

Figure 1.2: An example of sparse high-dimensional data generated from a

piece of maintenance log.

1.2 Research Challenges

In this thesis, we focused on three research challenges regarding failure pre-

diction for CBM, resulting from the sparse high-dimensional data, the in-

complete data, and the multi-source data.

1.2.1 Sparse High-dimensional Data

The sparse high-dimensional data commonly exist in maintenance logs, in the

format of categorical variables, as illustrated in Figure 1.2. The sparseness

and high-dimensionality of data bring difficulties to feature engineering. In a

large-scale infrastructure system, condition monitoring data can be collected

from the equipment of different types located in a wide range, so domain

knowledge regarding such data is quite limited. This makes it almost im-

possible to manually extract effective features for every set of equipment.

On the other hand, the sparseness and high-dimensionality also hinder the

learning of machine learning models. Therefore, designing effective models

to automatically extract the effective features from sparse high-dimensional

data is an imperative while challenging task for failure prediction.

5
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1.2.2 Incomplete Data

Real-world data are usually incomplete due to various reasons, e.g., faults

in the database, operational errors or transmission faults. Sometimes the

data formats are not strictly defined, and this could also result in missing

entries in a systematic way. For example, when inspecting a set of equipment,

the field engineers may find some defects that are not properly defined in

the data system, causing some “Not Applicable” entries which are actually

missing entries. Condition monitoring data on a network-wide level further

intensify the incomplete data problem, because for some sets of equipment

only a subset of features is available. This can happen when sensors are

only installed on critical equipment. If we collectively train a model using

all the data, then the unavailable feature sets for them would be treated like

missing. Clearly, developing a model that can directly handle incomplete

data and identify the hidden information behind missingness patterns will

be a challenge while it is necessary for failure prediction.

1.2.3 Multi-source Data

Data available for CBM are usually from multiple sources. For example,

maintenance logs and real-time operation logs can be generated from two

different sources. Even more data sources can join the failure prediction

task, as illustrated in Figure 1.3. Multi-source data bring benefits as well as

challenges for failure prediction. The multiple data channels can be comple-

mentary to each other so that they can enhance the performance of related

models, but leveraging such complementary information requires designing

novel models with CBM data. The multi-source data can be noisy, and in

most cases, data sources are not of equal importance for failure prediction.

The importance of each data source can vary with different sets of equip-

ment. Those data are often produced in heterogeneous formats with varying

frequencies. Besides, the incomplete data problem is more complicated con-

sidering multiple data channels. Devising an optimal data fusion scheme is

6
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Figure 1.3: An example of multi-source data for failure prediction of railway

points.

challenging but can greatly facilitate the CBM-related tasks.

1.2.4 Summary

In short, our three research challenges will be 1) how to design effective

models for sparse high-dimensional condition monitoring data, 2) how to

design a model that can directly handle incomplete condition monitoring

data for fault prediction, and 3) how to design a model to combine condition

monitoring data from multiple sources. The three challenges are not separate,

and they can interplay with each other.

1.3 Research Contributions

Focused on above-mentioned research issues, this thesis developed several

practical machine learning models related to failure prediction for CBM. In

7



CHAPTER 1. INTRODUCTION

detail, we highlight the main contribution of this work as follows:

• The field-regularised factorisation machines for sparse high-dimensional

data were proposed. The method was able to leverage the field in-

formation to help the learning of feature-interactions for failure pre-

diction. Effective feature-interactions were automatically learned from

data without the complicated feature engineering process. Experiments

were conducted based on real-world maintenance data collected from

a large-scale railway network. The experiment results showed that our

model outperforms other competitive baselines. (Chapter 3)

• A missingness-pattern-adaptive model for incomplete data were pro-

posed. The model was allowed to be adaptively adjusted for different

missingness patterns, and it could be trained even when all data were

incomplete. It was also extended to the non-linear case with neural

networks as the backbone. An efficient optimisation algorithm was de-

signed for the linear model based on the restart subgradient method

and proved its rate of convergence. This thesis also theoretically proved

the generalisation error of this model. Experiments were conducted on

several public datasets to validate the advantages of this model over

the state-of-the-arts. (Chapter 4)

• A sample-adaptive multiple-kernel learning algorithm for learning with

multi-source data was designed. It enabled us to find an optimal com-

bination scheme for data from multiple sources. In the meantime, the

model was also allowed to be equipment-specific, so that it could be flex-

ibly adjusted to fit each piece of equipment. The model was tested with

condition monitoring data collected from a large-scale railway network.

The data used included maintenance logs, movement logs, weather and

equipment details. Experiment results confirmed the superiority of

multi-source data over the single source and also demonstrated that

this method was better on two considered evaluation metrics compared

to some state-of-the-arts. (Chapter 5)
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• Detailed empirical studies were performed on failure prediction of rail-

way points based on a large-scale railway network. Some practical

experience was provided in the data pre-processing and feature ex-

traction steps. Several existing machine learning models were also ex-

plored for this task with extensive experiments (Chapter 3 and Chapter

5), which exhibited the potential of using machine learning models in

CBM-related tasks. Results showed that those predictive models could

provide a baseline level of recommendations for maintenance work. The

research also indicates that there is a great potential for industrial play-

ers to apply machine learning models for cost reduction and reliability

enhancement with condition monitoring data.

1.4 Thesis Structure

The rest of this thesis is organised as follows:

We first reviewed the related work for CBM and associated research issues

in Chapter 2. Tasks related to CBM were categorised into deterioration

modelling, maintenance strategy optimisation and failure prediction. We

specifically reviewed some models related to our work.

Chapter 3 introduced the field-regularised factorisation machine model

for mining the maintenance logs. Two regularisation terms were introduced

to facilitate the learning of Factorisation Machine model, based on Euclidean

distance and Cosine distance, respectively. Its performance was tested with

maintenance logs of railway points.

The missingness-pattern-adaptive model for incomplete data was pre-

sented in Chapter 4, together with its generalisation error bound. We de-

signed its linear version based on max-margin classifier and non-linear version

based on neural networks. Experiments were conducted on public datasets

to demonstrate the effectiveness of the proposed model.

We formulated the sample-adaptive multiple-kernel learning in Chapter 5.

We first proposed a missingness-pattern-adaptive multiple-kernel learning al-
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gorithm to adaptively make predictions when samples had absent data chan-

nels. It was further refined with sample-adaptive multiple-kernel learning al-

gorithm which was able to distinguish between different sets of equipment for

better predictions. Corresponding models were validated with multi-source

CBM data collected from a large-scale railway network.

We concluded the thesis with possible future directions in Chapter 6.
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Chapter 2

Literature Review

In this chapter, we introduce some related research for CBM, including deteri-

oration modelling, maintenance strategy optimisation and failure prediction.

Different from existing research on CBM, which focus more on each indi-

vidual case, our study will be focused on designing general machine learning

models for CBM task. Specifically, this thesis will put emphasis on the failure

prediction task and revisit several classes of machine learning models related

to our research issues.

2.1 Deterioration Modelling

Deterioration modelling models the long-term deterioration process of equip-

ment. The learned deterioration model can serve as a long-term baseline for

CBM. With the estimated deterioration process, maintenance work could be

arranged in a most cost-effective way and make related equipment more re-

liable. Statistical models are prevailing in this field. Different from physical

methods, statistical method models the regularities existing behind deterio-

ration processes without clarifying the deterioration mechanism. Therefore,

statistical models are useful for modelling the average deterioration at a

macroscopic level (Kobayashi, Kaito & Lethanh 2012).
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He, Li, Bhattacharjya, Parikh & Hampapur built a track deterioration

model to capture the degradation process of different types of geo-defects,

and a survival model to assess the dynamic derailment risk as a function of

track defect and traffic condition. These models were used to plan track rec-

tification activities with two different objectives: a cost-based formulation

and a risk-based formulation. Ohadi & Micic identified that Gamma pro-

cess represented a very simple and effective method to establish consistent

deterioration models for structures that were subject to inspection. They

conducted numerical experiments on a circular bar element belonged to a

part of bridge deck reinforcement.

Most of the research considered the deterioration process as a multi-state

degradation process with discrete-state space. Podofillini, Zio & Vatn pro-

posed a non-homogeneous Markov model for determining the failure prob-

ability of a rail section under periodic inspection, where maintenance pro-

cedures were also included in the model. Tsuda, Kaito, Aoki & Kobayashi

modelled the bridge deterioration process as a Markov chain model, with the

transition probabilities described by the exponential hazard models. They

first estimated the Markov transition probabilities for the condition states of

each bridge component and then using them for estimating the Markov tran-

sition probabilities describing the average deterioration process of the bridge

a whole. Kobayashi et al. further improved this model with Bayesian estima-

tion method to improve the estimation of Markov transition probability by

Markov chain Monte Carlo method using Gibbs sampling. When monitoring

data were insufficient at the early stage, prior knowledge provided by domain

experts could be incorporated into this model. With data accumulating, the

model would be constantly updated. The empirical study was conducted on

the reinforced concrete slabs of bridges.

Noticing that in most of the multi-state models, the transitions between

states follow an identical type, so that the aging and deterioration of device

over time in each state are ignored. In reality, due to technical problems,

directly observing the actual health condition of the equipment may not be
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possible. In order to address these issues, Moghaddass, Zuo & Zhao proposed

to use the non-homogeneous continuous-time hidden semi-Markov process

for health monitoring of equipment. Moghaddass & Zuo applied this method

to address the practical challenges of online diagnostics and prognostics of

mechanical systems under unobservable degradation. The effectiveness of

this method was verified with health monitoring data of turbofan engines.

Estimating the remaining useful life of a system is also an important

task related to deterioration modelling. Rama & Andrews identified the

two-parameter Weibull distribution as the most appropriate distribution to

model lifetimes of switches and crossings (S&C) components used in rail-

way. They described the derivation of lifetime distributions of individual

S&C components based on field data collected. The method can be used to

predict the expected number of maintenance activities, and associated costs

for S&C units over any specified period of time. Le Son, Fouladirad & Barros

proposed to use the noisy gamma process for estimating the remaining useful

life of a system, under the assumption that the observed degradation data

were possibly contaminated with Gaussian noise. By using the Gibbs sam-

pling technique, the hidden degradation states were approximated. Then

the system’s remaining useful lifetime distribution was estimated with the

noisy observation. The case study was conducted on the aircraft engine data

introduced in (Saxena, Goebel, Simon & Eklund 2008).

2.2 Maintenance Strategy Optimisation

Life-cycle cost minimisation is the main target of maintenance strategy op-

timisation, with an objective to minimise the system’s life cycle cost per

unit time that includes maintenance cost, failure loss, and the cost of system

unavailability. Maintenance strategy optimisation will usually require and

largely depend on prior knowledge regarding the deterioration process of the

equipment.

Most of the related approaches designed the maintenance strategy fol-
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lowing the cost-risk balance rule. They searched for a balanced strategy

which guarantees the lowest cost while keeps the failure probability of equip-

ment below a pre-defined threshold. Mathew & Isaac developed an optimised

maintenance strategy for the rural road network of Kerala state. They for-

mulated the problem as a bi-objective deterministic optimisation problem

which simultaneously required minimisation of total maintenance cost and

maximisation of performance of the road network. A genetic algorithm was

utilised to solve this optimisation problem. Podofillini, Zio & Vatn introduced

a multi-objective optimisation problem to optimise inspection and mainte-

nance procedures with respect to both economical and safety-related aspects.

More precisely, the objective functions were to search for solutions charac-

terised by low expenditures and low derailment probability. Their work was

conducted based on a railway system.

In (Zhang & Gao 2012), the life-cycle cost of an infrastructure system was

minimised under the constraint of the cumulative failure rate. This model

was applied to the maintenance of bridge decks, where Weibull distribution

was used to model the deterioration process of the bridge deck. Caetano

& Teixeira considered a combination of maintenance work that integrates

ballast, rail and sleeper degradation models in a mixed-integer linear pro-

gramming model. They assumed that integrated work would be cheaper

than performing them separately. Weibull distribution was also adopted for

modelling the probability distribution that describes the failure occurrence.

Shafiee, Patriksson & Chukova firstly combined age and usage thresholds in

the optimisation of maintenance strategy. An optimal bi-variate (age-usage)

maintenance strategy for railway tracks was proposed such that the average

long-run maintenance cost per unit time was minimised. They performed a

case study on a small part of the Swedish railroad. Park, Jung & Yum con-

sidered the situation where each preventive maintenance relieved stress tem-

porarily and hence slowed the rate of system degradation, while the hazard

rate of the system remained monotonically increasing. The minimal repair

cost also varied with time. Their model was able to get the correspond-
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ing optimal number and period for the periodic preventive maintenance that

minimised the expected cost rate per unit time over an infinite time span.

Maintenance operations planning of railway infrastructures was formu-

lated as model predictive control problems in (Su, Núñez, Jamshidi, Baldi,

Li, Dollevoet & De Schutter 2015, Su, Núñez, Baldi & De Schutter 2016).

They sought for a balanced plan between rail quality and maintenance cost.

Su et al. developed a decision-making method for optimal planning of railway

maintenance operations using hybrid model predictive control. The hybrid

characteristics arose from the three possible control actions: performing no

maintenance, performing corrective maintenance, or doing a replacement.

They used a linear dynamic model to describe the evolution of the health

condition of a railway track segment. Based on this method, Su et al. fur-

ther developed A multi-level decision-making approach for condition-based

maintenance of rail. The high-level decision-making problem was to produce

the optimal long-term coarse-grained maintenance plan for the entire track,

and the low-level problem was to produce a fine-grained efficient schedule

to execute the actions suggested by the high-level controller. In summary,

the factors considered in maintenance strategy optimisation task vary case

by case, while all the methods highly rely on accurate modelling of failure

probability of equipment.

2.3 Failure Prediction

Failure prediction is the key step for CBM. Different from deterioration mod-

elling, failure prediction will mostly focus on the short-term behaviour of

equipment and is more sensitive to accidental events.

Wang, Xu, Wang & Zou focused on the prediction of weather-related

failure of railway points. Their target was to predict the total number of

failures in a large railway system. They used a modified AdaBoost.RT algo-

rithm (Kankanala, Das & Pahwa 2013) with support vector machines as the

weak learner to predict the number of turnout failures in a weekly manner.
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The proposed approach can help railway corporations make a better plan of

maintenance activities and has the potential to reduce spare inventories as

well as repair/maintenance cost. A weakness of their method is that it could

not determine the source of failures. In other words, only the total number

of failures are predicted rather than the exact location of every failure.

Axle box acceleration (ABA) measurements were used in (Núñez et al.

2014) to detect surface defects (squats) and corrugation of railway track. The

energy values measured using the ABA system were analysed to reveal the

defects. Molodova, Li, Nunez & Dollevoet also utilised ABA measurements,

but they analysed these measurements in the frequency domain.

Yilboga, Eker, Güçlü & Camci proposed to predict failure of railway

turnouts with Time-delay neural networks. Force signals from an electro-

mechanical railway turnout system were collected as input. In order to

predict failure of point machines, current signal and movement duration

of point machines were approximated by harmonic regression and vector

auto-regressive moving-average model respectively in (Garćıa, Pedregal &

Roberts 2010). Switch position sensors were used to record the duration

of points machine movement. Garćıa Márquez, Roberts & Tobias reviewed

some fault detection and diagnosis methods for railway points with data

collected from line-side equipment and lab-based test rigs.

2.3.1 Failure Prediction with Sparse High-dimensional

Data

Log files of equipment mainly consist of categorical variables. For example,

the categorical variables in the event log include pre-defined events. Log files

can be generated by sensors, software applications and maintenance records,

reflecting the condition of associated equipment. Depending on the number

of possible values of categorical variables, the generated feature vectors can

be very high-dimensional and sparse. We will mainly review some work

focused on the log files.
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Liang, Zhang, Xiong & Sahoo proposed a customised nearest neighbour

approach to predict the failure events of an IBM supercomputer. Their

method requires strong domain knowledge to extract some critical features

from the event logs. They firstly eliminated the redundancy of the event

logs using the adaptive semantic filter proposed in (Liang, Zhang, Xiong &

Sahoo 2007a). Then they identified several raw features from those events

for subsequent finer feature design. A rule-based classifier, support vector

machines and a traditional nearest neighbour method were compared to the

proposed method. Their method can achieve an F measure of 70% and 50%

for a 12-hour and 6-hour prediction window size. Salfner & Tschirpke also

emphasised the importance of data preparation with prior knowledge. They

provided three algorithms: (a) assignment of error IDs to error messages

based on Levenshtein’s edit distance, (b) a clustering approach to group sim-

ilar error sequences, and (c) a statistical noise filtering algorithm for accurate

error-based online failure prediction of a commercial telecommunication sys-

tem. Zheng, Lan, Park & Geist proposed a system log pre-processing method

consisted of three integrated steps: (1) event categorisation; (2) event filter-

ing; (3) causality-related filtering. Their approach was applied to failure pre-

diction of supercomputer systems. Wang, Li, Han, Sarkar & Zhou presented

a general classification-based failure prediction method which can leverage

system messages, error events, or log files for failure prediction. They sys-

tematically defined four categories of features then used feature selection to

identify the most important features for model construction.

Sipos, Fradkin, Moerchen & Wang presented a data-driven approach

based on multiple-instance learning for predicting equipment failures by min-

ing equipment event logs. They conducted experiments on real-life datasets

with billions of log messages from two large fleets of medical equipment.

The proposed method has been deployed by a major medical device provider

to monitor thousands of medical scanners. Fronza, Sillitti, Succi, Terho

& Vlasenko used log files to predict failures of software systems. Random

Indexing was applied to represent sequences, where each operation was char-
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acterised in terms of its context. Weighted support vector machines were

applied to deal with imbalanced datasets and to improve the true positive

rate. Their method was verified with log files collected during three months

of work in a large European manufacturing company.

Most of the related approaches relied on hand-craft features and were ei-

ther restricted to linear model or low-dimensional features. How to accurately

predict failures with least prior knowledge and high-dimensional features is

an open problem.

