Intelligent and Robust Control Strategy for Improving Microgrids Operation and Stability

by

Mohsen Eskandari

under the supervision of

A/Prof. Li Li

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

University of Technology Sydney Faculty of Engineering and Information Technology School of Electrical and Data Engineering

2020

Certificate of Original Authorship

I, *Mohsen ESKANDARI* declare that this thesis is submitted in fulfilment of the requirements for the award of *Doctor of Philosophy (Ph.D.)*, in the *Faculty of Engineering and Information Technology, School of Electrical and Data Engineering* at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Signature:

June 2020

Acknowledgments

My deepest thanks go to my family, *my wife, my daughter, my parents* and *my parents in-law*. Without their potent understanding and support, it is not possible for me to complete this thesis.

I would express my deep gratitude to my principal supervisor Prof. Li Li for his guidance and encourage during my study. I also would like to thank my external-supervisor, Prof. Mohammad Hassan Moradi for his help and advice.

In addition, I would like to express my gratitude the University of Technology Sydney for financial support.

In the Name of God, the Beneficent, the Merciful, O Allah, the God of bright light and the God of the lofty throne and the God of roaring sea and the sender of the Bible and the Psalms and the God of shadow and hot sun and the sender of great Quran and the Sender of great Quran In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not endorse any of UTS's products or services.

Publications and Conference Contributions

The following publications are part of the thesis:

Peer reviewed international journal publications

- M. Eskandari, L. Li, M. H. Moradi, P. Siano, F. Blaabjerg, "Optimal Voltage Regulator for Inverter Interfaced DG Units-Part I: Control System" *IEEE Trans. on Sustain. Energy*, 2020.
- [2] M. Eskandari, L. Li, M. H. Moradi, P. Siano, F. Blaabjerg, "Optimal Voltage Regulator for Inverter Interfaced DG Units-Part II: Application," *IEEE Trans. on Sustain. Energy*, 2020.
- [3] **M. Eskandari,** L. Li, M. H. Moradi, F. Wang, F. Blaabjerg, "Control System for Stable Operation of Autonomous Networked Microgrids," *IEEE Trans. on Power Del.*, 2019.
- [4] M. Eskandari, L. Li, M. H. Moradi, P. Siano, F. Blaabjerg, "Reactive Power Sharing and Voltage Regulation in Autonomous Networked Microgrids," *IET Gen. Trans. Dis.*, 2019.
- [5] M. Eskandari, L. Li, M. H. Moradi, P. Siano, F. Blaabjerg, "Active Power Sharing and Frequency Restoration in an Autonomous Networked Microgrid," *IEEE Trans. on Power Syst.*, vol. 34, no. 6, pp. 4706-4717, Nov. 2019.
- [6] M. Eskandari, L. Li, M. H. Moradi, P. Siano, "A Nodal Approach-based State-Space Model of Droop-Based Autonomous Networked Microgrid," *Sustain. Energy, Grids and Networks*, p. 100216, 2019.
- [7] M. Eskandari, L. Li, "Microgrid operation improvement by adaptive virtual impedance," *IET Renew. Power Gen.*, vol. 13, no. 2, pp. 296-307, 2018. Selected paper to be featured in the journal website and nominated for the Premium Award 2019.
- [8] M. Eskandari, L. Li, M. H. Moradi "Improving power sharing in islanded networked microgrids using fuzzy-based consensus control," *Sustain. Energy, Grids and Networks*, 16, 259-269, 2018.
- [9] M. Eskandari, L. Li, M. H. Moradi "Decentralized Optimal Servo Control System for Implementing Instantaneous Reactive Power Sharing in Microgrids," *IEEE Trans. on Sustain. Energy*, 9 (2), 525-537, April 2018.

Peer reviewed international scientific conference publications

 M. Eskandari, L. Li, "A Novel Small Signal Model of Multi-Bus Microgrids for Modelling Interaction of Droop Controllers through the Power Network," Electrical Machines and Systems, 20th International Conference on (ICEMS2017), Sydney, Australia.

The co-authored collaborative publications:

Peer reviewed international journal publications

- A. Rajabi, M. Eskandari, M. J. Ghadi, L. Li, J. Zhanga, P. Siano, "A pattern recognition methodology for analysing residential customers load data and targeting demand response applications," *Energy and Buildings*, vol. 203, p. 109455, 2019.
- [2] A. Rajabi, M. Eskandari, M. J. Ghadi, L. Li, J. Zhanga, P. Siano, "A comparative study of clustering techniques for electrical load pattern segmentation," *Renew. And Sustain. Energy Review*, p. 109628, 2019.
- [3] B. Mahamedi, M. Eskandari, J. E. Fletcher, J. G. Zhu, "Sequence-Based Control Strategy With Current Limiting for the Fault Ride-Through of Inverter-Interfaced Distributed Generators," *IEEE Trans. on Sustain. Energy*, vol. 11, no. 1, pp. 165-174, 2020.
- [4] B. Mahamedi, J. Zhu, M. Eskandari, John E. Fletcher, L. Li, "Protection of Inverter-Based Microgrids from Ground Faults by an Innovative Directional Element," *IET Gen. Trans. and Dist.*, vol. 12, no. 22, pp. 5918-5927, 2018.

Peer reviewed international scientific conference publications

 B. Mahamedi, J. G. Zhu, M. Eskandari, L. Li, A. Mehrizi-Sani, "Analysis of Fault Response of Inverter-Interfaced Distributed Generators in Sequence Networks," IEEE Industrial Application society annual meeting, 2018.

Contents

Certificate of Original Authorship	ii
Acknowledgments	iii
Publications and Conference Contributions	V
Contents	vii
List of Tables	xii
List of Figures	xiii
Nomenclature	xviii
Abstract	xix
1 Introduction	1
1.1 Background and Research Question	1
1.2 MG Control System	3
1.2.1 MG's Hierarchical Control Structure	3
1.2.2 Droop Control	5
1.3 Problem Statement	8
1.3.1 Interaction of Droop Controllers	10
1.4 Research Objectives and Scope	2
1.5 Contributions and Organization of the Thesis	3
1.5.1 Intellectual contributions	3
1.5.2 Document organization	7
2 Adaptive Virtual Impedance for MGs	8
2.1 Motivation and Problem Statement	9
2.2 Literature Review and Contributions	12
2.3 MG Configuration	17
2.4 Reactive Power Sharing Issue	20
2.5 Virtual Impedance Design	22
2.5.1 Decoupling Active and Reactive Power Control	23
2.5.2 Maximum Transferable Power	24

	2.5	5.3 Stability Concern	25
	2.5	5.4 Accurate Reactive Power Sharing	29
	2.6 S€	ervo-VSI	36
	2.6	5.1 VSI Model	36
	2.6	5.2 Servo-VSI Model	37
	2.6	5.3 Optimum S-VSI	41
	2.6	5.4 Improving S-VSI's Dynamics, Accuracy and Reliability	43
	2.7 N	umerical and Simulation Results	44
	2.7	7.1 Adaptive Virtual Impedance	45
	2.7	7.2 Servo-VSI	51
	2.8	Summary	59
3	A	Nodal-based State-Space Model for Networked MGs	61
	3.1 N	lotivation and Problem Statement	62
	3.2 C	ontributions	64
	3.3 Po	ower Flow Study	66
	3.4 Is	sues of the Parallel-Based Model	67
	3.4	l.1 Droop controllers	67
	3.4	I.2 Reference Frame	68
	3.4	I.3 Power Network	70
	3.5 St	tate-Space Model	77
	3.5	5.1 Generation Buses	78
	3.5	5.4 Whole NMG Model	90
	3.6 Si	mulations and Eigenvalue Studies	93
	3.6	5.1 Model Validation	94
	3.6	5.2 Comparison with PL-based Model	99
	3.6	5.2 Interaction of Droop Controllers and PN Topology	101
	3.6	5.3 First-order filter	103
	3.7 Sı	ummary	104
4	Fu	zzy-Consensus Control for Accurate Power Sharing in NMGs	.106
	4.1 Pı	roblem Statement and Literature Review	107