2.3.2 Failure Prediction with Incomplete Data

Missing data are a pervasive problem in CBM related tasks. Twala proposed

a probabilistic approach for the classification of incomplete data, which was

then used to predict robot execution failure. The main limitation of their

work is that they required complete training data, whereas in practice it

is common that the training data are incomplete as well. Dhlamini, Nel-

wamondo & Marwala used neural networks with particle swarm optimisa-

tion (PSO) and genetic algorithms (GA) to compensate for missing data in

classifying high voltage bushings. Specifically, the autoencoder was used to

alleviate the influence of missing data.

Suh, Woodbridge, Lan, Bui, Evangelista & Sarrafzadeh exploit several

machine learning models to impute congestive heart failure (CHF) data

for patient monitoring systems. Although their research was based on hu-

man beings, it was similar to research on infrastructure monitoring systems.

The proposed projection adjustment by contribution estimation regression

(PACE) method enhanced the accuracy of the CHF missing data on pre-

dicting and imputing non-binomial data. For binomial data, they adopted

Bayesian methods and voting feature interval algorithms.

Li, Khoo & Tor proposed a two-stage data mining technique for condition-

based fault diagnosis. They firstly imputed the missing variables and then

extracted associated rules for fault prediction. The missing entries were

imputed with all possible observations, and this generates many artificial
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samples. A rough set approach was used to extract a minimal diagnostic

rule set for condition-based fault diagnosis. A prototype condition-based

fault diagnosis system was then built upon this set. The capability of the

system was verified through a case study on a centrifugal pump system for

a refinery.

It is surprising that research regarding incomplete CBM data is not as

pervasive as the problem itself. Intuitively, the absent data can be filled

with mean or zero and fed to downstream models as usual, while this model-

agnostic strategy can hinder the performance of the model. Most of the

practical solutions on failure prediction with incomplete CBM data depends

on sophisticated imputation steps, so they are restricted to related applica-

tions only and lack of theoretical support.

2.3.3 Failure Prediction with Multi-source Data

Gathering available data from multiple sources enriches our knowledge on

the working status of related equipment, but combining information from

multiple sources efficiently and effectively is a challenging task.

More often than not, multi-source data can be incomplete and noisy.

Undoubtedly, optimising the data fusion scheme will improve the accuracy

of failure prediction. Several papers have put emphasis on combining multi-

source data (Li, Huang, Li, Zhou & Mi 2018, Ortiz, Babbar, Syrmos, Clark,

Vian & Arita 2008, Guo, Sun, Li & Tang 2019, Kabir, Demissie, Sadiq &

Tesfamariam 2015). These papers highlighted the value of multi-source data

through many different applications.

Li, Huang, Li, Zhou & Mi incorporated two information sources, sim-

ulation and lifetime data, to predict the reliability of a turbine blade. A

linear fusion scheme was adopted to extract and integrate information from

multiple sources. In Guo et al. the weights of different data sources using

for multi-source reliability data were decomposed into subjective weight, ob-

jective weight, and comprehensive weight, which were based on the experts’

judgement. Peng, Li, Li, Jiang & Zhang proposed a systematic method for
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evaluating the slope safety utilising multi-source monitoring information. A

Bayesian network was constructed to fusion data from multiple sources. A

Bayesian belief network based data fusion model was developed in (Kabir

et al. 2015) for the failure prediction of water mains. Most of the research

was limited to simple cases like each data source contains only one feature,

or only several similar data sources were presented.

Methods involving multi-source data are sometimes termed multi-view

learning (Zhao, Xie, Xu & Sun 2017). Related works on this topic including

multi-view subspace learning (White, Zhang, Schuurmans & Yu 2012, Xu,

Tao & Xu 2015b), incomplete multi-view learning (Xu et al. 2015b, Liu,

Zhu, Li, Tang, Zhu, Yin & Gao 2019), and multiple kernel learning (Gönen

& Alpaydın 2011). Compared to their popularity in the machine learning

community, their practical usage with condition monitoring data hasn’t been

fully investigated.

2.4 Related Models

Other than designing case-specific models, our study was focused more on

designing general machine learning models for CBM tasks. Therefore, we

revisit several classes of machine learning models, based on which our models

were developed.

2.4.1 Factorisation Machines

The most common sparse high-dimensional data are in the format of categor-

ical variables. Categorical variables are usually converted to binary features

through one-hot encoding. The data after one-hot encoding might be very

sparse and of very high dimension. For example, there can be over ten mil-

lion features in datasets of Kaggle challenge on click-through rate prediction.

Factorisation Machine (FM) model is specifically designed for such sparse

data. It is widely used in Click-through rate prediction and recommenda-

tion systems. FMs combine the advantages of support vector machines with

20



CHAPTER 2. LITERATURE REVIEW

factorisation models (Rendle 2010). In contrast to support vector machines,

FMs factorise all interactions between variables into products of two low-rank

matrices. In this way, they are able to learn interactions which even do not

appear in the training data.

Many variants of FMs have been proposed and achieved promising per-

formance. Locally Linear Factorisation Machines (Liu, Zhang, Zhao, Zhou &

Sun 2017) adopted locally linear coding scheme and jointly optimised the FM

model with anchor points. They were capable of learning complex non-linear

data by exploring the local coding technique. Wang, Zhou, Fei, Chang & Liu

proposed Contextual and Position-Aware Factorisation Machines targeting

at sentiment analysis of the text. Inspired by neural skip-gram model, Con-

textual and Position-Aware Factorisation Machines limited interactions to a

range of words. In addition, latent vectors were learned based on the relative

position of words. This means that there would be several independent latent

vectors for one word. The optimisation problems associated with FMs are

non-convex in its original form. Yamada, Lian, Goyal, Chen, Wimalawarne,

Khan, Kaski, Mamitsuka & Chang reformulated the optimisation problem

of FMs as a semi-definite programming problem. By introducing the nuclear

norm in FMs, their loss function of FMs became convex.

Above-mentioned models focus less on the inherent properties of data

carried by field information. Implementation of FMs for categorical variables

requires that data being one-hot encoded. Then FMs treat each feature

equally disregard their field information. Field-aware factorisation machines

(FFMs) (Juan, Zhuang, Chin & Lin 2016) considered the field structure

of data and learned pairwise interactions with regard to each pair of fields.

They were more complex than FMs in terms of the number of parameters and

computational complexity. Field-weighted Factorisation Machines (Pan, Xu,

Ruiz, Zhao, Pan, Sun & Lu 2018) added additional coefficients to depict the

interactions of fields, and reduced the number of model parameters compared

to FFMs. These models improved the performance of FMs by considering

the field information at the price of adding the model complexity.
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As an important hyper-parameter in FM, the embedding dimension was

usually the same for all features. Different from many FM-based approaches,

which used a fixed embedding dimension for all features, Rank-Aware FM

model (Chen, Zheng, Wang, Ma & Huang 2019) adopted different embedding

dimensions for different pairwise interactions. The embedding dimensions

were decided by frequencies of occurrences of corresponding feature interac-

tions. The model achieved better performance on real-world datasets and

could be stored and trained as efficiently as FM.

Although the most discussed FM model is in its second-order form, FM

model was extended to higher-order form in the original work of (Rendle

2010). Blondel, Fujino, Ueda & Ishihata provided an efficient optimisation

algorithm for the learning of Higher-order Factorisation Machines. They de-

veloped dynamic programming algorithms for evaluating the related ANOVA

kernel and computing its gradient. Cao, Zhou, Li & Yu formulated the High-

order Factorisation Machines as a CANDECOMP/PARAFAC factorisation

(Kolda & Bader 2009) problem which could be efficiently optimised and

stored.

FMs have also been incorporated into many deep neural networks to

capture high-order feature interactions. Neural Factorisation Machines (He

& Chua 2017) took in the advantages of deep neural networks to modelling

higher-order feature interactions. They firstly embedded feature vectors simi-

lar to an FM module and then fed the embedding vectors into a bi-interaction

layer that converted a set of embedding vectors to one vector. Next, the vec-

tor was feed into a multilayer perceptron to produce the final prediction

score. DeepFM (Guo, Tang, Ye, Li & He 2017) was another example of com-

bining an FM model with deep neural networks. It learned an FM model

and a deep neural network jointly with shared embedding vectors. Unlike

the bi-interaction layer in Neural Factorisation Machines, DeepFM concate-

nated the embedding vectors as the input of deep neural network module.

Xiao, Ye, He, Zhang, Wu & Chua introduced the attention mechanism into

FMs by adding an attention-based pooling layer. They focused on regression
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tasks and got an 8.6% relative improvement on their experimental datasets.

Weiyu, Yanyan & Linpeng has explored the feasibility of learning arbitrary-

order cross features adaptively from data. They adopted a logarithmic trans-

formation layer to convert the power of each feature in a feature combination

into the coefficient to be learned. The number of cross features to be learned

was fixed in advance as a hyper-parameter so that the model complexity was

under controlled. Field information can also be used to help promote the

performance of deep variants of the FM model, as shown in (Zhang, Shen,

Huang, Li & Pan 2019, Lu, Yu, Chang, Wang, Li & Yuan 2020, Yu, Wang

& Yuan 2019).

2.4.2 Learning with Incomplete Data

Learning from incomplete data is of great practical and theoretical interest.

Commonly, we are faced with incomplete data in many applications. For

example, in medical analysis, measurements on some subjects may be lost

due to the lack of patient’s compliance or unaffordable examination fees. In

traffic prediction problems, some segments of a road network may contain

no data collectors. For CBM, failure of a sensor will cause the absence of

some records for a set of equipment. Even though all data are successfully

collected without corruption, in a large-scale infrastructure network, we are

not guaranteed that every set of equipment would be equipped with same

sensors or keep the same format of maintenance logs. In this situation, some

data could be considered absent when training a universal model.

A typical strategy is to fill the missing attributes in advance and then

feed the data into traditional machine learning models. This strategy aims

to recover the optimal model under complete data setting, with the prerequi-

site that missing entries are imputed appropriately. Filling missing attributes

with zeros or means is a simple yet sometimes efficient method, but with-

out considering the specific structure of data, such methods can be inferior.

Another way is to complete the incomplete instances with data from their

neighbours. For example, K-nearest-neighbours could be utilised to estimate
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the missing values as in (Batista & Monard 2002). MICE (Multivariate im-

putation by chained equations) (Buuren & Groothuis-Oudshoorn 2010) was

an iterative method dealing with missing data under the assumption of miss-

ing at random. It estimated each missing feature with regression models on

other features, so it could be of high computation complexity when dealing

with high-dimensional data. Probabilistic generative models such as Gaus-

sian mixture model (Ouyang, Welsh & Georgopoulos 2004) used expectation

maximisation algorithm to find the most probable completion. A limita-

tion of imputation strategy is that errors in imputation stage may propagate

to the following model learning stage. An intuitive way was to delete in-

complete instances and make some assumptions on missingness patterns in

training (Dekel, Shamir & Xiao 2010). Method for tuning the decision func-

tion for incomplete test data was proposed in (Xia, Zhang, Cai, Li, Pan, Yan

& Ning 2017). These methods require complete data for training. This limits

the application of such methods when most of the instances are incomplete,

which is fairly common for condition monitoring data.

Some methods process the missing data in a task-specific way. Ghahra-

mani & Jordan proposed to use the EM algorithm to learn from incomplete

data for a classifier. Similarly, Williams, Liao, Xue & Carin proposed a

classification model that dealt with missing data by performing analytic in-

tegration with an estimated conditional density function. Chechik et al.

avoided the imputation procedure by introducing instance-specific margins

for large margin classifiers. Goldberg, Recht, Xu, Nowak & Zhu connected

the matrix completion task with classification task in a transductive way,

whereas Hazan, Livni & Mansour argued that completion was neither nec-

essary nor sufficient for classification. They proposed a kernel method for

incomplete data based on observed features. Liu, Pan, Dezert & Martin used

multiple imputations adaptively to improve the classification results. Apart

from the methods mentioned above, many other works fall into this category

(Shivaswamy, Bhattacharyya & Smola 2006, Dick, Haider & Scheffer 2008).

In addition to the above-mentioned methods, many neural networks can
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be utilised to process data with missing attributes (Goodfellow, Mirza, Courville

& Bengio 2013, Yoon, Jordon & Schaar 2018, Li, Jiang & Marlin 2019, Yang,

Lu, Lin, Shechtman, Wang & Li 2017, Pathak, Krahenbuhl, Donahue, Darrell

& Efros 2016), yet they required complete instances for learning the model.

Recently, Śmieja, Struski, Tabor, Zieliński & Spurek proposed a model that

could be trained without complete data. They replaced the typical neuron’s

response in the first hidden layer by its expected value when data were in-

complete. The missing data density was depicted by a Gaussian mixture

model and trained together with the neural network. One limitation of this

model is that it requires an appropriate missing percentage of data so that

the Gaussian mixture component could be fitted sufficiently. Otherwise, the

model could perform poorly because of the under-fitting of Gaussian mixture

component used in their model.

Most methods tend to use a universal model for all data, and thus ignore

the inherent differences between data with different missingness patterns.

2.4.3 Multi-view Learning

As mentioned before, data related to CBM can be collected from multi-

ple sources. This coincides with the fundamental assumption of multi-view

learning, where data from each source are referred to as a particular view.

Following (Xu, Tao & Xu 2013), we classify multi-view learning algorithms

into three groups: 1) co-training, 2) subspace learning, and 3) multiple kernel

learning.

Co-training (Blum & Mitchell 1998) is one of the earliest schemes for

multi-view learning. It trains alternately to maximise the mutual agreement

on two distinct views of the unlabelled data. Sindhwani, Niyogi & Belkin ex-

tended this idea to propose a co-regularisation framework for semi-supervise

learning. Their algorithms naturally extended standard methods like support

vector machines and regularised least squares for multi-view semi-supervised

learning. Chen, Weinberger & Blitzer and Qin, Wang, Zhang & Fu used vari-

ants of co-training for the domain adaptation task. In (Chen, Weinberger &
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Blitzer 2011), a single optimisation problem was formulated in each iteration

of co-training to simultaneously learn a target predictor, a split of the fea-

ture space into views, and a subset of source and target features to include

in the predictor. In (Qin, Wang, Zhang & Fu 2019), co-training was em-

ployed in a deep learning framework to bridge conditional distribution shift

by assigning high-confident pseudo labels on target domain inferred from two

distinct classifiers. Qiao, Shen, Zhang, Wang & Yuille explored a new way of

implementing the co-training framework. They trained multiple deep neural

networks to be the different views and exploits adversarial examples to en-

courage view difference. Closely related to our topic, Abdelgayed, Morsi &

Sidhu applied the co-training algorithm to fault detection and classification

tasks, to handle both labelled and unlabelled data. Co-training algorithms

are based on the assumptions that the views are conditionally independent

given the class label, and moreover, each view is sufficient for classification on

its own. These assumptions are often too strong for CBM data, as multiple

data channels may interact with each other, and data from only one source

may lack essential information for failure prediction.

Subspace learning aims at learning a shared representation from multi-

view data. Given the possible high dimensionality of multi-view data, the

resulting latent subspace is usually a lower-dimensional space. Thus, it pro-

vides a way for dimensionality reduction and denoising, which helps subse-

quent tasks like classification, clustering and regression. Canonical correla-

tion analysis (Hotelling 1992) and kernel canonical correlation analysis (Lai &

Fyfe 2000) maximises the mutual information between the projections of two

views in the lower dimension, and they are straightforward to be extended

to multiple views (Hardoon, Szedmak & Shawe-Taylor 2004). Based on the

idea of canonical correlation analysis, White et al. proposed a convex version

of subspace learning by adding a regularisation term on matrix block norm.

An efficient training procedure was introduced for the associated optimisa-

tion problem. By assuming view insufficiency that each view only captured

partial information but all the views together carried redundant information
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about the latent intact representation, Xu, Tao & Xu proposed the multi-

view intact space learning. Lin, Wang, Meng & Zhao further incorporated

unit intact space assumption to reduce the regularisation parameters and ac-

celerated the learning process. In the basic formulation of subspace learning,

each view is treated equally. For example, it does not distinguish between

numerical or categorical data. Considering the practical case of CBM data,

where multiple views can be of heterogeneous format, this should be carefully

taken into account. More importantly, the learning process is conducted in

typically an unsupervised manner. Incorporating the label information for a

specific learning task will require redesigning of the learning framework.

Multiple kernel learning (MKL) (Lanckriet, Cristianini, Bartlett, Ghaoui

& Jordan 2004) was originally designed to find an optimal kernel func-

tion by combining multiple kernel functions and to maximise a generalised

performance measure. It has been widely used in various regression and

classification tasks (Althloothi, Mahoor, Zhang & Voyles 2014, Bucak, Jin

& Jain 2013, Liu, Zhou, Shen & Yin 2013, Yang, Tian, Duan, Huang &

Gao 2012, Yeh, Huang & Lee 2011). MKL has been naturally applied to data

with multiple views, where each view is associated with one or more kernel

functions. Similar to deep neural networks, functions defined in reproduc-

ing kernel Hilbert space (RKHS) can model a highly non-linear relationship.

Multiple kernel learning further takes the advantages of such functions by

combining them wisely. Compared to deep neural networks, MKL enjoys

better interpretability while requires less training data, which is more in line

with the fundamental requirements of CBM, where more interpretable results

can provide more comprehensive guidance for maintenance work.

Many variants of the MKL have been proposed to improve the accuracy of

MKL algorithms. A natural extension is to change the L1-norm constraint

for kernel weights to Lp-norm as in (Kloft, Brefeld, Laskov, Müller, Zien

& Sonnenburg 2009). Algorithms in (Kloft, Brefeld, Sonnenburg & Zien

2011) further simplified the optimisation procedure by adopting a closed-

form solution for kernel weights. In (Liu, Wang, Zhang & Yin 2014), a binary
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vector was introduced for every sample to switched on/off base kernels. The

optimisation problem was an integer linear programming problem. The work

in (Gönen & Alpaydin 2008) put forward a localised MKL algorithm. They

utilised a gating model for selecting the appropriate kernel function locally. A

convex variant was presented in (Lei, Binder & Kloft 2016) and corresponding

generalisation error bounds were provided.

Another branch of studies focuses on improving the efficiency and scalabil-

ity of MKL. In (Sonnenburg, Rätsch, Schäfer & Schölkopf 2006), they worked

on a special scenario that when feature maps were sparse and can be explic-

itly computed. Combined with chunking optimisation, they were able to deal

with large volumes of data. The work in (Rakotomamonjy & Chanda 2014)

improved the scalability of MKL through Nystrom methods to approximate

the kernel matrices and used proximal gradient algorithm in optimisation.