	4.2 Motivation and Contributions	110
	4.3 NMG Control System Modelling	114
	4.3.1 NMG Structure	114
	4.3.2 Power Flow Analysis	115
	4.3.3 Small-Signal Model	116
	4.4 Consensus Control for NMG	123
	4.4.1 Power Sharing	125
	4.4.2 Power Quality	129
	4.4.3 Consensus Gains Determination	131
	4.5 Simulation Results and Eigen-analysis	134
	4.5.1 Model Validation	134
	4.5.2 Consensus control performance	140
	4.6 Summary	143
5	Voltage Regulation and Frequency Restoration in Autonomous NMGs	.144
	5.1 Problem Statement	145
	5.2 Voltage Regulation in Networked MGs	146
	5.2.1 Literature Review	147
	5.2.2 Contributions	148
	5.2.3 Droop Control and Reactive Power Control Issue	150
	5.2.4 Droop Control and Voltage Regulation Issue	153
	5.2.5 The Proposed Method	156
	5.2.6 Simulation Results	160
	5.2.6 Simulation Results 5.3 Frequency Restoration in Networked MGs	160 166
	5.2.6 Simulation Results5.3 Frequency Restoration in Networked MGs5.3.1 Literature Review	160 166 166
	 5.2.6 Simulation Results 5.3 Frequency Restoration in Networked MGs 5.3.1 Literature Review	160 166 166 169
	 5.2.6 Simulation Results	160 166 166 169 170
	 5.2.6 Simulation Results	160 166 169 170 174
	 5.2.6 Simulation Results	160 166 169 170 174 179
	 5.2.6 Simulation Results	160 166 169 170 174 179 182
	 5.2.6 Simulation Results	160 166 169 170 174 179 182 187

	5.4 Summary	. 188
6	Optimal Voltage Regulator for IIDG Units in NMG	191
	6.1 Motivation and Problem Statement	. 192
	6.2 Literature Review	. 194
	6.3 Contributions	. 198
	6.4 Conventional Voltage Source Inverter	. 200
	6.4.1 VSI Output Impedance	. 202
	6.5 Optimal Voltage Regulator	. 206
	6.5.1 OVR State Space Model	. 207
	6.5.2 OVR Output Impedance	. 210
	6.5.3 Determination of Optimal Q and R Matrices	. 210
	6.6 A Universal Model Utilizing the OVR	. 213
	6.6.1 Control System	. 213
	6.6.2 OVR's Impedance Shaping for Grid-Forming Mode in Autonomous NMGs	. 215
	6.6.3 Impedance Shaping for Grid-Feeding Mode	. 219
	6.7 Unbalanced and Harmonic Conditions	. 222
	6.8 OVR Performance in NMGs	. 224
	6.8.1 Stability Analysis in the Autonomous Mode	. 224
	6.8.2 Reactive Power Sharing	. 227
	6.9 Numerical and Simulation Results	. 227
	6.9.1 Optimization	. 228
	6.9.2 Simulation Results	. 229
	6.10 Summary	. 239
7	Conclusions and Future Work	241
	7.1 Adaptive Virtual Impedance	. 241
	7.2 Small-Signal Model	. 242
	7.3 Fuzzy-Consensus Control	. 243
	7.4 Frequency Restoration	. 244
	7.5 Optimal Voltage Regulator	. 245
A	PPENDIX A	247

APPENDIX B	
References	

List of Tables

Table 2.1. MG's electrical and control parameters	45
Table 2.2.Fuzzy rules	53
Table 2.3. Optimal S-VSI Parameters for Cases 1-4	54
Table 2.4. Optimal Parameters of S-VSI for Case 5	59
Table 3.1. Electrical and control parameters of VSI	94
Table 4.1. Fuzzy Rules for FIS	
Table 4.2. Control parameters adopted for simulations.	

List of Figures

Fig. 1.1 MG control system4
Fig. 1.2 Model of a converter connected to the MG bus
Fig. 1.3 MG's power network graph10
Fig. 1.4 Interaction of droop controllers: (a) Step response of the phase angle; (b) Step response of
the voltage magnitude
Fig. 2.1 MG configuration
Fig. 2.2 A dispatchable DG unit: (a) VSI's control system; (b) Inner control loops; (c) Adaptive
virtual impedance loop
Fig. 2.3 Voltage profile with respect to the reactive power
Fig. 2.4 Power flow control by voltage and frequency: (a) P-δ; (b) P-V; (c) Q-δ; (d) Q-V24
Fig. 2.5 Transferable power through the feeder: (a) <i>P</i> ; (b) <i>Q</i> 25
Fig. 2.6 Eigenvaue loci
Fig. 2.7 Eigen loci: (a) Conventional droop control (P): (b) Proposed method
Fig. 2.8 The S-VSI control system
Fig. 2.9 Optimization flowchart for S-VSI
Fig. 2.10 Schematic diagram of the simulated MG
Fig. 2.11. Power sharing in MG: (a), (b) Conventional droop control; (c), (d) Proposed adaptive
virtual impedance
Fig. 2.12 Reactive power sharing in case 2: (a) Conventional droop control; (b) Proposed adaptive
virtual impedance
Fig. 2.13 Reactive power sharing in case 3: (a) Conventional droop control; (b) Proposed adaptive
virtual impedance; (c) Adaptive virtual inductance values47
Fig. 2.14 Reactive power sharing in case 4: (a) Conventional droop control; (b) Proposed adaptive
virtual impedance; (c) Adaptive virtual inductance values
Fig. 2.15 Reactive power sharing in case 5: (a) Conventional droop control; (b) Proposed adaptive
virtual impedance; (c) Consensus control
Fig. 2.16 Reactive power sharing in case 6: (a) Conventional droop control; (b) Proposed adaptive
virtual impedance
Fig. 2.17 Dominant pole locus of S-VSI, (a) increasing integrator gain while virtual impedance is
not employed; (b) increasing virtual impedance while integrator gain is zero; (c) increasing
integrator gain while virtual impedance is adopted; (d) comparison between VSI and optimal S-VSI.
Fig. 2.18 PSO Convergence
Fig. 2.19 Power sharing among DG units in IM via S-VSIs: (a), (b) by conventional droop control;
(c), (d) by proposed control strategy with optimum parameters; (e) by proposed control strategy
without optimum parameters; (f) voltage magnitude at PCC
Fig. 2.20 Reactive power sharing among DG units in CM and transition to IM, (a) by conventional
droop control, (b) by proposed control strategy
Fig. 2.21 Power sharing among DG units in IM: (a) by conventional droop control; (b) by proposed
control strategy;

Fig. 2.22 Circulating current between DG units in IM: (a) by conventional droop control; (b) by
proposed control strategy
Fig. 2.23 Reactive power sharing between DG1, 2 & 3 in IM, (a) without proposed control system,
(b) with proposed control system while LPBWCL is unavailable
Fig. 2.24 Power sharing among DG units in Case 5, (a) by conventional droop control, (b) by
proposed control strategy
Fig. 3.1 (a) Frequency dynamics. (b) Phase angle dynamics70
Fig. 3.2 Interaction of droop controllers through the power network74
Fig. 3.3 (a) Schematic diagram of CRF applied to PL-based model. (b) Small-signal representation
of reference frame in the MG. (c) Small signal representation of reference frame including slack bus
(bus <i>i</i>)75
Fig. 3.4 NMG topology78
Fig. 3.5 Nested control loops of VSI: (a) Voltage control loop; (b) Current control loop81
Fig. 3.6 Schematic diagram of the simulated microgrid94
Fig. 3.7 Critical dominant poles for different X/R ratios of the NMG97
Fig. 3.8 Simulation results: (a)-(b) Frequency dynamics of VSIs 1-3: (c)-(f) Active power and
reactive power dynamics of VSI 198
Fig. 3.9 Dominant eigenvalues loci, (a) in relation to grid impedance variation, (b) in relation to
load increase (nominal point)99
Fig. 3.10 (a) Active power and i_{od} dynamics of VSI 1. (b) Reactive power and i_{oq} dynamics of VSI 1.
Fig. 3.11 (a) Eigenvalue loci of the Parallel MG (PLMG). (b)-(h) Simulation results for comparing
the dynamic response of the droop control in parallel and networked MGs with different X/R ratio.
(b)-(c) Parallel MG (X/R \approx 1). (d) Networked MG (NMG) (X/R \approx 1). (e), (f) Networked MG (X/R \approx 1,
$k_p=0, k_q=0$). (g), (h) Networked MG (X/R \approx 1.5)102
Fig. 3.12 Dominant eigenvalues loci in relation to cut-off frequency ω_c variation103
Fig. 3.13 Simulation results for different cut-off frequency ω_c . (a) $\omega_c=5$. (b) $\omega_c=15$. (c) $\omega_c=21$ 103
Fig. 4.1 An MG with a networked topology114
Fig. 4.2 Small-signal representation of the droop control system in MGs: (a) small-signal
representation of reference frame in parallel-based MGs; (b) small signal representation of RF in
parallel-based MGs including slack bus (bus <i>i</i>); (c) block diagram of the droop-based control system
given from the small-signal model121
Fig. 4.3 The proosed control scheme: (a) VSI control system; (b) proposed fuzzy consensus as well
as voltage regulation (consensus) and frequency restoration loops; (c) membership function for
input 1; (d) fuzzy surface for output 1 (ϕ_{ppij}) vs inputs 1 & 2
Fig. 4.4 The consensus algorithm for average voltage profile restoration130
Fig. 4.5 Simulated NMG with four VSIs
Fig. 4.6 Eigenvalue analysis and simulation results: (a) critical dominant modes for MG with
different X/R ratios (1.1 and 1.5); (b) frequency dynamic of MG with X/R=1.1, which is unstable;
(c) frequency dynamic of MG with X/R=1.5, which is stable136