Some methods were also developed for the situation when the number of

kernels to be combined was very large (Afkanpour, György, Szepesvári &

Bowling 2013). Besides, many online methods for MKL were proposed re-

cently (Shen, Chen & Giannakis 2018, Shen & Chen 2018, Li, Gu, Ao, Wang

& Ling 2017, Sahoo, Hoi & Li 2014, Hoi, Jin, Zhao & Yang 2013), and the

related mistake bounds have been investigated in (Jin, Hoi & Yang 2010).

Random feature approximation (Rahimi & Recht 2008) is popular among

online MKL algorithms. It approximates some implicit feature map, like the

feature map related to Gaussian kernel, with explicit functions.

Most of the research on multiple kernel learning was based on the pre-

requisite that all kernels were complete, whereas in most case, this is not

satisfied. Liu, Wang, Yin, Dou & Zhang proposed an MKL algorithm to

train a model with absent data channels. However, their model cannot be

scaled up to large dataset due to the exponential computation complexity

regarding the number of kernels, and it indeed treated different missing pat-

terns equally in testing. This can be suboptimal for incomplete data.

For failure prediction related to CBM, we would require a new algorithm

that can handle large datasets, while dealing with different missingness pat-
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terns adaptively. The learning algorithm should also treat each group of

samples adaptively so that we are able to capture the differences between

different sets of equipment.

2.5 Summary

Deterioration modelling, maintenance strategy optimisation, and failure pre-

diction are three key tasks for CBM, while our focus will be on the failure

prediction task. Different from previous work that mostly being case-specific,

this thesis will design more general methods for failure prediction, based on

some of the related methods we revisited in this Chapter. As discussed, the

real-world data related to CBM can be incomplete, sparse high-dimensional

and multi-source. We need to design suitable models for such data. Impor-

tantly, the three characteristics can interplay with each other, so a model

considering them all is also desirable.
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Chapter 3

Field-regularised Factorisation

Machines for Sparse

High-dimensional Data

Sparse high-dimensional data are common in CBM related tasks. This data

format brings difficulties to feature-engineering for predicting failures. Main-

tenance logs are a typical kind of sparse high-dimensional data. In this chap-

ter, we introduced the Field-regularised Factorisation Machines for mining

the maintenance logs of equipment, which leveraged the field information in

maintenance logs to automatically learn effective cross-features from data for

failure prediction. An empirical study was conducted with the maintenance

logs of railway points to validate the method.

3.1 Introduction

As a part of the signal equipment, railway points control the routes of trains

at railway junctions, having a great impact on the reliability and punctuality

of rail transport. Existing research on failure prediction of points mainly

relies on additional sensors’ data (Yilboga, Eker, Güçlü & Camci 2010, Oye-

bande & Renfrew 2002, Guclu, Yilboga, Eker, Camci & Jennions 2010, Tao
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& Zhao 2015, Camci, Eker, Başkan & Konur 2016, Garćıa Márquez, Roberts

& Tobias 2010), e.g. voltages, currents and forces. Installation of sen-

sors incurs costly labour and material expenses, as well as the possibility

of sensor malfunction, which limits their implementation. Other research

focuses on approximating the long-term degradation curve of equipment

under certain maintenance strategy (Rama & Andrews 2013, Shafiee, Pa-

triksson & Chukova 2016, Kobayashi et al. 2012, Tsuda, Kaito, Aoki &

Kobayashi 2006, Le Son, Fouladirad & Barros 2016), rather than predict-

ing failure of equipment in the near future.

Maintenance logs of equipment contain formatted maintenance records,

including maintenance type, components, finished time, etc. They can be

of great value in failure prediction. These data often carry information of

equipment status with timestamps. Compared to data collected by sensors,

maintenance records are usually ready to hand with a specified format. They

mainly consist of categorical variables and could be very sparse after com-

monly performed one-hot encoding. Besides, railway points consist of many

components, and failures can be viewed as a result of their interactions.

Domain knowledge regarding such interactions might be very limited and

depends on equipment types. In order to predict failures with maintenance

logs, the model needs to learn the complex interactions from such sparse

data.

Aiming at this challenging task, this chapter put forward Field-regularised

Factorisation Machines (FrFMs) for failure prediction of railway points. Ex-

isting models either ignored the field information or only considered the inter-

field information. They neglected the relationships among features inside

each field, which is appropriately used in our models.

The contributions could be shown in two aspects. Firstly, to the best of

our knowledge, it is the first time that maintenance logs are used to predict

the failure of railway points. Secondly, this chapter proposes FrFMs which

leverage field information and developed a method to solve the related op-

timisation problems. Experiments on two data sets show that this method
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can achieve better performance compared to some state-of-the-art methods.

3.2 Preliminaries

A degree-2 polynomial mapping can often effectively capture the information

of feature conjunctions (Chang, Hsieh, Chang, Ringgaard & Lin 2010). It

learns a weight for each feature conjunction:

φPoly2(W,x) =
n∑
i=1

n∑
j=i+1

wi,jxixj

W = (wi,j) ∈ Rn×n,x ∈ Rn (3.1)

where W is the learn-able weight matrix and x is the input feature vector of

dimension n. φPoly2(W,x) outputs the score for related regression/classification

tasks. Corresponding 2-way FMs can be written in following form:

φFM(V,x) =
n∑
i=1

n∑
j=i+1

〈vi,vj〉xixj,

V = [v1, ...,vn]> ∈ Rn×k,x ∈ Rn

(3.2)

〈· , ·〉 stands for dot product of two vectors. vi and vj denote two row vectors

of V with dimension k. vi is referred to as embedding vector or latent

vector for feature i. For simplicity of formulations, we omit linear terms and

bias term following Juan et al., but we will include them in experiments.

Categorical data can be highly sparse after one-hot encoding. Some pairs

of xixj might even not appear in any training instance. In this case, for

polynomial mapping some wi,j are not able to be learned. By factorising the

coefficient matrix W into V V T , FMs are able to learn interactions for rare

feature pairs. Each row vector vi in V stands for the latent vector for feature

xi, to produce wi,j when multiplied by another vector xj, so that wi,j can be

implicitly learned as long as xi and xj appear in the dataset.

The complexity of straightforward computation of Eq (3.2) would cost

O(kn2) as we need all pairwise interactions to be computed. It however
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reduces to linear time O(kn) with following reformulation (Rendle 2010),

n∑
i=1

n∑
j=i+1

〈vi,vj〉 xixj

=
1

2

n∑
i=1

n∑
j=1

〈vi,vj〉 xixj −
1

2

n∑
i=1

〈vi,vi〉 xixi

=
1

2

(
n∑
i=1

n∑
j=1

k∑
f=1

vi,fvj,fxixj −
n∑
i=1

k∑
f=1

vi,fvi,fxixi

)

=
1

2

k∑
f=1

((
n∑
i=1

vi,fxi

)(
n∑
j=1

vj,fxj

)
−

n∑
i=1

v2
i,fx

2
i

)

=
1

2

k∑
f=1

( n∑
i=1

vi,fxi

)2

−
n∑
i=1

v2
i,fx

2
i


which is efficient and has been used in a wide range of applications like

information retrieval (Qiang, Liang & Yang 2013), social network (Hong,

Doumith & Davison 2013), and recommendation systems (Rendle, Gantner,

Freudenthaler & Schmidt-Thieme 2011).

3.3 Field-regularised Factorisation Machines

In this section, we introduce the motivation for our method. We will formu-

late the two variants of our method following different distance metrics and

derive corresponding optimisation algorithms.

3.3.1 Motivation

Table 3.1 presents some simple data constructed from maintenance records

for failure prediction. “Maintenance Type” and “Component” are two dif-

ferent fields. A, B and C stand for different maintenance types that can

probably be “Routine Inspection”, “Corrective Maintenance” and so on. The

field “Component” shows the maintenance was performed over which com-

ponent. “1” and “-1” in column “Failure” stand for whether there was a
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fault occurred after this maintenance and before next planned maintenance.

FMs will learn latent vectors for A, B, C, II and VI respectively. In en-

gineering practice, we anticipate different effects with different maintenance

behaviours. Each field can be regarded as a classification criterion for main-

tenance work, and corresponding features in that field are the class labels.

We would prefer diverse latent vectors in the same field so that we could

distinguish the effects caused by different maintenance work in this way. As

a result, latent vectors for A, B and C should be diverse, as well as latent

vectors for II and VI.

3.3.2 Methods

In this section, we introduce the FrFMs for binary classification. For sim-

plicity of formulations, we omit linear terms and bias term following (Juan

et al. 2016), but we will include them in experiments as they often improve

the results. The loss function of FrFMs with logistic loss regarding one sam-

ple (y,x) is:

L(V ) = log(1 + exp(−yφFM(V,x))) +
λ1

2
‖V ‖2

F
+
λ2

2
R(V ) (3.3)

φFM(V,x) is defined in Eq. (3.2), as we share the same prediction function

with FMs. ‖ · ‖
F

is the Frobenius norm for matrices. y ∈ {−1, 1} is the

ground truth label for sample x. The first term denotes the prediction loss

compared to ground truth, and the second term forces the solution V sparse.

R(V ) is a regulariser that measures the similarity of latent vectors in each

field, and we prefer smaller similarity as discussed above. By introducing

Table 3.1: A sample of maintenance records with failures to be predicted.

Failure Maintenance Type Component

1 A II

1 C II

-1 B VI
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R(V ) into loss function, field information is included. λ1, λ2 are two non-

negative parameters obtained by cross validation.

In order to capture the inherent properties come with fields of data, we

construct a feature relation matrix A which will be included in R(V ):

Ai,j =

 1
Ni,j

if xi, xj are in same field and i 6= j,

0 else.
(3.4)

Ni,j is the number of features in the field containing xi and xj. It is introduced

to avoid deviation caused by different number of features in different fields.

Each element in A stands for the relationship of two features. If they are in

same field, then corresponding entries in A will be one divided by the number

of features in this field. Otherwise they will be zeros.

Various metrics can be used to measure the similarity of latent vectors. In

this work, we will present FrFM with Euclidean distance and cosine similarity.

FrFM-EUC

We refer to FrFM with Euclidean distance as FrFM-EUC. Euclidean distance

is used to measure the similarity of two vectors in FrFM-EUC, and larger

Euclidean distance indicates smaller similarity. Therefore, R(V ) has the

following form:

R(V ) = −
n∑
i=1

n∑
j=i+1

Ai,j‖vi − vj‖2
2 (3.5)

‖ · ‖2 denotes l2-norm for vectors. The loss function for FrFM-EUC is:

Leuc(V ) = log(1+exp(−yφFM(V,x)))+
λ1

2
‖V ‖2

F
− λ2

2

n∑
i=1

n∑
j=i+1

Ai,j‖vi−vj‖2
2

(3.6)

FrFM-COS

FrFM-COS denotes FrFM with cosine similarity. R(V ) has the following

form:

R(V ) =
n∑
i=1

n∑
j=1

Ai,j
〈vi,vj〉
‖vi‖2‖vj‖2

(3.7)
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Directly minimising Eq. (3.3) with Eq. (3.7) is complicated. Rewriting

rows of V into products of their direction vectors and lengths leads to:

V =


w1v̂1

w2v̂2

...

wnv̂n

 ∈ Rn×k, v̂i =
vi
‖vi‖2

, wi = ‖vi‖2 (3.8)

Then Eq. (3.7) could be rewritten into:

R(V ) =
n∑
i=1

n∑
j=1

Ai,jv̂iv̂
T
j = tr(V̂ TAV̂ ) (3.9)

Substitute V with V̂ and w in formulation of FMs:

φFM(V̂ ,w,x) =
n∑
i=1

n∑
j=i+1

〈wiv̂i, wjv̂j〉xixj (3.10)

and finally we get loss function for FrFM-COS:

Lcos(V̂ ,w) = log(1 + exp(−yφFM(V̂ ,w,x))) +
λ1

2
‖w‖2

2 +
λ2

2
tr(V̂ TAV̂ )

s.t. ‖v̂i‖2 = 1, ∀i = 1, 2, ..., n. w ∈ R1×n
+ (3.11)

3.3.3 Optimisation

Similar to FMs, our loss functions are non-convex. Gradient descent is used to

find local minima of our loss functions. Stochastic Gradient Descent (SGD)

is widely used in optimisation of FMs and its variants. It has shown its

effectiveness. Mini-batch Gradient Descent also enjoys the advantages of

SGD while it is more efficient. Thus we adopt Mini-batch Gradient Descent in

optimisation. We apply AdaGrad (Duchi, Hazan & Singer 2011) to determine

the learning rate in each iteration for it has shown great power in similar

problems (Juan et al. 2016, Chin, Zhuang, Juan & Lin 2015). To lessen

over-fitting, we utilise early-stop strategy in the training of FrFM-EUC and

FrFM-COS. The best training epoch T will be decided based on a validation

set.
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FrFM-EUC

The gradient with regard to one sample (y,x) is:

∂Leuc(V )

∂vi
=

−y
1 + exp(yφFM(V,x))

(xi

n∑
j=1

vjxj − vix2
i )

+ (xi 6= 0)(λ1vi − λ2

n∑
j=1

Ai,j(vi − vj))
(3.12)

(xi 6=0) in Eq. (3.12) indicates that gradients would be zero if corresponding

features are zero. This strategy has been used in FFMs and performs well.

We can update model parameters with adaptive learning rate in iteration l:

G
(l+1)
i,f = G

(l)
i,f + (

∂Leuc(V )

∂vi,f

∣∣∣
V=V (l)

)2 (3.13)

v
(l+1)
i,f = v

(l)
i,f −

η√
G

(l+1)
i,f + ε

◦ ∂Leuc(V )

∂vi,f

∣∣∣
V=V (l)

(3.14)

◦ denotes element-wise multiplication of vectors. G stores the accumu-

lated square gradient for AdaGrad and ε is s a smoothing term that avoids

division by zero (we set it to 10−8 in experiments). The training process for

FrFM-EUC is presented in Algorithm 3.1.

FrFM-COS

The gradient with regard to one sample (y,x) is:

∂Lcos(V̂ ,w)

∂v̂i
=

−y
1 + exp(yφFM(V̂ ,w,x))

(wixi

n∑
j=1

v̂jwjxj − v̂iw2
i x

2
i )

+ (xi 6= 0)λ2

n∑
j=1

Ai,jv̂j

(3.15)

∂Lcos(V̂ ,w)

∂w
=

−y
1 + exp(yφFM(V̂ ,w,x))

((w ◦ x)(V̂ V̂ T − diag(V̂ V̂ T ))) ◦ x

+ λ1(x 6= 0) ◦w
(3.16)
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Algorithm 3.1 Training FrFM-EUC by Mini-batch Gradient Descent

INPUT: Data matrix D ∈ RM×n contains M samples, feature relation ma-

trix A, latent dimension k, hyper-parameters λ1, λ2, learning rate η, batch

size m, G(0) = 0.

INITIALISE: Randomly initialise V (0) ∈ Rn×k with values sampled from

a uniform distribution [0, 1/
√
k]. Calculate the number of batches b =⌊

M
m

⌋
.

for Epoch = 0 to T do

Shuffle the samples in D randomly.

Split D into batches X1, X2, ..., Xb ∈ Rm×n.

for i ∈ {1, 2, ..., b} do

Calculate the gradient of V by Eq. (3.12) for every sample in Xi and

compute the average.

Update accumulated square gradient G by Eq. (3.13).

Update V by Eq. (3.14).

end for

end for

(x 6= 0) is a binary row vector indicates non-zero indices of x. Similarly,

gradients would be zero if corresponding features are zero. With gradient in

hand, we can train the model similar to Algorithm 3.1. Differences are that

we need to project V̂ and w into feasible sets in each iteration.

3.4 Experiments

The experiments were performed on maintenance logs of railway points from

a large scale railway network. To make the results more persuasive, we also

performed experiments on another public dataset related to phishing website

detection, where the features are also categorical variables.
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Figure 3.1: An example for constructing a feature vector from a sample in

POINTS-3 dataset.

3.4.1 Data Set

POINTS-3 dataset was generated from the maintenance logs of Sydney

Trains’ railway points, plus corresponding equipment details. For numerical

features, they were simply transformed into features “Zero” or “Non-Zero”.

As illustrated in Figure 3.1, for one piece of equipment, we selected three

consecutive maintenance records: Maintenance 1, Maintenance 2 and Main-

tenance 3, and associated equipment details, to construct a feature vector.

We labelled the sample depending on whether a failure occurred after Main-

tenance 3 and before maintenance 4, as shown in Figure 3.2. If there was a

failure record, then this sample was labelled with “1”, otherwise “-1”.

Equipment details including equipment type, location and other features
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Figure 3.2: An example of labelling samples in POINTS-3 dataset.

were also concatenated to construct one data sample. We randomly split the

data set into 60% training set, 20% validation set and 20% test set.

Phishing dataset contains important features that have been proven to

be sound and effective in predicting phishing websites (Dheeru & Karra Taniskidou

2017). The data were randomly split into 64% for training set, 16% for vali-

dation set and 20% for test set.

Table 3.2 summarises the statistics of the datasets.

3.4.2 Baselines and Hyper-parameter Tuning

We compare the proposed method with three baselines.

LINEAR-LR denotes Logistic Regression with linear terms. It has been

proven to be effective in classification tasks with sparse data and has been

widely applied in failure prediction tasks thank to its interpretability and

simplicity (Dong, Tung, Chen, Liao & Pan 2011, Robles-Velasco, Cortés,

Muñuzuri & Onieva 2020). We implemented LINEAR-LR with Python li-

brary sklearn (Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel,

Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau,

Brucher, Perrot & Duchesnay 2011).

FM (Rendle 2010) is the implementation of Factorisation Machines de-

Table 3.2: Statistics of the datasets.

Data Set # Instances # Features # Fields # Positive Instances

POINTS-3 55784 2226 52 1701

Phishing 11055 68 30 6157

40



CHAPTER 3. FIELD-REGULARISED FACTORISATION MACHINES
FOR SPARSE HIGH-DIMENSIONAL DATA

fined in (2). We also included linear terms and bias term.