Fig. 4.7 Dominant oscillation modes: (a), (b) eigenvalue loci of f - P and V - Q droop loops; (c), (d) active and reactive power oscillations: (e), (f) P and Q coupling (active load is changed while			
active and reactive power oscillations; (e), (1) r and Q coupling (active load is changed while reactive load is constant)			
Fig. 4.8 Dominant signmulus comparison between network based (DN based) model and			
Fig. 4.8 Dominant eigenvalue comparison between power network-based (PN-based) model and			
parallel-based (PL-based) model: (a) decreasing (arrow direction) inductance of the grid impedanc ($0.1 < X/R < 10$); (b) increasing $\Delta \delta_{ij}$ (arrow direction)			
power sharing; (c) voltage magnitude			
Fig. 4.10 Simulation results for conventional consensus control: (a), (b) active and reactive power			
sharing without frequency and voltage restoration loops; (c), (d) active and reactive power sharing			
with frequency and voltage restoration loops; (e) frequency restoration; (f) voltage restoration139			
Fig. 4.11 Simulation results for the proposed method: (a), (b) active and reactive power sharing			
through the proposed fuzzy consensus protocol; (c), (d) frequency and voltage restoration; (e) fuzzy			
gains; (f) Q-sharing by the proposed method, VSI 2 is switched off at t = 3 s and switched on at t =			
5 s			
Fig. 5.1 MG topology151			
Fig. 5.2 (a) A feeder connecting DG units to PCC. (b) Voltage drop over the feeder consisting of 3			
DG units			
Fig. 5.3 The proposed method, (a) the supplementary control loop for reactive power sharing, (b)			
$\Delta V/\Delta Q$ which is positive for a variety of droop gains and can be regarded as virtual boost V-Q loop.			
Fig. 5.4 Simulated MG topology161			
Fig. 5.5 Dominant eigenvalue loci of the MG with the proposed supplementary loop161			
Fig. 5.6 Simulation results for the conventional droop control: (a) reactive power sharing, (b)			
voltage drop			
Fig. 5.7 Simulation results for the proposed control method: (a) reactive power sharing; (b) voltage			
drop; (c) the S&H unit performance			
Fig. 5.8 Simulation results for the consensus control, (a) reactive power sharing, (b) voltage drop.			
Fig. 5.9 Simulation results for the proposed control method in response to large disturbances (DG 2			
is turned off/on at $t = 2$ (s) and $t = 4$ (s), respectively): (a) reactive power sharing, (b) voltage			
regulation			
Fig. 5.10 Block diagram of droop control in conventional power systems: (a) frequency control with			
droop loop: (b) the simplified droop loop: (c) equivalent transfer function			
Fig. 5.11 Block diagram of droop control in in MG: (a) the <i>f-P</i> loop: (b) the proposed virtual			
damping: (c) equivalent transfer function 172			
Fig. 5.12 Proposed adaptive feedback loop for frequency restoration			
Fig. 5.13 Step response of the $f-P$ droop loop			
Fig. 5.14 Bode diagram showing improvement of the stability margin of control system by adopting			
delta feedback and feedforward terms			
Fig. 5.15 Phase portrait: (a) conventional droop $(k-0)$: (b) with feedback loop $(k-1)$.			
Fig. 5.16 Simulated autonomous networked MG tonology 100			
rig. 5.10 Simulated autonomous networked MG topology182			

Fig. 5.17 Conventional <i>f-P</i> droop controller: (a) power sharing; (b) frequency; (c) phase angle; (d) reactive power
Fig. 5.18 Droop controller with conventional frequency restoration: (a) power sharing; (b) frequency; (c) Phase angle
 Fig. 5.19 Proposed method for frequency restoration: (a) power sharing; (b) dynamic performance; (c) frequency restoration; (d) Phase angle; (e) feedback control loop gain; (f) reactive power186 Fig. 5.20 The virtual damping impact on compensating time delay imposed by communication link.
Fig. 6.1 Voltage source inverter (grid forming): (a) electrical circuit; (b) single phase diagram and
control system; (c) the inner control loops
Fig. 6.2 Bode plot of the VSI's output impedance
Fig. 6.3 The proposed control system for OVR
Fig. 6.4 The OVR optimization process; flowchart of the optimal K _{OVR} determination211
Fig. 6.5 The proposed universal model for both grid-forming and grid-feeding operation. v_i^{-} and v_i^{n}
are related to the negative and selected (n^{th}) harmonic loops
Fig. 6.6 The OVR model for impedance shaping as a grid-forming inverter: (a) block diagram
representing the small-signal model of the OVR in an autonomous MG; (c) closed-loop small-signal
model including interaction of the OVR's output impedance with the MG model; (c) the equivalent
model which reveals the reactive current (reactive power) variation is proportional to the voltage
magnitude variation
Fig. 6.7 The optimal current regulator (OCR) model for impedance shaping as a grid-feeding
inverter: (a) electrical circuit model of OCR connected to the grid; (c) block diagram representing
the small-signal model of the OCR and its corresponding load (d_G represents voltage variation as a
consequence of the grid voltage variation, which is inserted to the model as a disturbance)219
Fig. 6.8 Frequency response of the OCR control system in the numerical case study: (a) Bode plot
of the closed-loop transfer function given in (6.37); (c) Nyquist plot of the open-loop transfer
function (left plot shows full view, and right plot shows zoom on (-1,0))221
Fig. 6.9 OVR model including negative sequence and harmonics loops
Fig. 6.10 Eigenvalue analysis: (a) MG topology with 3 IIDG units ($V_{L-L} = 400 (V)$); (b) dominant
critical modes of the MG including VSIs; (c) dominant critical modes of the MG including OVRs.
Fig. 6.11 Numerical results: (a) Pareto front; (b) convergence of the optimization algorithm after
several runs; (c) bode plot of the OVR output impedance
Fig 6.12 OVR performance under voltage regulation: (a) three-phase voltage; (b) direct component
of the voltage
Fig 6.13 OVR performance in current limiting mode, a balanced three-phase to ground fault occurs
at $t = 1.5 - 1.75$ (seconds): (a) VSI's output three-phase current; (b) the <i>d</i> - <i>q</i> components of the
VSI's output current; (c) OVR's output three-phase current; (d) the d - q components of the OVR's
output current
Fig. 6.14 OCR performance under current regulation: (a) three-phase current; (b) active and reactive
power
Fig. 6.15 OVR performance under the unbalanced condition