FFM (Juan et al. 2016) is the implementation of Field-aware Factorisa-

tion Machines. We also included linear terms and bias term.

FrFM-EUC and FrFM-COS stand for our methods proposed in this

Chapter.

Both FM and FFM were implemented by xLearn 1 with AdaGrad and

SGD optimiser. All hyper-parameters were chosen based on the validation

sets. The regularisation parameters were chosen from {10−6, 10−5, ..., 106}
for LINEAR-LR and {10−6, 10−5, ..., 10−1} for all other methods considering

their performance and training time on the validation sets. Learning rates for

AdaGrad were chosen from {0.02, 0.2}. Latent dimensions were chosen from

{20, 40, ..., 100} for FM and our method, and from {10, 20, ..., 50} for FFM.

The early-stop strategy was adopted for FM, FFM and our method to reduce

over-fitting. The batch size was set to 64 in the training of FrFM-EUC and

FrFM-COS.

3.4.3 Results and Metrics

Metrics

We use three performance metrics to evaluate the baselines and the proposed

methods, named Logloss, AUROC and AUPRC.

Logloss is given by following equation.

Logloss =
1

M

M∑
i=1

log(1 + exp(−yiŷi)) (3.17)

yi and ŷi are the label and model output for test sample i respectively. M is

the total number of test instances.

AUROC and AUPRC stand for area under receiver operating charac-

teristic curve and area under precision-recall curve respectively. AUROC is

more suitable for imbalance datasets as reported in literature (Ozenne, Subtil

1https://github.com/aksnzhy/xlearn
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Table 3.3: Comparison of LINEAR-LR, FM, FFM, FrFM-EUC and FrFM-

COS. The best results are bold and the second-best are underlined

POINTS-3 Phishing

Method AUROC
AUPRC

(recall>0.1)
Logloss AUROC Logloss

LINEAR-LR 0.7012 0.0641 0.1275 0.9886 0.1384

FM 0.6987 0.0622 0.1285 0.9911 0.1226

FFM 0.6974 0.0619 0.1291 0.9923 0.1134

FrFM-COS 0.7090 0.0676 0.1271 0.9925 0.1120

FrFM-EUC 0.7108 0.0674 0.1270 0.9950 0.0919

& Maucort-Boulch 2015, Saito & Rehmsmeier 2015, Davis & Goadrich 2006,

Boyd, Eng & Page 2013).

Results

Table 3.3 shows the results on different data sets. The best results are bold,

and the second best are underlined. We trained and tested these models five

times on each data set and reported the average results. POINTS-3 dataset

is an imbalanced data set with only 1701 positive samples out of 55784 sam-

ples, so AUPRC is more representative compared to AUROC. AUPRC were

calculated from recall > 0.1. A very low recall (< 0.1) is meaningless be-

cause in that case, most of the failures will be ignored. Phishing data set is

a balanced data set that won’t show much difference between AUROC and

AUPRC, so we only present the AUROC for it.

Experiment results show that the proposed methods perform best on

these two datasets. Precision-recall curves with regard to POINTS-3 dataset

for recall > 0.1 and precision> 0.06 are plotted in Figure 3.3. We drop the

segments where recall is smaller than 0.1.

Figure 3.3 shows that FrFM-COS can also achieve the best F1-score
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Figure 3.3: Precision-recall curves with regard to POINTS-3 dataset. We

drop the segments where recall is smaller than 0.1.
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Figure 3.4: Receiver operating characteristic curves with regard to Phishing

dataset.

(0.165) compared to other methods. By appropriately setting threshold value

for the classifier got from FrFM-EUC, we can get an overall Accuracy:

90.99%, with Precision: 11.02% and Recall: 27.65%. This may not be

a perfect prediction, but it is still acceptable considering that we didn’t use

any sensor data (e.g. current, voltage, force and so on). There are wrongly

recorded data and failures that are caused by vandalism which makes some

failures unpredictable. Outputs of the model could be used as references for

maintenance plans.

Receiver operating characteristic curves with regard to Phishing dataset

are plotted in Figure 3.4. Our method consistently outperformed other meth-

ods. Notice that this dataset contains important features that were carefully

designed for the phishing website prediction task, so that it is similar to

the maintenance logs where we can anticipate different features in the same

field would work differently towards the learning objectives. Performance of
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our method on this dataset again validates the effectiveness of the proposed

method under such situation.

3.5 Conclusion

In this chapter, we proposed the Field-regularised Factorisation Machines

for failure prediction of railway points. Field information is often ignored

in many related methods. Especially for the inner-field relationships among

features, there is limited work concerning them. The key components of

FrFMs are the regularisation terms that incorporate field information in the

training process. Two forms of FrFMs: FrFM-EUC and FrFM-COS are pre-

sented. Experiment results showed that the proposed method outperformed

some state-of-the-art methods in predicting the failure of railway points. We

also achieved a better result on a public dataset.

The predictions for points failure were not perfect but could be used as the

reference for maintenance plans. More accurate predictions will involve data

from other sources to enhance the model performance, as will be introduced

in Chapter 5. Besides, the proposed method used only second-order feature-

interactions, which limited its performance. However, the sparseness of the

data often hinders the learning of higher-order feature-interactions and can

cause the over-fitting problem. An important future research direction is

to design appropriate learning algorithms for learning higher-order feature-

interactions.
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Chapter 4

Missingness-pattern-adaptive

Model for Incomplete Data

Due to various reasons, data in CBM-related tasks are often incomplete.

In this chapter, we presented a general model for learning with incomplete

data. We showed that there was a competition in learning with data of differ-

ent missingness patterns, resulting in a suboptimal model for each pattern.

This inspired us to develop a method that could be appropriately adjusted

by missingness patterns, so that alleviated such competition between data.

This method was solely based on the observable features, so it did not incur

errors from imputation. In addition, a low-rank constraint was introduced

to promote the generalisation ability of the proposed model. Analysis of

the generalisation error justified this method theoretically. A subgradient

method was proposed to optimise the linear model with a proven conver-

gence rate. Experiments on different types of data showed that this method

compared favourably with typical imputation strategies and other state-of-

the-art methods for incomplete data. This idea was also combined with

neural networks to show the effectiveness of the proposed method.
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4.1 Introduction

As reviewed in Chapter 2, the main shortage of previous methods is that

they tend to use a universal model for all data, and thus ignore the inherent

differences between data with different missingness patterns. Missingness

patterns are commonly used to indicate the locations of the missing entries.

Samples may have varying subsets of observable features due to the inherent

properties of the instances. Some of the features may not even be defined for

some instances. Using the same model for these heterogeneous data limits

the performance of the model, and imputation may lead to severe deviation.

More importantly, the model could suffer from competition between data

with different missingness patterns. We illustrate such a phenomenon in

Figure 4.1. For two sets of data labelled as “.” and “+”, when we have

complete features of an instance, the best decision plane for classification

is shown in Figure 4.1a. However, if we use the available features (x, y) to

classify a point when feature z is missing, then use the coefficients of the

decision plane in Figure 4.1a regarding (x, y) is not optimal (shown as the

dashed line in Figure 4.1b). The best separating line, in this case, is the solid

line as shown in Figure 4.1b. These two patterns would compete against each

other when training with incomplete data, leading to a suboptimal model for

both cases. A straightforward way to minimise such influence is to learn

different decision functions for each missingness pattern. However, for some

missingness patterns, data can be insufficient for the training of the model,

which causes difficulties in generalisation.

Contribution This chapter proposed an adaptive model that can apply

associated decision functions to data with corresponding missingness pat-

terns and does not require the imputation of missing data. The contribution

is three-fold. First, for the first time, different models were learned for data

with different missingness patterns, while improving the generalisation abil-

ity by a low-rank constraint. Second, the generalisation error bound and

convergence property of this model were theoretically proven. Last, the idea
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(a)

X

Y

(b)

Figure 4.1: When all features (x, y, z) are observable, we have an optimal

separating plane in 4.1a. When only (x, y) are observable, the best separating

line is the solid line in 4.1b. The projection of optimal separating plane in

4.1b is the dashed line. If we train one model for both cases, we will probably

end with a compromise of them and get an inferior result.
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Figure 4.2: The margin of a sample that only has one feature (the x dimen-

sion) is measured both in the higher-dimensional space (ρ2) and the lower one

(ρ1). The lower-dimensional margin is larger and therefore we overestimates

the margin. (Chechik et al. 2008)

could be seamlessly incorporated into various neural networks with minimal

modification of network architectures.

4.2 Preliminaries

Apart from the competition between data with different missingness patterns

as shown in Figure 4.1, the margins under the incomplete data setting are

also different from the complete case.

Maximising the margin under incomplete data setting has been investi-

gated in (Chechik et al. 2008). Due to the absent features, the margins for

each missingness pattern can vary. Considering the classification case, Figure

4.2 shows the change of margins with an incomplete sample.

In order to minimise the margins under incomplete data setting, consid-

ering a dataset of n labelled instances {(xi, yi)}ni=1, the instance margin ρi

49



CHAPTER 4. MISSINGNESS-PATTERN-ADAPTIVE MODEL FOR
INCOMPLETE DATA

for i-th instance is defined as

ρi =
yiw

(i) · xi
||w(i)||

, (4.1)

where w(i) is the vector obtained by taking the entries of classifier w that are

relevant to known part of xi. || · || denotes the vector 2-norm. The decision

function is given by yi = w(i) · xi.
we then arrive at a new optimisation problem for the incomplete data

case

max
w

(
min
i

yiw
(i) · xi
‖w(i)‖

)
(4.2)

Extending above formulation to the non-separable case is however difficult

for optimisation, so an alternative solution is to use the average norm define

by
√

1
n

∑n
i=1 ||w(i)||2 to approximate the sample-specific denominator

∥∥w(i)
∥∥,

which leads to:

max
w

min
i

yiw
(i) · xi
‖w‖

(4.3)

which is similar to the standard SVM optimisation. Introduce the threshold

b, slack variables ξi, and hyper-parameter C to handle the non-separable

cases we get:

min
w,b,ξ

1

n

n∑
i=1

(
1

2

∥∥w(i)
∥∥2

+ Cξi

)
s.t. yi

(
w(i)xi + b

)
≥ 1− ξi, i = 1 . . . n

(4.4)

Such optimisation problem can be solve effectively as standard SVM. We

would also use the average norm in our formulation for a tractable optimisa-

tion algorithm.

4.3 Missingness-pattern Adaptive Model

In this section, we formulate our idea for binary classification, but it can

also be extended to multi-class or regression tasks with associated objective

functions. Given a data instance (x,m, y) with feature vector x ∈ Rd, label

y ∈ {−1,+1} and m ∈ Rd′ an indicator vector represents its missingness
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pattern. Without any prior knowledge, m will be a d-dimensional binary

vector. Each bit of m indicates the missingness of the corresponding bit in

x. For example, m = [1, 0] indicates x is a 2-dimensional feature vector, and

its second feature is missing. In some settings such as incomplete multi-view

learning, features are missing group-wise, so m can serve as a group-wise

indicator, thus making d′ much smaller than d.

In order to treat missingness patterns adaptively, the linear decision func-

tion can be formulated as:

f(x) = g(m)xo, (4.5)

where xo ∈ Rd denotes the x after zero out the missing values. In this way, it

is possible to apply different weight coefficients generated by g(m) for data

of different missingness patterns. g can be selected from a wide range of

function classes. In this work, we adopt a simple yet efficient form of g(m)

given by:

g(m) = (Hm̄)> (4.6)

with H ∈ Rd×2d′ serves as a dictionary for generating missingness-pattern-

specific functions. m̄ = [m>, (1−m)>]> is an augmented vector generated by

concatenating m and its element-wise logic NOT operation. In doing this,

for every distinct missingness pattern m, we have a corresponding weight

vector generated by Hm̄. Notice that we use m̄ instead of m to ensure that

for every missingness pattern we select a fixed number of elements from H.

Bias terms could also be incorporated into Eq.(4.5) by appending a constant

feature to xo and extend m and H accordingly. Thus the bias terms can also

be adaptively fitted to missingness patterns. For notational simplicity, we

omit them in our formulas.

In the spirit of large margin classifier, we can define a modified learning

objective which is specialised for incomplete data. Given a set of n labelled
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observations {(xi,mi, yi)}ni=1, the learning objective is:

min
H

1

n
‖M � (HM̄)‖2

F + η1‖H‖2
F +

η2

n

n∑
i=1

ξi,

s.t. yi(m̄
>
i H

>xoi ) ≥ 1− ξi, ξi ≥ 0, i = 1, 2, · · · , n,

rank(H) ≤ k,M = [m1, · · · ,mn], M̄ = [m̄1, · · · , m̄n],

(4.7)

with ‖ · ‖F and � denotes the Frobenius norm and the Hadamard product

respectively. ξi is the slack variable for the margin. η1, η2 and k are hyper-

parameters. The first term is the approximate denominator for instance-

based margins (Chechik et al. 2008) calculated from the average norm as we

discussed in the preliminaries. Because each instance has its own observ-

able part, we should calculate the margin regarding observable part only.

Therefore, we use the mask matrix M to zero out the weights in HM̄ cor-

responding to missing features. We do not adopt the exact instance-based

margin here since it brings difficulties in optimisation (Chechik et al. 2008).

We also introduce η1 to constraint the Frobenius norm of H and fix it to be

a small constant.

Eq.(4.5) allows us to define a decision function for every missingness pat-

tern while connecting them through a low-rank matrix H. The low-rank

constraint introduces correlations between models for different missingness

patterns, so that facilitates the learning of models related to some rare miss-

ingness patterns.

Our idea can also be applied to many existing neural networks with min-

imal modification. Assume the output of a neural network with complete

data can be expressed as ŷ = f(x; θ) with θ denote parameters of the net-

work. We can adjust the weight of observed features by missingness pattern,

which gives the output ŷ = f((Hm̄)� xo; θ). The learning objective can be

formulated as:

min
U,V,θ

n∑
i=1

L
(
yi, f((U>Vmi)� xoi ; θ)

)
(4.8)

where L is the loss function and we incorporate the rank constrain by de-

composing H into product of U> and V with U ∈ Rk×d and V ∈ Rk×2d′ . U
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and V would be learned together with the network’s parameters θ in an end-

to-end manner. The motivation behind the formula is clear - we can adjust

the importance of observed features when some other features are missing.

4.4 Generalisation Error Bound Analysis

In this section, we theoretically analyse the generalisation error of our linear

model. We give a rather general bound on the generalisation error based on

the growth function. The bound also supports the low-rank constraint in our

model.

We firstly introduce some common settings in this section. A labelled

training set is given by D = {(xi,mi, yi)}ni=1, where xi ∈ X with X a

subset of Rd, yi ∈ {−1,+1} and mi ∈ {0, 1}d
′

the missingness indicator

vector. We assume that training data are drawn independently and iden-

tically distributed (i.i.d.) (for non-i.i.d case more information regarding

the data distribution is required (Mohri & Rostamizadeh 2008)) accord-

ing to some unknown distribution D and denote D ∼ Dn. Let the hy-

pothesis set F be a family of functions mapping X to {−1,+1} defined by

F = {x 7→ (Hm̄)>xo : rank(H) ≤ k}. The empirical error of a hypothesis

f ∈ F over the training set D is defined as R̂D(f) = 1
n

∑n
i=1 1f(xi)6=yi where

1f(xi)6=yi = 1 if f(xi) 6= yi and 0 otherwise. The generalisation error of f is

defined by RD(f) = E
(x,y)∼D

[
1f(x)6=y

]
.

We start with a bound on the generalisation error RD(f) given by (Mohri,

Rostamizadeh & Talwalkar 2018, Corollary 3.9).

Lemma 4.1 (Mohri et al. 2018, Corollary 3.9) For any δ > 0, with proba-

bility at least 1− δ, for any f ∈ F ,

RD(f) ≤ R̂D(f) +

√
2 log ΠF(n)

n
+

√
log 1

δ

2n
, (4.9)

where ΠF(n) is the growth function for the hypothesis set F with n samples.
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The growth function ΠF(n) is the maximum number of distinct sign-patterns

on n samples that can be produced with functions in F . We will give the

bound and formal definition on ΠF(n) latter.

We restate the following Lemma (Bartlett, Harvey, Liaw & Mehrabian

2019, Lemma 17) for bounding the growth function:

Lemma 4.2 (Bartlett et al. 2019, Lemma 17) Let P1, P2, ..., Pn be n real

polynomials in l real variables, and suppose the degree of each Pi does not

exceed t. If n ≥ l then s(P1, P2, ..., Pn) ≤ 2(2ent/l)l with s(P1, P2, ..., Pn)

denotes the total number of sign-patterns of the polynomials P1, P2, ..., Pn.

Lemma 4.2 provides a bound for sign patterns of polynomials. This bound

assumes Pi 6= 0. This coincides with most of the practical cases. If we

would like to consider a more complete setting that allows Pi = 0, we can set

sign(0) = 1 and follow the results in (Alon 1995, Proposition 5.5) to obtain

s(P1, P2, ..., Pn) ≤ (8ent/l)l.

We then give the definition of the growth function ΠF(n) and its bound

by following theorem.

Theorem 4.3 The growth function ΠF(n) of hypothesis set F on n samples

is defined and bounded by:

ΠF(n) = max
{x1,...,xn}⊆X

∣∣ {(sign(f(x1)), ..., sign(f(x1))
)

: f ∈ F
} ∣∣ ≤ 2(

2ent

l
)l,

(4.10)

where t = 2 and l = k(d+ 2d′).

Proof 4.3 We use the definition of growth function following (Mohri et al.

2018, Definition 3.6), where ΠF(n) is the maximum number of distinct ways

in which n points can be classified using hypotheses in F .

Consider f(x1), ..., f(xn) to be n real polynomials. Because rank(H) ≤
k, H can be decomposed into product of U> and V with U ∈ Rk×d and

V ∈ Rk×2d′. Treat elements of U and V as variables, so that the degree of

each polynomial f(xi) is 2 and we have k(d + 2d′) variables. Apply Lemma
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4.2, and notice that the total number of sign-patterns equals to the number

of distinct ways n points can be classified, we complete the proof.

Substitute the result of theorem 4.3 into Lemma 4.1, we immediately

arrive at the following corollary.