Fig. 6.16 OVR performance in presence of nonlinear loads: (a) OVR performance without harmonic
loops; (b) OVR performance with harmonic loops; (c) THD of the voltage at PCC234
Fig. 6.17 OVR performance in MGs with conventional droop controller: (a) frequency of MG with
PI-based VSIs and X/R=1, the system is unstable; (b), (c) dynamic response of MG, including PI-
based VSIs, to P and Q sharing, $X/R=1.5$; (d) frequency of MG with OVRs and $X/R=1$, the system
is stable; (e), (f) dynamic response of OVR-based MG to P and Q sharing, X/R=1. (The PI-based
VSIs are marked with VSI for the sake of simplicity)236
Fig. 6.18 Circulating reactive power: (a) among PI-based VSIs; (b) suppressed circulating reactive
power among OVRs
Fig. 6.19 Fault condition in the autonomous MG, (a)-(c) plots are related to the MG with PI-based
VSIs and (d)-(f) plots related to the MG with OVRs: (a) current waveform of VSI 1; (b) active
power sharing among VSIs; (c) VSIs' frequency; (d) current waveform of OVR 1; (e) active power
sharing among OVRs; (f) OVRs' frequency237

Nomenclature

Global abbreviations used in this thesis

CB	=	Circuit Breaker
CL	=	Common Load
СМ	=	Connected Mode
CRF	=	Common Reference Frame
CSI	=	Current Source Inverter
DG	=	Distributed Generation
ESS	=	Energy Storage System
FIS	=	Fuzzy Interface System
FPSO	=	Fuzzy Particle Swarm Optimization
IIDG	=	Inverter Interfaced Distributed Generation
IM	=	Islanded Mode
LBWCL	=	Low Band-Width Communication Link
LMI		Linear Matrix Inequality
LQR	=	Linear Quadratic Regulator
LV	=	Low Voltage
MG	=	Microgrid
MGCC	=	Microgrid Central Controller
MS	=	Micro-source
NMG	=	Networked Microgrid
OVR	=	Optimal Voltage Regulator
RF	=	Reference Frame
PCC	=	Point of Common Coupling
PN	=	Power Network
RES	=	Renewable Energy Resources
S-VSI	=	Servo-Voltage Source Inverter
VSI	=	Voltage source Inverter

In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not endorse any of UTS's products or services.

Abstract

The rising world-wide trend toward developing clean and efficient energy resources has caused dispersed installation of distributed generation (DG) units in power systems. Microgrid (MG) concept is considered as the best solution to address the resiliency issue of future modern power systems, which are expected to receive a considerable amount of power through inverter-interfaced DG (IIDG) units. Droop control systems are widely adopted in conventional power systems and the decentralized droop-like control method is the most favorable control system for MGs. However, there are some crucial issues related to the poor performance of droop control in autonomous networked MGs (NMGs), which are considered and addressed in this thesis.

The requirement of expensive and unreliable high band-width communication infrastructure is obviated in droop control. To this end, the power network is regarded as a communication link and voltage variables as control signals. This, however, reduces the stability margin of autonomous NMGs due to the interaction of droop controllers through the power network. Lack of inertia of droop-controlled power converters and low X/R ratio of interconnecting power lines intensify this interaction which may lead to the instability of NMGs. On the other hand, the existing parallel-based small-signal model of MGs is inadequate to represent this interaction in the content of NMGs. To this end, an accurate

state-space model is developed in a fully decentralized approach for autonomous NMGs which does not rely on any converter for any specific role.

Moreover, the major challenges related to NMG control is the ineffectiveness of droop control in accurate power-sharing, frequency fluctuations, and voltage deviation, which raise stability and power quality issues. This work also deals with frequency fluctuation and stability concerns of f-P droop control loop as well as dynamic performance, voltage regulation and stability concerns of V-Q control loop in autonomous NMGs.

Besides, penetration of IIDG units puts the stability of modern power systems into risk due to the vague and arbitrary output impedance of IIDG units. In this regard, an optimal voltage regulator (OVR) is proposed for controlling IIDG units to achieve a free/wide range of impedance shaping. The OVR facilitates the optimal impedance shaping based on the control requirement and grid impedance characteristics, which makes the IIDG units consistent with the power network, thus contributing to stabilizing modern power systems and autonomous NMGs.

Numerical and simulation results in MATLAB\Simulink platforms are executed to evaluate the effectiveness and accuracy of the proposed methods.

Keywords:

Droop control; Inverter interfaced distributed generation (IIDG); Microgrid; Optimal control; Fuzzy control; Robust control; Small-Signal model.