Corollary 4.4 For any f ∈ F and δ > 0, following generalisation error

bound holds with probability at least 1− δ:

RD(f) ≤ R̂D(f) +

√
2k(d+ 2d′) log 4en

k(d+2d′)
+ log 4

n
+

√
log 1

δ

2n
, (4.11)

The rank k of H, the feature dimension d, the dimension d′ of missing-

ness indicator vector m and the sample size n jointly represent the upper

bound of generalisation error in above corollary. Clearly this bound de-

creases when sample size n increases. A low-dimensional feature vector x

and a low-dimensional missingness pattern indicator vector m are both ben-

eficial to the model generalisation. It also shows that appropriately constrain

the rank k of H can be helpful to reduce the error.

4.5 Efficient Training Procedure

The optimisation of Eq.(4.8) is based on stochastic gradient descent with

PyTorch (Paszke, Gross, Chintala, Chanan, Yang, DeVito, Lin, Desmaison,

Antiga & Lerer 2017) implementation. We discuss the learning problem

with regard to Eq.(4.7) in this section. It is non-convex due to the rank

constraint. Notice that H can be decomposed as H = U>V with U ∈ Rk×d

and V ∈ Rk×2d′ . Then the loss function associated with Eq.(4.7) is convex

regarding U with fixed V and vice versa. We can optimise them alternatively

until convergence. A straightforward way to minimise the loss function is

through the subgradient method. We fix some subgradient oracles for U and
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V as:

gU =
2

n
V M̄

(
M> �

(
M̄>V >U

))
+ 2η1V V

>U − η2

n

∑
i∈Isv

yiV m̄ix
o
i
> (4.12)

gV =
2

n
U
(
M �

(
U>V M̄

))
M̄> + 2η1UU

>V − η2

n

∑
i∈Isv

yiUxoi m̄
>
i (4.13)

where Isv denotes indices of support vectors. Given the subgradients, we

can optimise U with fixed V and optimise V with fixed U iteratively until

convergence. Below we will introduce the subroutine for optimising U with

fixed V .

We adopt the Restarted SubGradient method (Yang & Lin 2018) in the

training process. Let αs and Ts be the step-size and number of iterations in

stage s. In each stage, we adopt the following update rule:

U t+1
s = U t

s − αs
gU t

s∥∥gU t
s

∥∥
F

, t = 1, · · · , Ts, (4.14)

and output U1
s+1 = arg minU∈{U1

s ,...,U
Ts+1
s } F (U), where F (U) is the loss func-

tion associated with U .

With α1 and T1 set appropriately, αs and Ts are updated by:

αs+1 =
1

2
αs, Ts+1 =

1

2
Ts, (4.15)

Algorithm 4.1 presents the training procedure for optimising U . Calculat-

ing the subgradient requires linear time regarding n, d, d′ and square time

regarding the rank k.

4.6 Proof of Convergence

In this section, we discuss the rate of convergence of Algorithm 4.1. The key

factor that influences the overall convergence is the convergence of subrou-

tines to optimise U and V . We will discuss the rate of convergence regarding

optimisation of U given V . For optimisation of V , a similar result holds, and

we omit the details here.

56



CHAPTER 4. MISSINGNESS-PATTERN-ADAPTIVE MODEL FOR
INCOMPLETE DATA

Algorithm 4.1 Subroutine for optimising U

Input: U1
1 , V , the number of stages S.

Output: U1
S+1.

Initialisation: ε0 = F (U1
1 ). Calculate C, γ, LΦ, Lh, α1, T1.

for s = 1 to S do

αs = (1
2
)s−1α1; Ts = 2s−1T1;

for t = 1 to Ts do

Calculate U t+1
s by Eq.(4.14);

U1
s+1 = arg minU∈{U1

s ,...,U
Ts+1
s } F (U);

Our loss function is non-Lipschitz and can not be guaranteed to be

strongly-convex regarding U . These are often required for deriving a con-

vergence rate for subgradient methods. Thanks to the work in Necoara,

Nesterov & Glineur and Grimmer, we can show that this algorithm gives an

ε-approximate solution in O(1
ε
) iterations.

We first present our main theorem regarding the rate of convergence.

Theorem 4.5 Let ε0 = F (U1
1 ) and F ∗ be the minima of F (U). Let γ =

max(
√

8LΦ, 8Lh), C = 1
η1σ2

min(V )+
where σmin(V )+ is the smallest non-zero

singular value of V . Set

α1 =
ε0

γ
√
η2

,

T1 = d 1

ε0
max(

√
8LΦ

9
η2Cγ, 8Lh

√
η2Cγ)e,

(4.16)

where d·e denotes the ceiling function, then Algorithm 4.1 requires

O
(√η2Cγ

ε
max(

√
8
9
LΦη2, 8Lh)

)
iteration complexity with total S = dlog2( ε0

ε
)e

stages to output U that satisfies F (U)− F ∗ ≤ ε.

Proof sketch: We will firstly bound the Euclidean distance between U and

the optimal solution U∗, with the difference of loss function F (U) − F ∗.

Then we can substitute this upper bound recursively into the upper bound
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regarding subgradient method provided in (Grimmer 2019), which completes

the proof.

Firstly, we give following lemma to bound the distance between U and

the optimal solution U∗.

Lemma 4.6 Denote by U∗ the optimal set contains all minimisers of F . Let

U∗ denote the element in U∗ which is closest to U. The following holds:

‖U − U∗‖2
F ≤ C(F (U)− F ∗) (4.17)

with a constant C = 1
η1σ2

min(V )+
and F ∗ is the minimal value of F .

Proof 4.6 Our loss function regarding H = U>V has the form of:

K(H) =
1

n
‖M � (HM̄)‖2

F + η1‖H‖2
F +

η2

n

n∑
i=1

`(yi, m̄
>
i H

>xoi ) (4.18)

Clearly K(H) is a ρ-strongly convex function with ρ ≥ 2η1. Following proof of

(Necoara, Nesterov & Glineur 2019, Theorem 8), the set of optimal solutions

regarding minimising F is U∗ = {U : U>V = Ω∗}. Given V and U , by

definition of U∗ we have:

U∗ = min
U ′∈U∗

‖U ′ − U‖2
F (4.19)

From KKT conditions of Eq.(4.19) we know u∗i −ui + V βi = 0 where u∗i , ui

and βi denote i-th column vectors of U∗, U and related Lagrange multipliers

respectively. This implies u∗i − ui ∈ Im(V ). From Courant-Fischer theorem

we know:

‖V >ui − V >u∗i ‖2 ≥ σmin(V )+‖ui − u∗i ‖2 (4.20)

Apply Eq.(4.20) to every column of U we get:

‖V >U − V >U∗‖2
F ≥ σ2

min(V )+‖U − U∗‖2
F (4.21)

By definition of strongly-convex function:

K(H1) ≥ K(H2) + 〈k(H2), H1 −H2〉+
ρ

2
‖H1 −H2‖2

F (4.22)
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where k(H2) ∈ ∂K(H2) is any subgradient of K at H2. Let H1 = U>V and

H2 = (U∗)>V , and notice that K(U>V ) = F (U). We have:

F (U) ≥ F ∗ +
〈
V k((U∗)>V )>, U − U∗

〉
+
ρσ2

min(V )+

2
‖U − U∗‖2

F (4.23)

Because V ∂K((U∗)>V )> = ∂F (U∗). According to optimality conditions of

subgradient method, we can choose V k((U∗)>V )> = 0 ∈ ∂F (U∗). Thus,

ρσ2
min(V )+

2
‖U − U∗‖2

F ≤ F (U)− F ∗ (4.24)

Because ρ ≥ 2η1,

‖U − U∗‖2
F ≤

1

η1σ2
min(V )+

(F (U)− F ∗) (4.25)

which completes the proof.

Our loss function has the form of F (U) = Φ(U) + h(U) with:

Φ(U) =
1

n
‖M � (U>V M̄)‖2

F + η1‖U>V ‖2
F (4.26)

h(U) =
η2

n

n∑
i=1

`(yi, m̄
>
i V
>Uxoi ) (4.27)

where ` is the hinge loss define by `(y, ŷ) = max(0, 1 − yŷ). One can eas-

ily verify that Φ(U) has LΦ-Lipschitz gradient and h(U) is an Lh-Lipschitz

function. Then another useful Lemma we will use recursively is:

Lemma 4.7 With one stage in Algorithm 4.1, we have

min
t=1...Ts

{F (U t
s)−F ∗} ≤

LΦ

2

(
‖U1

s − U∗‖
2
F

2Tsαs
+
αs
2

)2

+2Lh

(
‖U1

s − U∗‖
2
F

2Tsαs
+
αs
2

)
(4.28)

Lemma 4.7 is proved in (Grimmer 2019) by firstly applying (Grimmer 2019,

Lemma 2.3) to our loss function F (U) and then applying (Grimmer 2019,

Theorem 1.2).
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Combine Lemma 4.6 and Lemma 4.7 and notice that F (U1
s ) ≥ F (U1

s ) −
F ∗ ≥ 0 we get:

min
t=1...Ts

{F (U t
s)− F ∗} ≤

LΦ

2

(
CF (U1

s )

2Tsαs
+
αs
2

)2

+ 2Lh

(
CF (U1

s )

2Tsαs
+
αs
2

)
(4.29)

We assume that F (U1
s ) ≤ η2. This could be easily guaranteed by setting

U = 0 at initialisation so that F (0) ≤ η2. When η2 ≥ 1, set the step size αs

and number of iteration Ts as:

αs =
F (U1

s )

γ
√
η

2

(4.30)

Ts = d 1

F (U1
s )

max(

√
8LΦ

9
η2Cγ, 8Lh

√
η2Cγ)e (4.31)

We can obtain mint=1,...,Ts+1{F (U t
s) − F ∗} ≤ F (U1

s )
2

. We choose the

best U in stage s as the initial values in stage s + 1 following U1
s+1 =

arg minU∈{U1
s ,...,U

Ts+1
s } F (U), so that ‖U1

s+1 − U∗‖2
F ≤ C(F (U1

s+1) − F ∗) ≤
CF (U1

s )
2

. Applying the inequality recursively, we get αs+1 = αs

2
, Ts+1 = 2Ts,

mint=1,...,TS+1{F (U t
S) − F ∗} ≤ F (U1

1 )

2S
. In order to get U that satisfies

F (U)−F ∗ ≤ ε, Algorithm 4.1 requires S = dlog2( ε0
ε

)e stages with ε0 = F (U1
1 ).

Summing up the iterations for all stages and noticing that it is a geometric

series, gives the iteration complexity O
(√η2Cγ

ε
max(

√
8
9
LΦη2, 8Lh)

)
.

When η2 < 1, the iteration complexity will be smaller than

O
(
Cγ
ε

max(
√

8
9
LΦ, 8Lh)

)
to satisfy F (U) − F ∗ ≤ ε. This can be verified

by setting η2 = 1 in Eq.(4.30), Eq.(4.31) and substituting them recursively

into Eq.(4.29). Thus we complete the proof.

Theorem 4.5 shows that Algorithm 4.1 has sublinear convergence rate.

4.7 Experiments

In this section, we present experiments on some real datasets with internally

missing attributes as well as artificially missing entries.
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Table 4.1: Summary of datasets

Dataset Instances Features % of Missing

bands 539 19 5.38%

hepatitis 155 19 5.67%

horse 368 22 23.80%

mammographic 961 5 3.37%

pima 768 8 12.24%

4.7.1 Linear Model

We apply our method learned through Eq.(4.7) on several real datasets re-

trieved from UCI repository (Dua & Graff 2017) with internally missing at-

tributes. Table 4.1 summarises the datasets. We randomly split the dataset

into 70% training set and 30% test set. To consider a more general case, we

randomly removed 30% of the values in the training set and test set. As a

result, the missing rate would be higher than 30% for all datasets, and the

missingness mechanisms are more complex than the original datasets.

We considered methods with publicly available codes. These baselines like

zero, mean and KNN imputation are quite general methods that have been

widely used in many CBM tasks (Bennane & Yacout 2012). We compared

our method with the following baselines:

• Flag: Additional binary features indicating the missingness pattern of

a given instance were concatenated to the original feature vector. The

missing values of the original feature vector were set to zero.

• Zero: Missing values were set to zero.

• Mean: Missing features were set to averages of corresponding features

from other instances that were not missing.

• KNN: Missing features of an instance were filled with means of those

features calculated from the K-nearest neighbours of this instance. The
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neighbourhood was measured using Euclidean distance with observed

features. The K was chosen from {3, 4, 5}.

• GMM: Missing values in the training set were filled in an iterative

way between two steps: (1) learning a GMM with the filled data and

(2) re-filling missing values using components’ means, weighted by the

posterior probabilities of related components generated the sample. For

the test set, we used the learned GMM to iteratively fill the missing

values until convergence according to step (2). We chose the number of

the mixture components from {3, 4, 5}. This idea is similar to that in

(Ghahramani & Jordan 1994, Ouyang et al. 2004, Chechik et al. 2008).

• MICE: MICE iteratively imputed each missing feature by regression

model based on other features (Azur, Stuart, Frangakis & Leaf 2011).

We chose the linear regression to fit the models.

• geom: This method was proposed by Chechik et al.. It consid-

ers sample-specific margins. We used the iterative algorithm as sug-

gested there with 5 iterations. The parameter C were selected from

{10−5,...,105}.

• karma: This algorithm was presented in (Hazan, Livni & Mansour

2015). It trained a classifier under the low-rank assumption of

data. The parameters γ and C were selected from {1, 2, 3, 4} and

{10−5,...,105}.

We combined the Flag, Zero, Mean, KNN, GMM and MICE with Sup-

port Vector Machines (SVM) and chose the parameter C for SVM from

{10−5,...,105}. Data were normalised to zero mean and unit covariance af-

ter imputation for imputation-based methods and normalised based on ob-

served features for geom, karma and our method. We fixed η1 = 10−6 for

our method. η2 and k were chosen from {10−5,...,105} and {2, 4, ..., d} where

d is the feature dimension of related dataset. All the hyper-parameters are

selected based on 5-fold cross-validation on training sets.
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Experiment results are presented in Table 4.2. We repeated the experi-

ments 5 times to report the classification accuracy with mean and standard

deviation.

Our method achieved the best accuracy on all 5 datasets with additional

30% entries removed. In general, our method is better than imputation

methods, because inaccurate imputation could deteriorate the downstream

classification task. Our method also outperforms Flag, which indicates that

simply adding the missingness pattern as additional features is not as good

as our strategy. These datasets contain inherent missing features, and we

also removed some values randomly. These factors make the missingness

mechanism complicated, and it is hard to learn a universal model that fits

all these heterogeneous missingness patterns. Our method tries to adaptively

apply the classifiers specialised to different missingness patterns, which makes

it capable of learning some missingness-pattern specific classifiers.

We present experiments with the original datasets here in Table 4.3. The

original datasets contain internally absent attributes. Our model consistently

outperforms other baselines except on pima dataset. The performance gaps

between all models are relatively small due to the low missing percentages.

4.7.2 Neural Networks

We compare our method with other baselines based on neural networks. The

experiments were conducted on three datasets:

• Sensorless Drive Diagnosis (Bayer, Enge-Rosenblatt, Bator &

Mönks 2013): This dataset is retrieved from UCI repository (Dua &

Graff 2017). It consists of 11 classes, 58509 instances, and each instance

has 49 features. The datasets were randomly split into 50% training

set and 50% test set. We randomly selected 25% of the training data

as the validation set.

• MNIST (LeCun, Cortes & Burges 2010): This is a dataset for classi-

fication of handwritten digits. The dataset contains 784 features and
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Table 4.2: Classification accuracy (mean±std) with additional 30% entries removed for all datasets. The best results

are bold and the second best are underlined.

Dataset

Method bands hepatitis horse mammographic pima

Flag 0.583±0.006 0.845±0.016 0.825±0.007 0.764±0.006 0.737±0.022

Zero 0.597±0.022 0.842±0.017 0.816±0.015 0.761±0.018 0.736±0.010

Mean 0.586±0.008 0.843±0.017 0.822±0.013 0.774±0.009 0.740±0.002

MICE 0.575±0.027 0.774±0.044 0.712±0.041 0.772±0.016 0.738±0.023

GMM 0.572±0.021 0.825±0.037 0.805±0.013 0.768±0.012 0.742±0.021

KNN 0.592±0.016 0.812± 0.037 0.836±0.026 0.762±0.006 0.747±0.009

geom 0.575±0.023 0.834±0.025 0.819±0.022 0.762±0.009 0.742±0.006

karma 0.551±0.040 0.817±0.032 0.759±0.022 0.759±0.014 0.740±0.009

Ours 0.648±0.021 0.868±0.009 0.840±0.011 0.776±0.010 0.756±0.006
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Table 4.3: Classification accuracy (mean±std) on original datasets. The best results are bold.

Dataset

Method bands hepatitis horse mammographic pima

Flag 0.617±0.000 0.872±0.000 0.864±0.000 0.778±0.000 0.783±0.000

Zero 0.606±0.002 0.851±0.000 0.838±0.000 0.796±0.000 0.801±0.000

Mean 0.611±0.002 0.872±0.000 0.847±0.000 0.796±0.000 0.792±0.000

MICE 0.617±0.000 0.809±0.000 0.856±0.000 0.785±0.000 0.775±0.000

GMM 0.594±0.013 0.872±0.021 0.841±0.011 0.779±0.010 0.787±0.023

KNN 0.593±0.010 0.847±0.009 0.847±0.000 0.775±0.002 0.805±0.000

geom 0.605±0.000 0.872±0.000 0.865±0.000 0.789±0.000 0.792±0.000

karma 0.611±0.040 0.809±0.000 0.838±0.000 0.799±0.000 0.797±0.005

Ours 0.678±0.005 0.872±0.000 0.876±0.007 0.799±0.001 0.791± 0.002
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has a training set of 60000 examples and a test set of 10000 examples.

We randomly selected 20% of data in the training set as the validation

set.

• Avila (De Stefano, Maniaci, Fontanella & di Freca 2018): The Avila

data set has been extracted from 800 images of the “Avila Bible”, an

XII century giant Latin copy of the Bible. The prediction task consists

in associating each pattern to a copyist. It consists of 12 classes, 20867

instances, and each instance has 10 features.

karma and geom cannot be applied to neural networks, so we omit them

here. MICE cannot scale to MNIST dataset due to the high dimensionality

of feature vectors. We compared an additional method proposed recently in

(Śmieja, Struski, Tabor, Zieliński & Spurek 2018) and named it PMNN.

The number of components of GMM for PMNN was chosen from {3, 4, 5}.
We did not compare with other neural networks for classification since they

required complete instances for training. We compared all the baselines based

on a multilayer perceptron (MLP) consists of 3 ReLU hidden layers with 100

neurons per layer. We used the cross-entropy loss as the loss function in

training. All hyper-parameters is selected based on the validation set. The

range of hyper-parameters was similar to the linear model except that k was

chosen from {21, 22, ..., 2log2 d} where d is the feature dimension. Because

these datasets were complete, we randomly removed 10%, 30%, 50%, 70%,

90% of values in them. We repeated this procedure 5 times to report the

classification accuracy with mean and standard deviation.

Table 4.4, Table 4.5 and Table 4.6 show the results of our method together

with some baselines. The results show the advantage of our method over

classical imputation methods and PMNN. Notice that PMNN produced a

poor result when the missing ratio was low. PMNN is required to fit a

GMM together with the neural network, but the GMM of PMNN is only

trained with incomplete instances. Unlike GMM for imputation, where all

data are used to fit the GMM, their model cannot be trained well when the

percentage of missing is low. Flag shows good performance on Sensorless
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Table 4.4: Classification accuracy (mean±std) on Sensorless Drive Diagnosis dataset. The best results are bold and

the second best are underlined.

Percentage of missing

Method 10% 30% 50% 70% 90%

Zero 0.908±0.001 0.852±0.011 0.769±0.005 0.618±0.005 0.317±0.002

Mean 0.947±0.004 0.907±0.001 0.816±0.003 0.650±0.005 0.329±0.003

MICE 0.717±0.001 0.422±0.009 0.483±0.010 0.322±0.007 0.197±0.007

GMM 0.938±0.002 0.890±0.005 0.805±0.007 0.601±0.007 0.327±0.003

KNN 0.936±0.004 0.847±0.003 0.725±0.003 0.398±0.004 0.215±0.005

Flag 0.970±0.001 0.925±0.001 0.834±0.002 0.677±0.003 0.345±0.004

PMNN 0.230±0.001 0.886±0.001 0.781±0.001 0.649±0.002 0.318±0.001

Ours 0.976±0.001 0.940±0.001 0.858±0.002 0.695±0.002 0.351±0.002
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Table 4.5: Classification accuracy (mean±std) on MNIST dataset. The best results are bold and the second best

are underlined.

Percentage of missing

Method 10% 30% 50% 70% 90%

Zero 0.957±0.001 0.942±0.002 0.918±0.002 0.863±0.003 0.688±0.003

Mean 0.964±0.001 0.951±0.001 0.933±0.001 0.891±0.003 0.727±0.004

GMM 0.963±0.002 0.925±0.003 0.806±0.011 0.636±0.006 0.379±0.012

KNN 0.965±0.001 0.941±0.002 0.864±0.001 0.703±0.023 0.223±0.012

Flag 0.962±0.001 0.935±0.002 0.908±0.003 0.847±0.012 0.360±0.045

PMNN 0.933±0.001 0.910±0.002 0.883±0.003 0.842±0.002 0.700±0.004

Ours 0.970±0.001 0.958±0.001 0.940±0.001 0.900±0.002 0.739±0.004
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Table 4.6: Classification accuracy (mean±std) on Avila dataset. The best results are bold and the second best are

underlined.

Percentage of missing

Method 10% 30% 50% 70% 90%

Zero 0.722±0.002 0.630±0.005 0.553±0.006 0.496±0.004 0.433±0.002

Mean 0.718±0.005 0.630±0.005 0.556±0.003 0.492±0.003 0.433±0.002

MICE 0.717±0.005 0.618±0.005 0.435±0.007 0.422±0.002 0.412±0.001

GMM 0.722±0.004 0.633±0.004 0.557±0.003 0.470±0.002 0.432±0.002

KNN 0.746±0.004 0.620±0.002 0.536±0.006 0.474±0.003 0.426±0.002

Flag 0.713±0.005 0.630±0.004 0.555±0.003 0.491±0.002 0.433±0.002

PMNN 0.333±0.004 0.445±0.003 0.526±0.003 0.473±0.004 0.412±0.001

Ours 0.765±0.002 0.646±0.004 0.548±0.003 0.496±0.003 0.434±0.001
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Drive Diagnosis dataset. However, its performance is limited on MNIST

dataset, possibly because of the higher dimensionality of MNIST dataset.

This indicates that the missingness patterns can be important in learning

with incomplete data, but should be wisely incorporated into the model

equation. Our model consistently outperforms other baselines, which verifies

the effectiveness of our strategy to adjust the importance of present features

by the missingness patterns.

4.8 Conclusion

This chapter proposed a general method for learning with incomplete data,

where data of different missingness patterns are treated differently in the

model level. This reduces the competition between data of different missing-

ness patterns in training. A linear model was proposed that can be adaptively

applied to data with different missingness patterns. Analysis of error bound

justifies this model in the linear case. Analysis of generalisation for the neu-

ral network is a challenging topic that being postponed to future work. Our

experiment results verified the effectiveness of our model empirically. The

dimension of missingness indicator vectors plays an important role in the

computation complexity and generalisation error. Our future work will focus

on how to develop a lower-dimension representation for missingness indica-

tor vectors. Although we do not impute the missing data for the proposed

method, it does not conflict with imputation methods. How to combine var-

ious imputation methods with our model is another interesting future work.
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Chapter 5

Sample-adaptive

Multiple-kernel Learning for

Learning with Multi-source

Data

In practice, CBM data can be generated from multiple sources with different

format and frequency. For different pieces of equipment, the available data

sources can differ. Some of data sources can be absent due to transmission

error, human misplay, or sensor malfunction. This chapter introduced the

sample-adaptive multiple-kernel learning for the combination of multi-source

data. Similar to Chapter 3, a case study was conducted on the multi-source

data generated by railway points of a large-scale railway network.

5.1 Introduction

A railway junction is controlled jointly by one or more ends of points. They

work together to control the routes of trains. We treat the set of railway

points in a railway junction as a whole to predict their failures.

Apart from the delay and cancellation of trains, failure of points can also
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cause severe economic loss and casualties. Railway points count for almost

half of all train derailments in the UK (Ishak, Dindar & Kaewunruen 2016).

On the morning of 12 December 1988, Clapham Junction rail crash 1 killed 35

people and injured 484 people. More than 20% of incidents in Sydney Trains

rail network were caused by points failures. Maintaining railway points safe,

and forecasting the incoming failure are vital tasks for reliable rail trans-

portation.

Routine maintenance is usually performed on railway points to ensure

the correctness and reliability of them. Such work is done by field engineers

to inspect and test the equipment at a fixed time interval. However, this

strategy cannot catch the rapid change of equipment status. For example,

when extreme weather occurs, points often degrade faster than usual. As a

result, they are more likely to fail soon. Instead of relying on passive routine

maintenance, we could benefit more from predictive maintenance - which

flexibly arranges the maintenance work according to the running condition

of equipment.

Forecasting the failures is a critical step in predictive maintenance. Some

research has been conducted on this topic (Camci et al. 2016, Garćıa Márquez

et al. 2010, Oyebande & Renfrew 2002, Tao & Zhao 2015, Yilboga et al. 2010).

Delicate sensors usually serve as data collectors for voltages, currents and

forces in related work. Installation of sensors incurs costly labour and mate-

rial expenses, as well as the possibility of sensor malfunction. Adding sensors

for in-service equipment would also induce disruption to traffic. This is es-

pecially unacceptable for a large and busy rail network. These make the

prediction with sensors’ data expensive, or even infeasible. On the contrary,

one can easily collect heterogeneous data from other sources such as weather,

movement logs, and equipment details without an additional hardware up-

grade.

Gathering available data from multiple sources enriches our knowledge

on the working status of points. However, this also brings extra problems.

1https://en.wikipedia.org/wiki/Clapham_Junction_rail_crash
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Firstly, data collected from different sources are often in incompatible for-

mats, and they play different roles in revealing the condition of equipment.

Secondly, we are not guaranteed that data are always intact - even for a

single source. Actually, in most case, we can only feed incomplete data into

our model. Besides, our data were collected upon 350 sets of railway points.

They are possibly located in a rural area, city centre, or from a different point

of view, bridges, tunnels. They can also be of various types and made by

different manufacturers. These add up to the difficulties in designing models.

To summarise, we are faced with three main challenges here:

• How to combine information from multiple sources efficiently and ef-

fectively?

• How to deal with missing data?

• How to consider the distinct and shared properties between different

sets of railway points simultaneously?

To address these challenges, this chapter proposed a novel multiple kernel

learning algorithms. This method was developed based on the multiple-kernel

learning framework (Gönen & Alpaydın 2011). Multiple-kernel learning has

attracted much attention over the last decade. It has been regarded as a

promising technique for combining multiple data channels or feature subsets

(Xu, Jin, Yang, King & Lyu 2010), which exactly meets our requirements.

Different kernel mapping functions were applied to our data from different

sources. Besides, we also concatenated all the data to form a data source so

that the inter-source correlations could be found. An adaptive kernel weight

determined by both properties of each individual set of railway points and the

missingness pattern of data makes our model robust, effective and unique.

The main contributions of this work can be shown in the following aspects:

• A universal framework was provided to predict points’ failure with

multi-source data. Our data are easy to obtain for most of the rail

networks over the world without a hardware upgrade, and thus could

be used in many other rail networks.

73



CHAPTER 5. SAMPLE-ADAPTIVE MULTIPLE-KERNEL LEARNING
FOR LEARNING WITH MULTI-SOURCE DATA

• This work firstly introduces missingness-pattern-adaptive kernel weight

into existing multiple-kernel learning framework.

• With a sample adaptive kernel weight, the proposed model can capture

the distinct and share properties of different railway points.

• An optimisation algorithm was developed to optimise the proposed

model. Through random feature approximation together with mini-

batch gradient descent, the proposed method can be applied on large

datasets.

• Experiments were conducted on a real-world dataset collected from a

wide range of railway points over three years. The results clearly show

the effectiveness of the proposed method.

5.2 Backgrounds

We give a brief introduction to failure prediction of railway points and the

formulation of multiple-kernel learning (MKL) algorithm.

5.2.1 Failure Prediction of Railway Points

Knowing that railway points directly affect the capacity and reliability of

rail transport, some research has been conducted on failure prediction of

railway points (Camci et al. 2016, Garćıa Márquez et al. 2010, Oyebande &

Renfrew 2002, Tao & Zhao 2015, Yilboga et al. 2010). Sensor data such as

voltages, currents and forces were widely used in these works. They were

collected in laboratories or from site sensors. These data would require a

high sampling rate and lead to difficulties in both transmission and storage.

Despite the success shown in these methods, they can be impractical in the

real application.

Limited work explored the prediction task with data from another

source. Weather plays a significant role in the probability of failure
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(Hassankiadeh 2011), and has been used to predict the total number of failed

turnout systems in a railway network (Wang, Xu, Tang, Yuan & Wang 2017).

Note that this work could not locate the exact fault railway points, it only

estimated the total number of failures in a large system. Apart from weather

data, equipment logs were also valuable information for foreseeing the fail-

ures of related equipment (Sipos, Fradkin, Moerchen & Wang 2014). Logs

can be generated by sensors, software applications and even maintenance

records (Li, Zhang, Wu & Kirsch 2018), reflecting the working condition of

a piece of equipment in a different view. In (Li, Zhang, Wu & Kirsch 2018),

maintenance logs were used to forecast the failure between two scheduled

maintenance.

Many of above-mention methods used support vector machines (SVM)

(Chang & Lin 2011) for their models. They mainly focused on data from one

source. A natural extension is to use multiple-kernel learning to formulate

our multi-source problem and increase prediction accuracy.

5.2.2 Preliminaries

In this section, we introduce the formulation of MKL, based on which we

will formulate our models. Compared to deep neural networks, MKL enjoys

better interpretability while requires less training data. This is important for

CBM because the outputs of the model can also be interpreted to discover

important factors that cause failures.

MKL is designed to deal with several feature sets, either generated from

single data source with different kernel functions or different data sources

with predefined kernel functions. The learning objective of MKL is then

finding an optimal combination of these feature sets. Following our applica-

tion, we will give the formulation of MKL assuming multiple data sources

with predefined kernel functions are available.

For sample xi = [x
(1)>

i ,x
(2)>

i , · · · ,x(s)>

i ]> consists of s feature subsets

(formed by concatenation of feature vectors), by applying s mapping func-
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tions to each subset, it takes the form of:

φ(xi) = [φ>1 (x
(1)
i ), φ>2 (x

(2)
i ), · · · , φ>s (x

(s)
i )]>, (5.1)

where {φm(·)}sm=1 denote feature maps associated with m pre-defined base

kernels {κm(·, ·)}sm=1, e.g. identity map for the linear kernel. Given samples

{(xi, yi)}ni=1 with yi ∈ {−1,+1} the label for xi, commonly used MKL can

be formulated as the following optimisation problem (Lanckriet et al. 2004):

min
ω,b,ξ

1

2

(
s∑

m=1

‖ωm‖2

)2

+ C
n∑
i=1

ξi

s.t. yi

(
s∑

m=1

ω>mφm(x
(m)
i ) + b

)
≥ 1− ξi,

ξi ≥ 0, i = 1, 2, ..., n,

(5.2)

where ‖·‖2 is the Euclidean norm for vectors or can be replaced by norm

defined in related Hilbert space. ωm is the weight vectors for mapped features

φm(x
(m)
i ). b is the bias term and C is a regularisation parameter for ξ which

consists of slack variables. The decision score of the classifier on a sample x

is given by:

f(x) =
s∑

m=1

ω>mφm(x
(m)
i ) + b. (5.3)

where the weight for each kernel is implicitly included in ωm.

In order to develop adaptive kernel weight, it will be more compre-

hensive if we could express the kernel weight explicitly. According to

(Rakotomamonjy, Bach, Canu & Grandvalet 2008), following equality holds:

1

2

(
s∑

m=1

‖ωm‖2

)2

=

{
min
η

1

2

s∑
m=1

‖ωm‖2
2

ηm
: s.t.

s∑
m=1

ηm = 1, ηm ≥ 0, ∀m

}
(5.4)
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This helps to rewrite the MKL formulation into below optimisation problem.

min
{ωm}sm=1,b,ξ,η∈∆

1

2

s∑
m=1

‖ωm‖2
2 + C

n∑
i=1

ξi,

s.t. yi

(
s∑

m=1

√
ηmω

>
mφm(x

(m)
i ) + b

)
≥ 1− ξi,

ξi ≥ 0, i = 1, 2, ..., n,

(5.5)

η = [η1, ..., ηs] contains the weights for combination of base kernels. For L1-

norm constraint on kernel weights, ∆ = {η ∈ Rs
+ :
∑s

m=1 ηm = 1, ηm ≥ 0}.
Corresponding decision score of the classifier on a sample x is given by:

f(x) =
s∑

m=1

√
ηmω

>
mφm(x(m)) + b. (5.6)

Above formulation helps to write the kernel weights explicitly, and this en-

ables us to design a new algorithm featuring a more flexible kernel weight.

For the failure prediction task, we will need the model to be sample-

specific. This means we need to treat different sample adaptively, considering

their missingness-patterns and specific sets of equipment that generated the

data. The model equation of traditional MKL does not allow such flexibility,

which inspires us to design a new model.

5.3 Problem Description

In this section, we describe our data and related application. Figure 5.1

shows the workflow of the proposed method.

5.3.1 Data Description

The railway points’ equipment details, maintenance logs, movement logs and

failure history were collected from Sydney Trains database in a time range

from 01/01/2014 to 30/06/2017. These data were collected from 350 sets of

railway points spread in a large area. The weather data were crawled from
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Figure 5.1: Workflow of our method.
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Figure 5.2: A piece of IFMS data.

Australia Bureau of Meteorology2 of the same time span. Below we are going

to introduce their formats and features.

Infrastructure Failure Management System Database

Infrastructure Failure Management System (IFMS) Database stores history

of failures of assets in Sydney Trains with timestamps. We extracted points’

failures as part of our ground truth. Besides, some failures could be in-

directly caused by railway points, and were recorded as “Secondary Failed

Equipment”. We filtered out these entries since these failures were more

closely related to other equipment and require data related to them. A piece

of IFMS data is presented in Figure 5.2.

Equipment Details

Equipment details data record the detailed parameters of every set of railway

points, including Points ID, Manufacturer, Type and so on. A piece of data

is presented in Figure 5.3. We use “-” to denote missing values. With the

help of domain experts, we selected a subset of features from these columns,

and they were all categorical variables. We transform these categorical data

into numerical values through one-hot encoding.

2www.bom.gov.au/climate/data/
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Figure 5.3: A piece of equipment details.

Figure 5.4: A piece of maintenance log.

Maintenance Logs

Maintenance logs contain formatted historical maintenance logs of railway

points. A subset of categorical features was extracted from them following

advice by the domain experts. A piece of data is presented in Figure 5.4.

Movement Logs

Movement logs were automatically generated by Sydney Trains control sys-

tem in a real-time manner. This system recorded states’ changes of the

railway points with timestamps in seconds. A piece of data is shown in Fig-

ure 5.5. We only list some of the event types here. Failures are reported

in these logs as well. Some of the failures occurred in movement logs didn’t

appear in the IFMS database, for the reason that they recovered soon and

didn’t result in any significant incident. They were still real failures, and we

included these failures in our ground truth. Sometimes workers were testing
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Figure 5.5: A piece of movement log.

Figure 5.6: A piece of weather data.

the points for preventative maintenance and this also generated failure logs.

In this case, we ignore these failures to keep the ground truth clean.

Weather

Weather data were retrieved from the Australia Bureau of Meteorology. Our

data were gathered from railway points spread in a large area, so weather

conditions for them may vary. Our strategy was to download data from the

nearest weather station according to the longitudes and latitudes provided by

equipment details. Sometimes weather station would be closed for a while,

and we were not able to find another station to substitute them in some

situations. Some points lack geo-coordinates in Sydney Trains system. These

cause the absence of weather data. Figure 5.6 shows a piece of weather data.
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5.3.2 Problem Formulation

With data mentioned above in hand, we are going to make use of them to

fulfil the prediction task. Essentially, this is a classification task. Since our

data were generated from multiple sources, they came with different formats

and sample frequencies. The two most important things are how we should

aggregate our data from multiple sources and label them according to failure

records.

Grouping and labelling data in a daily manner is an intuitive way. How-

ever, our data are highly imbalanced in label distribution. The number of

days that failures occurred is about 4200, while our data include 454237

days summing over all railway points. This would produce a dataset con-

tains only 0.9% positive samples if we give a label “1” to failures. Such

imbalanced dataset would deteriorate the performance of the classifier.

Sydney Trains’ train timetable shows cyclic patterns following calendar

weeks (Gong, Li, Zhang, Liu, Zheng & Kirsch 2018), which will pose a pe-

riodic effect on the data as well. Therefore, we grouped our data according

to calendar weeks. We gave label “1” to a week if any failure was recorded

in IFMS or movement log of this week. As a result, our task is to predict

whether there will be failures occur in any time of next week, depending on

weather conditions, movement logs in this week and maintenance logs in a

period of 35 days before next week. For maintenance logs, we extend the

time range to 35 days since maintenances were often performed based on

a monthly interval. We would also incorporate equipment details, and in

general, they are independent of time. Figure 5.7 illustrates our data aggre-

gation and labelling strategy. After some data cleaning, we finally generated

58833 samples, including 3900 positive samples.

Notice that in some cases we would lose the movement logs, for example,

the influence of maintenance work. In these cases, we would only refer to logs

in the IFMS database as failure indicators upon agreement with the domain

experts.
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Figure 5.7: To forecast failures in week i+1, we use data from week i and

maintenance logs in a 35-day interval before week i+1.

5.4 Methodology

5.4.1 Feature Extraction and Partition

Although we have grouped our data according to the above-mentioned crite-

rion, we need to transform them further to form feature vectors.

For equipment details and maintenance logs data, we selected some

columns following the advice of domain experts. Then we transform categor-

ical variables into numerical values through one-hot encoding. For numerical

variables in maintenance logs like cost, we firstly transform them into cate-

gorical variables “zero” or “nonzero”, them transform them into numerical

values through one-hot encoding as well. There could be several mainte-

nances in the timespan we considered. If so, we summed up the transformed

features.

For movement logs data, we extracted some statistical features of the

movement for each set of railway points in every day, like mean of move-

ments, variance of movements, count of movements and so on. Because

there are 7 days per week, we would have 7 subsets of features for move-

ment logs. Similarly, for weather data, we have 7 subsets for one week. This

strategy is illustrated in Figure 5.1. Such partition allows us easily handle

the missingness patterns in a daily format as we will introduce in detail in

the next section. Table 5.1 summarises missing percentages of our data after

such feature partition. The missingness of weather data is mainly due to
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missing geo-coordinates of railway points or close of weather stations.

There are 16 feature subsets in total. By applying different kernel func-

tions to different subsets, we can formulate our task as a multiple kernel

learning problem for binary classification. In order to model the interaction

among feature subsets, we also concatenated all feature subsets to form a

long feature vector and applied a kernel function on it. Finally, we would get

17 kernels as our inputs. We term these feature subsets channels.

The missing probability for each data channel is not very high, but an-

other fact is that 44% of samples are either missing one channel or more.

Therefore, it is imperative for us to build a model that is suitable for predic-

tion with incomplete samples.

5.4.2 Selecting Kernel Functions

After applying one-hot encoding, features generated from equipment details

and maintenance logs data were often very sparse. We thus directly used

linear kernel for these two data channels as recommended in literature (Li,

Wang, Gu & Ling 2015, Fan, Chang, Hsieh, Wang & Lin 2008). For the

remaining data channels consist of weather and movement logs of 7 days,

we applied the commonly used radial basis function (RBF) kernels and set

the bandwidth parameters for RBF based on a validation set to mitigate the

risk of over-fitting. In the rare case, some channels of a sample were only

partially missing. If so, we filled the missing part with means.

5.4.3 Missingness-pattern-adaptive Multiple-kernel

Learning

To work with missing channels, a straightforward way is to learn separate

kernel weights for each missingness pattern. However, there can be
∑s

m=1 C
m
s

missingness patterns if we have s channels, so it is possible that the data

cannot cover every pattern. Besides, the data for one pattern can be less and

contain only one type of label. Such a strategy also ignores the relationship
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Table 5.1: Missing rates and dimensions of our data channels. 44% of samples

are missing at least one channel.

Data Missing Rate Feature Dimension

Equipment Details 0% 450

Maintenance Logs 13% 365

Movement Logs

Monday 5% 30

Tuesday 6% 30

Wednesday 5% 30

Thursday 5% 30

Friday 7% 30

Saturday 8% 30

Sunday 10% 30

Weather

Monday 26% 4

Tuesday 26% 4

Wednesday 26% 4

Thursday 25% 4

Friday 25% 4

Saturday 25% 4

Sunday 25% 4

between missingness patterns. A likely choice would be to adjust the kernel

weights according to missingness patterns.

In order to allow adaptive kernel combination, we firstly modify the de-

cision function in Eq. (5.6) for a sample x with s channels into following

form:

f(x) =
s∑

m=1

ηm(x)
〈
ωm, φm(x(m))

〉
+ b, (5.7)

with 〈·, ·〉 denotes the inner product of vectors and

ηm(x) = pmv>m

2s∑
j=1

pjvj, (5.8)

where p = [p1, p2, · · · , p2s]
> is a binary vector generated by one-hot encoding
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on the missingness pattern for sample x (similar to m̄ defined in Chapter 4).

We introduce V = [v1,v2, ...,v2s] ∈ Rk×2s with latent dimension k to repre-

sent embedding matrix for missingness patterns. By Eq. (5.8), we express

the kernel weights as a second order polynomial mapping from missingness

patterns p with the coefficients given by related inner product of vectors in

V. We give a simple example here to explain how we generate p. Assume we

have three data channels but for a sample the second one is missing, then:

p = [1, 0, 1, 0, 1, 0]>. (5.9)

The first and third “1” mean we have first and third feature subsets for

this sample. The fifth “1” serves as a complementary feature for missing

channel 2. By doing so, the absence of a channel would make its kernel

weight zero and influence the kernel weights of other presented channels.

Notice that the matrix V can also be interpreted similarly as a dictionary

matrix for generating the kernel weights. This explains why the vector p is

of 2s dimensionality. This is to guarantee that equal number of elements are

selected from V for all missingness patterns.

The motivation behind this is that we want to collect information from

the missingness pattern of each sample. Eq. (5.8) also indicates that the

kernel weight for a channel is decided by “seeing” the existence of other

channels’ data.

With similar notation to Eq. (5.5), the optimisation problem after intro-

ducing adaptive kernel weight can be expressed as:

min
{ωm}sm=1,b,ξ,V

1

2

s∑
m=1

‖ωm‖2
2 + C1

n∑
i=1

ξi + C2 ‖V ‖2
F

s.t. yi

(
s∑

m=1

ηm(xi)ω
>
mφm(x

(m)
i ) + b

)
≥ 1− ξi,

ξi ≥ 0, i = 1, 2, ..., n,

(5.10)

where C1 and C2 are two regularisation parameters. ‖·‖2
F denotes the Frobe-

nius norm. We add a regularisation term on V to prevent it from being
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arbitrary scaled up due to the norm constraint on ωm. Note that we no

longer require the vectors for kernel weights lies in a simplex as in the origi-

nal MKL algorithm.

Theorem 5.1 Adopting an adaptive kernel weight in Eq.(5.8) would lead to

a positive semi-definite kernel for MKL, with the kernel matrix Kη given by:

Kη =
s∑

m=1

(((
V >V P

)
� P

)> ImI>m ((V >V P)� P))�Km, (5.11)

� stands for the Hadamard product. P = [p1,p2, · · · ,pn] with each column

vector pi ∈ {0, 1}2s denotes the missingness pattern for sample i. Im is a

length-2s indicator vector with only m-th element being 1. {Km}sm=1 is the

kernel matrix related to mapping {φm(·)}sm=1, and if m-th data channel is

missing for a sample then we set φm(·) to be a zero map for this sample.

Proof 5.1 According to the following decision function,

f(x) =
s∑

m=1

ηm(x)
〈
ωm, φm(x(m))

〉
+ b,

ηm(x) = pmv>m

2s∑
j=1

pjvj,

(5.12)

we can rewrite it into an equivalent from by defining a new kernel function,

with the feature map given by:

φ̂(x) = [η1(x)φ1(x(1)), ..., ηs(x)φs(x
(s))], (5.13)

so that

f(x) = 〈ω̂, φ̂(x)〉+ b, ω̂ = [ω1, ...ωs], (5.14)

For two samples x1 and x2, we have

〈φ̂(x1), φ̂(x2)〉 =
s∑

m=1

ηm(x1)ηm(x2) · 〈φm(x
(m)
1 ), φm(x

(m)
2 )〉 (5.15)
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and notice that 〈φm(x
(m)
1 ), φm(x

(m)
2 )〉 is the (i, j)-th element of Km and simi-

larly 5.15 generates the (i, j)-th element of Kη. Rewrite the inner product in

5.15 for all samples collectively in a matrix form we can get

Kη =
s∑

m=1

(((
V >V P

)
� P

)> ImI>m ((V >V P)� P))�Km. (5.16)

Following Schur product theorem (Zhang 2006), Hadamard product of two

positive semi-definite matrices is positive semi-definite, and sum of positive

semi-definite matrices is positive semi-definite.

Clearly,
((
V >V P

)
� P

)> ImI>m ((V >V P)� P) is the product of a ma-

trix with its transpose so that it is positive semi-definite. Thus, in order

to show 5.16 is positive semi-definite we only need to show Km is positive

semi-definite.

When there is no missing data, Km is calculated from a predefined kernel

function, and we can choose many available kernels like Gaussian kernel to

satisfy that Km being positive semi-definite.

In our case, if m-th data channel is missing in a sample, then we set φm(·)
to be a zero map for this sample. This will zero out corresponding diagonal

elements of the kernel matrix, as well as corresponding rows and columns

of the kernel matrix. For example, when m-th data channel is missing in

i-th sample, the i-th column and row of Km will be all zeros. To show Km

is still positive semi-definite, we can re-organise the row and columns to

put i-th column and row to last row and column. Then according to Schur

complement condition for positive semi-definiteness, Km is a positive semi-

definite matrix. Thus Kη is positive semi-definite, and we complete the proof.

Theorem 5.1 shows that our adaptive kernel weight in theory will lead to a

positive semi-definite kernel. It also shows that this problem is hard to solve

in dual form because of the complicated form of Kη in Eq. (5.11).
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5.4.4 Sample-adaptive Multiple-kernel Learning

If we train a unified model for all sets of railway points, we will possibly

ignore some peculiarities of them even though we have included equipment

details as features. Training separate models for each set of railway points

performed even worse as we observed in initial experiments, because the data

for each set of railway points are often insufficient for learning a robust model.

These motivated us to modify our method so that it can be adjusted to fit

each set of railway points, while still can use all the data together for training

the model. We revised the kernel weight in Eq.(5.8) into the following format

for a sample x:

ηm(x) = pmv>m

2s∑
j=1

pjvjaj, (5.17)

where we add a new vector a = [a1, a2, · · · , a2s]
> to represent a unique em-

bedding for the set of railway points that generated sample x.

Substitute Eq. (5.17) into Eq. (5.7), we observe that the term pm could be

omitted from Eq. (5.17) if we set φm(·) to be a zero map for data with absent

m-th data channel, so we omit pm for simplicity of notation. If we have T sets

of railway points, then we will introduce the matrix A = [a1, a2, · · · , aT ] ∈
R2s×T with T the total number of sets of railway points. Each column vector

in A stands for a embedding of a set of railway points. Let q(xi) be the

mapping which maps xi to index of railway points that generated the data

xi. Eq. (5.17) can be rewritten into matrix form for sample xi:

ηm(xi) = I>mV >V
(
pi ◦ aq(xi)

)
, (5.18)

where ◦ denotes the element-wise product of vectors.

With ηm(xi) given in Eq. (5.18), corresponding optimisation problem
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becomes:

min
{ωm}sm=1,b,ξ,V,A

1

2

s∑
m=1

‖ωm‖2
2 + C1

n∑
i=1

ξi + C2 ‖V ‖2
F + C3 ‖A− 12s×T‖2

F ,

s.t. yi

(
s∑

m=1

ηm(xi)ω
>
mφm(x

(m)
i ) + b

)
≥ 1− ξi,

ξi ≥ 0, i = 1, 2, ..., n,

(5.19)

where C3 is a regularisation parameter and 12s×T is a matrix of shape 2s ×
T containing all ones. Notice that when A is a matrix of all ones, Eq.

(5.17) reduce to Eq.(5.8). In other words, when C3 is large enough, the two

models would be equivalent. This regularisation term ensures an appropriate

variance of models among different sets of railway points. One can also

prove that such adaptive weights also retain a positive semi-definite kernel,

following the similar steps in prove of theorem 5.1.

5.4.5 Optimisation

In this section, we introduce the optimisation algorithm we used to train our

models. We will focus on the problem defined by Eq.(5.19), as Eq.(5.10)

could be treated as a simplified version of Eq.(5.19), where the matrix A

consists of all ones.

As mentioned before, Eq.(5.10) and Eq.(5.19) are hard to optimise in

dual form. What’s more, we cannot fit such large data into memory if

we pre-compute those 17 kernel matrices. Thanks to the random feature

(RF) approximation (Rahimi & Recht 2008), we can take an explicit form

of mapped features hence avoiding calculation of the kernel matrices. This

also facilitates the optimisation in the primal, which is much simpler. Given

x ∈ Rd and a predefined parameter D, the mapped features associated with

a RBF kernel could be approximated by:

φ(x)=

√
1

D

[
sin
(
g>1 x

)
, cos

(
g>1 x

)
, · · · , sin

(
g>Dx

)
, cos

(
g>Dx

)]>
, (5.20)
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Algorithm 5.1 Training Procedure with Mini-batch Subgradient method

1: Input: Dataset X collected from T sets of railway points. Latent di-

mension k for V . Number of random features {dm}sm=1 for each kernel.

Hyper-parameters C1, C2, C3. Learning rate β. Batch size h. The num-

ber of batches H = bn
h
c.

Initialise: {ωm}sm=1 = 0. b = 0. A = 12s×T . V with values sampled

from a uniform distribution U(0, 1).

2: for Epoch = 0 to M do

3: Shuffle the samples in X randomly.

4: Split X into batches X1, X2, · · · , XH .

5: for i = 1, 2, · · · , H do

6: Get the index set I for support vectors in Xi

7: Update V with step-size β and sub-gradient in Eq. (5.23)

8: Update A with step-size β and sub-gradient in Eq. (5.24)

9: Update b with step-size β and sub-gradient in Eq. (5.25)

10: Update {ωm}sm=1 with step-size β and sub-gradient in Eq.

(5.22).

11: end for

12: end for

where the entries of G = [g1, · · · ,gD] ∈ Rd×D are drown i.i.d. from a Gaus-

sian distribution N (0, σ−2) with σ bandwidth of the RBF kernel. Many

variants of RF approximation have been proposed in the literature. Here

we implement the Fastfood (Le, Sarlós & Smola 2013) for its simplicity and

efficiency in memory usage.

Our optimisation problem can be rewritten into following form with hinge
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loss L(x, y) = max(0, 1− xy):

minL =
1

2

s∑
m=1

‖ωm‖2
2

+ C1

n∑
i=1

L

(
yi,

s∑
m=1

ηm (xi)
〈
ωm, φm(x

(m)
i )

〉
+ b

)
+ C2 ‖V ‖2

F + C3 ‖A− 12s×T‖2
F ,

w.r.t. {ωm}sm=1, b, V, A,

(5.21)

with ηm(xi) defined in Eq.(5.18), we can calculate the sub-gradients regarding

these variables and get:

∂L
∂ωm

= ωm − C1

∑
i∈I

yiI>mV >V
(
pi ◦ aq(xi)

)
φm(x

(m)
i ), (5.22)

∂L
∂V

=−C1V
∑
i∈I

s∑
m=1

yiω
>
mφm(x

(m)
i )

(
Im
(
pi◦aq(xi)

)>
+
(
pi◦aq(xi)

)
I>m
)

+ 2C2V,

(5.23)

∂L
∂at

= −C1

∑
i∈I∩Tt

s∑
m=1

(
yiω

>
mφm(x

(m)
i )V >V Im

)
◦ pi + 2C3(at − 12s), (5.24)

∂L
∂b

= −C1

∑
i∈I

yi, (5.25)

where I = {i|1 − yif(xi) > 0} is the index set for support vectors. Tt =

{i|q(xi) = t} is the index set of samples generated by railway points t.

With gradients calculated as Eq. (5.22) - Eq. (5.25), we adopted Mini-

batch gradient descent in optimisation. We trained the models for 50 epochs

with a constant learning rate β = 0.0001 and batch-size 256. Using dm

to denote the dimension of random features for m-th kernel mapping, the

computational complexity for calculating the gradients is O(
∑s

m=1 dmh +

s2k), which depends linearly on batch-size h and can be computed efficiently.

We summarise the training process in Algorithm 5.1.
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5.5 Experiments

Our data were collected from 350 sets of railway points from 01/01/2014 to

30/06/2017, together with corresponding weather data downloaded from the

Australia Bureau of Meteorology. There are 58833 samples, including 3900

failures. We named this dataset Points-All.

We also built a subset consists of data from 5 most “vulnerable” sets of

railway points, i.e. those with most failure samples, and named it Points-

Subset.

These datasets are imbalanced in label distribution. We have tried to re-

weight the samples in training by the label frequency but saw no performance

gains, so we did not adopt such a strategy. Table 5.2 summarises the statistics

of our datasets.

5.5.1 Baselines, Evaluation Metrics and Parameter

Setting

Baselines

To show the effectiveness of our approach, experiments were conducted with

the following methods.

• MKL-ZF is the lp-norm MKL method solved by the algorithm in (Kloft

et al. 2011) with absent channels filled by zeros. We conducted exper-

iments for p ranges in [100, 101, 102, 103, 104].

• MKL-MF is similar to MKL-ZF but with absent channels filled by the

averages.

Table 5.2: Dataset summary.

Dataset #instances #failures #railway points #incomplete instances

Points All 58833 3900 350 25942

Points Subset 905 183 5 98
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• MVL-MKL firstly imputes the missing values by the method in (Xu

et al. 2015b), and then applied lp-norm MKL with the imputed data.

(Xu et al. 2015b) is a competitive method for filling incomplete data

similar to our case, so we included it in our baselines.

• Absent Multiple Kernel Learning (AMKL) (Liu, Wang, Yin, Dou &

Zhang 2015) is a state-of-the-art method for MKL with missing kernels.

We only compared with AMKL on Points-Subset because it cannot be

scaled up to fit our Points-All dataset.

• Single Source Classifiers (SSC) are the classifiers applied to single-

source data. For weather and movement logs data, there are still 7

data channels for each source. We use our method MAMKL as the

classifier. For maintenance logs, equipment details and the data chan-

nel formed by concatenating all features, we filled the missing channels

with means and then used kernel SVM (Chang & Lin 2011) for classi-

fication because these data sources only consist of one channel.

• Missingness-pattern-adaptive MKL (MAMKL) is the method proposed

in this work with kernel weights given by Eq. (5.8).

• Sample Adaptive MKL (SAMKL) is the method proposed in this work

with kernel weights determined by Eq. (5.17).

For fair of comparison, for all methods, we used RF approximation for RBF

kernels, and we fixed the random seed to make them determined. As such,

lp-norm MKL could also be applied to our Points-All dataset without pre-

computed kernels.

Evaluation Metrics

We used the Area Under Receiver Operating Characteristic Curve (AUROC)

and Area Under Precision-Recall Curve (AUPRC) as our performance met-

rics for all the methods. The AUPRC can be a better performance metric

for imbalance data (Saito & Rehmsmeier 2015).
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Parameter Setting

For all non-convex methods, we repeated them 10 times to report the results

with means and standard deviations. For the Points-All dataset, we split it

into 60% training data, 20% validation data and 20% test data. The linear

kernel was used for the data channels from equipment details and mainte-

nance logs. We set same bandwidth for RBF kernels on 7 data channels from

weather data. The bandwidth is chosen from [σ−2, σ−1, σ0, σ1, σ2] according

to the AUROC on validation data using SVM with sum of these 7 kernels

as input. σ is the standard deviation of weather data. The same criterion

was adopted to select the parameter of RBF kernels for 7 data channels

from movement logs and 1 data channel from concatenated features. The di-

mensions of RFs for approximating RBF kernels were set to 1024, 2048 and

2048 for movement logs, weather and concatenated features respectively. All

other parameters were chosen from some appropriately large ranges based on

the AUROC of related methods on validation data. For Points-Subset, we

randomly selected 80% data as training set and the remaining 20% as the

test set. Parameters for them were decided by 5-fold cross-validation on the

training set.

5.5.2 Results on Points-Subset Dataset

Table 5.3 shows the experiment results on Points-Subset dataset. lp-norm

MKL got inferior results when p = 1, for the reason that they tended to

find a sparse combination of kernels. This would encourage the model to

ignore the data channels as many as possible so that only partly information

is utilised. It can be useful when some of the data channels are irrelevant

to the prediction task. However, in our case, it does not perform well. This

means our data channels carry complementary information, so only use some

of them could not produce a promising result. Experiment results on SSC

also verify our argument that only use data from one source is not enough.

The pre-filling method did not perform well, because filling the missing
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Table 5.3: Experiment results on Points-Subset dataset. Best results are bold

and the second best are underlined. The results are reported with means and

standard deviations (mean±std) for non-convex methods.

Methods AUROC AUPRC

MKL-ZF

p = 100 0.737 0.436

p = 101 0.921 0.791

p = 102 0.902 0.784

p = 103 0.920 0.789

p = 104 0.921 0.790

MKL-MF

p = 100 0.646 0.289

p = 101 0.923 0.800

p = 102 0.887 0.770

p = 103 0.887 0.767

p = 104 0.906 0.780

MVL-MKL

p = 100 0.655±0.002 0.292±0.002

p = 101 0.852±0.008 0.783±0.005

p = 102 0.898±0.010 0.788±0.015

p = 103 0.873±0.006 0.788±0.005

p = 104 0.873±0.006 0.788±0.004

SSC

Movement Logs 0.663±0.001 0.380±0.001

Weather 0.864±0.035 0.781±0.036

Maintenance Logs 0.667 0.301

Equipment Details 0.516 0.217

All Concatenated 0.669 0.376

AMKL 0.736 0.463

MAMKL 0.942±0.005 0.831±0.016

SAMKL 0.947±0.007 0.840±0.011
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data in advance and used them in training will possibly introduce another

source of error and propagate to following MKL task. The better perfor-

mance of AMKL over imputation-based baselines proves that filling the ab-

sent data channel in advance is not an optimal solution. Although AMKL

does not involve the imputation process and appropriately takes into account

the missingness patterns in training, it does not distinguish data with differ-

ent missingness patterns in testing. A fixed kernel weight for all samples is

adopted, and it is based on l1-norm MKL. These factors limited its perfor-

mance as it tended to ignore some of the data channels similar to l1-norm

MKL.

MAMKL outperformed AMKL, and this verifies the importance and ef-

fectiveness of missingness-pattern-adaptive kernel weight. SAMKL further

promotes the results of MAMKL based on sample-adaptive kernel weights.

It is clear that the proposed method outperforms other baselines in terms

of both AUROC and AUPRC. We attribute the improvement to the com-

bination of multi-source data and the sample adaptive kernel weights. By

appropriately setting the threshold, the SAMKL can achieve 87.5% preci-

sion and 71.7% recall. For comparison, the FrFM-EUC model proposed in

Chapter 3 can obtain 73.1% precision, 76.9% recall, 0.898 AUROC and 0.801

AUPRC on the Points-Subset dataset. This further verified the effectiveness

of the FrFM-EUC model and the combination of multi-source data.

5.5.3 Results on Points-All Dataset

Table 5.4 shows the experiment results on Points-All dataset. By training on

all data, we also included some sets of railway points with only a few failure

records. The proportion of incomplete samples is also higher than that in

Points-Subset dataset. These added up to our difficulties in predicting the

failures. As shown in Table 5.4, in contrast to their results on Points-Subset

dataset, results of lp-norm MKL with p = 1 is often better. This means

traditional MKL cannot fully exploit the merits of multiple kernels, because

when p = 1 most of the kernel weights will be zeroed out. Our method
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Table 5.4: Experiment results on Points-All dataset. Best results are bold

and the second best are underlined. The results are reported with means

and standard deviations (mean±std) for non-convex methods.

Methods AUROC AUPRC

MKL-ZF

p = 100 0.699 0.218

p = 101 0.691 0.199

p = 102 0.696 0.205

p = 103 0.690 0.196

p = 104 0.692 0.197

MKL-MF

p = 100 0.698 0.223

p = 101 0.684 0.204

p = 102 0.687 0.204

p = 103 0.682 0.198

p = 104 0.668 0.176

MVL-MKL

p = 100 0.678±0.001 0.168±0.002

p = 101 0.671±0.001 0.159±0.001

p = 102 0.670±0.001 0.159±0.001

p = 103 0.672±0.002 0.158±0.001

p = 104 0.674±0.002 0.159±0.003

SSC

Movement Logs 0.546±0.010 0.093±0.001

Weather 0.677±0.003 0.197±0.008

Maintenance Logs 0.567 0.098

Equipment Details 0.517 0.085

All Concatenated 0.622 0.133

MAMKL 0.721±0.002 0.261±0.009

SAMKL 0.734±0.002 0.270±0.002
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consistently outperforms other baselines on both AUROC and AUPRC, and

see the improvement compared to SSC. Notice that SAMKL is much better

than MAMKL in this dataset, which again verifies the effectiveness of sample

adaptive kernel weight. This could guarantee a reliable warning regarding

failures predicted by our model. By appropriately setting the threshold,

the SAMKL can achieve 50.8% precision and 15.0% recall. The FrFM-EUC

model proposed in Chapter 3 can similarly achieve 55.3% precision, 11.3%

recall, 0.726 AUROC and 0.271 AUPRC on the Points-All dataset.

For each set of railway points, the number of samples is usually less than

180. Only several failures are observed for some points. We have also tried

to trained many classifiers each for one set of railway points, but the results

were unsatisfactory, so we did not list them here.

5.6 Conclusion

This chapter designed a novel approach for combining incomplete multi-

source data to predict the failure of railway points. It was developed based on

the multiple kernel learning framework but went a step further by exploiting

the missingness patterns and sample-specific features. With the involvement

of domain experts, we grouped our data weekly and split each week into a

daily format to form 17 data channels and built 17 kernels. In this format,

we can express the missingness patterns of samples clearly. After that, a

missingness-pattern-adaptive MKL was put forward to leverage the informa-

tion carried by missingness patterns. Through taking the distinct properties

of each set of railway points into account, the prediction results were further

improved by SAMKL algorithm. Experiments show that the proposed model

can output reliable warnings for railway points, and can predict the failures

precisely for those frequently-failed railway points.

There are still some practical problems remain to be solved: 1) how to ef-

ficiently and effectively clean the noisy data, which includes wisely relabelling

a part of the data with the help of domain experts; 2) how to incorporate
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time-series processing models for better failure prediction with multi-source

information; 3) how to leverage domain knowledge in the optimisation of

models, e.g. include domain knowledge as constraints in model optimisation.

These problems give several interesting future research directions.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis presented several general methods for data analytics for CBM.

We firstly abstracted three research questions on failure prediction, regarding

sparse high-dimensional data, incomplete data and multi-source data, respec-

tively. Focused on each research question, this thesis proposed corresponding

methods and discussed them in each chapter.

Chapter 3 proposed FrFMs for mining the maintenance logs of equipment.

The maintenance logs are usually of high-dimensionality and sparse, which

causes difficulties in hand-crafting features for effective failure prediction.

The FrFM model helped to automatically discover the important feature-

interactions for failure prediction, and it was further enhanced with field

information. The field information was used to constrain the embedding

vectors in each field. Two variants of the FrFMs were proposed - based on

Euclidean distance and Cosine distance respectively. The proposed method

was tested with railway points’ maintenance logs and saw improvements over

competitive baselines.

As missing data is a pervasive problem in real-world CBM data, Chapter

4 proposed a general method for learning with incomplete data. When there

are multiple missingness patterns in the dataset, a single model would likely
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be a compromise between optimal models regarding each missingness pat-

tern. Therefore, Chapter 4 focused on how to adaptively adjust the model

according to the missingness patterns. By assuming all models associated

with corresponding missingness patterns were generated from a dictionary

and their missing pattern vectors, we could effectively learn an adaptive

model considering the incomplete data. A non-linear model was also simi-

larly proposed with neural networks serving as the backbone. Experiments

on several public datasets demonstrated the effectiveness of the proposed

method.

Chapter 5 proposed a sample-adaptive multiple-kernel learning method

for multi-source data. The proposed algorithms were able to deal with in-

complete and heterogeneous data. We further incorporated an embedding

matrix for the embedding of each set of railway points so that we could treat

them differently while using the data altogether in training. Experiments on

real data proved the effectiveness of this method on both vulnerable sets and

all sets of railway points.

6.2 Future Directions of Data Analytics for

CBM

As a rather big topic, data analytics for CBM also involves dealing with time

series. Although with a lot of related work on time-series (Brockwell, Davis &

Calder 2002), the time series in CBM could be much more complicated. For

example, how to combine multi-source time series data, and simultaneously

deal with unevenly sampled data is a challenging issue.

Another important research direction will be how to learn an accurate

model under imperfect supervision. In many cases, CBM data are not per-

fectly labelled, or only partly labelled, including the cases of mistakenly-

labelled data and missing-label data, and this brings difficulties for leaning

a good model. How to design an effective learning scheme under such in-

sufficient supervision and with the special structure of CBM data is another
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challenging task. Some work related to this topic includes active learning

(Cohn, Ghahramani & Jordan 1996, Tong & Koller 2001). Active learning

can help select the most important data to be labelled for learning an accu-

rate predictive model. Thus, we can use related algorithms to select a small

but important portion of data and ask for domain experts’ help on labelling.

Most of real-world CBM data are not generated for training a machine learn-

ing model. Even though they come with labels, the labels can be very noisy.

Some recent work introduced the idea of relabelling (Zhao, Sukthankar &

Sukthankar 2011, Lin, Mausam & Weld 2016). Relabelling part of the data

is also a possible solution for some noisy CBM data.

Last but not least, how to integrate different models for CBM is an im-

portant problem. As presented in Chapter 5, multiple data channels would

generate heterogeneous feature sets, and thus the models applied to these

feature sets should ideally be channel-specific. Depending on the character-

istics and formats of the feature sets, e.g. images, texts, categorical, numer-

ical etc., appropriate models should be applied and integrated together. In

this process, automatic model selection and hyper-parameter optimisation

(Kotthoff, Thornton, Hoos, Hutter & Leyton-Brown 2017) will greatly fa-

cilitate the model design. Another type of model integration will be in a

higher-level, like the ensemble learning (Zhang & Ma 2012), to leverage the

advantages of different models. These two types of integration would possi-

bly boost the model performance, but may also make it harder to interpret

the results. An interpretable result is important for CBM tasks, so when

integrating the models, it is better to take the interpretability into account.
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Núñez, A., Hendriks, J., Li, Z., De Schutter, B. & Dollevoet, R. (2014),

Facilitating maintenance decisions on the dutch railways using big data:

114



BIBLIOGRAPHY

The aba case study, in ‘IEEE International Conference on Big Data’,

IEEE, pp. 48–53.

Ohadi, A. & Micic, T. (2011), ‘Stochastic process deterioration modelling for

adaptive inspections’, Applications of Statistics and Probability in Civil

Engineering pp. 1085–1091.

Ortiz, E. M., Babbar, A., Syrmos, V. L., Clark, G. J., Vian, J. L. & Arita,

M. M. (2008), Multi source data integration for aircraft health manage-

ment, in ‘2008 IEEE Aerospace Conference’, IEEE, pp. 1–12.

Ouyang, M., Welsh, W. J. & Georgopoulos, P. (2004), ‘Gaussian mix-

ture clustering and imputation of microarray data’, Bioinformatics

20(6), 917–923.

Oyebande, B. & Renfrew, A. (2002), ‘Condition monitoring of railway

electric point machines’, Iee Proceedings-Electric Power Applications

149(6), 465–473.

Ozenne, B., Subtil, F. & Maucort-Boulch, D. (2015), ‘The precision–recall

curve overcame the optimism of the receiver operating characteristic

curve in rare diseases’, Journal of Clinical Epidemiology 68(8), 855–859.

Pan, J., Xu, J., Ruiz, A. L., Zhao, W., Pan, S., Sun, Y. & Lu, Q. (2018),

Field-weighted factorization machines for click-through rate prediction

in display advertising, in ‘Proceedings of the 2018 World Wide Web

Conference’, pp. 1349–1357.

Park, D. H., Jung, G. M. & Yum, J. K. (2000), ‘Cost minimization for

periodic maintenance policy of a system subject to slow degradation’,

Reliability Engineering & System Safety 68(2), 105–112.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,

Desmaison, A., Antiga, L. & Lerer, A. (2017), ‘Automatic differentiation

in pytorch’.

115



BIBLIOGRAPHY

Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T. & Efros, A. A. (2016),

Context encoders: Feature learning by inpainting, in ‘Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition’,

pp. 2536–2544.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,

O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas,

J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M. & Duches-

nay, E. (2011), ‘Scikit-learn: Machine learning in Python’, Journal of

Machine Learning Research 12, 2825–2830.

Peng, M., Li, X., Li, D., Jiang, S. & Zhang, L. M. (2014), ‘Slope safety eval-

uation by integrating multi-source monitoring information’, Structural

Safety 49, 65–74.

Podofillini, L., Zio, E. & Vatn, J. (2006), ‘Risk-informed optimisation of

railway tracks inspection and maintenance procedures’, Reliability En-

gineering & System Safety 91(1), 20–35.

Qiang, R., Liang, F. & Yang, J. (2013), Exploiting ranking factorization

machines for microblog retrieval, in ‘Proceedings of the 22nd ACM

International Conference on Information & Knowledge Management’,

pp. 1783–1788.

Qiao, S., Shen, W., Zhang, Z., Wang, B. & Yuille, A. (2018), Deep co-training

for semi-supervised image recognition, in ‘Proceedings of the European

Conference on Computer Vision’, pp. 135–152.

Qin, C., Wang, L., Zhang, Y. & Fu, Y. (2019), Generatively inferential co-

training for unsupervised domain adaptation, in ‘Proceedings of the

IEEE International Conference on Computer Vision Workshops’, pp. 0–

0.

116



BIBLIOGRAPHY

Rahimi, A. & Recht, B. (2008), Random features for large-scale kernel

machines, in ‘Advances in Neural Information Processing Systems’,

pp. 1177–1184.

Rakotomamonjy, A., Bach, F. R., Canu, S. & Grandvalet, Y. (2008), ‘Sim-

plemkl’, Journal of Machine Learning Research 9(Nov), 2491–2521.

Rakotomamonjy, A. & Chanda, S. (2014), ‘Lp-norm multiple kernel learning

with low-rank kernels’, Neurocomputing 143, 68–79.

Rama, D. & Andrews, J. D. (2013), ‘A reliability analysis of railway switches’,

Proceedings of the Institution of Mechanical Engineers, Part F: Journal

of rail and rapid transit 227(4), 344–363.

Rendle, S. (2010), Factorization machines, in ‘2010 IEEE International Con-

ference on Data Mining’, IEEE, pp. 995–1000.

Rendle, S., Gantner, Z., Freudenthaler, C. & Schmidt-Thieme, L. (2011),

Fast context-aware recommendations with factorization machines, in

‘Proceedings of the 34th International ACM SIGIR Conference on Re-

search and Development in Information Retrieval’, pp. 635–644.
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